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Abstract

Autonomous controllers can be trained by imitation learning from demonstra-
tions of the intended control. Hierarchical imitation learning in the parametrized
hierarchical procedures (PHP) framework can reduce the required number of
demonstrations by allowing each procedure to specialize in specific behavior and
abstract away from transient state features. We propose a variational inference
method for discovering the latent hierarchical structure in observation–action traces
of teacher demonstrations. We train an inference model to approximate the pos-
terior distribution of the latent call-stack of hierarchical procedures, and sample
from it to guide the training of the hierarchical controller. Our method requires
40 demonstrations, less than half as many as end-to-end RNN training, to achieve
88% success rate in training the BubbleSort algorithm.

1 Introduction

Autonomous controllers that operate in dynamical systems can be trained to perform specified tasks
when provided with informative learning signals. In imitation learning (IL), a teacher provides
demonstrations of successful performance of the task, which consist of traces of sensory observations
and the intended control actions during execution of the teacher’s control policy [1, 2, 3, 4] or of the
learning controller [5, 6, 7]. The main benefit of IL is that the rich supervision signal often keeps
sample efficiency high, requiring a manageable amount of interaction with the system and the teacher.
By comparison, the reward function in reinforcement learning, which only scores system states and
control actions, is a much weaker and sparser supervision signal that often entails very high sample
complexity.

Control structure, and in particular hierarchical control, has the potential to further reduce the
required number of demonstrations for learning successful controllers that generalize to states not
seen during training. Modularity and hierarchy facilitate specialization and abstraction, so that each
distinct component of the controller can focus on simpler behavior in a subset of system states, thus
reducing the complexity of the relevant features and of the noise structure. We take a hierarchical
imitation learning (HIL) approach, by modeling the controller as a set of parametrized hierarchical
procedures (PHPs) [8], where each procedure can either invoke a sub-procedure, take a control
action, or terminate and return to its caller. We train the control policy’s parameters from a dataset of
observation–action trajectories executed by a teacher controller.

The challenge in this setting is that the hierarchical structure is latent in the teacher’s demonstrations
and must be inferred. We propose to use amortized variational inference to train hierarchical
controllers from demonstration traces, a method that showed success in unsupervised learning [9, 10,
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11, 12]. We train an inference model to approximate the posterior distribution of the latent call-stack
of hierarchical procedures given the observable demonstration, and use it to impute the sequence
of sub-procedure calls and their arguments, and guide the training of the generator model, i.e. the
procedures themselves. This parametric approach to inference allows us to extend prior work in
inference of hierarchical controllers [13, 14, 15, 16, 8] to learn deeper hierarchies of hybrid structure:
discrete procedure calls that accept continuous arguments.

We train a 4-level hierarchical controller to perform the BubbleSort algorithm from demonstrations
of the algorithm’s execution. Our method requires 40 demonstrations, less than half as many as
end-to-end training of a 4-layer RNN, to completely match 88% of test traces. These preliminary
results suggest that variational inference can successfully discover the latent structure from teacher
demonstrations, and use it to efficiently train hierarchical controllers.

2 Related Work

Frameworks of hierarchical control often include explicit or implicit call-stacks. In the popular
options framework [17], options can use "intra-option" control to call other options. Stack RNNs [13]
can explicitly perform stack operations as part of their control. Neural Programmers–Interpreters [18]
control program execution by maintaining a call-stack of procedures and their arguments. Neural
Program Lattices [19] add the ability to train the same NPI model when the hierarchical structure
is latent in some of the demonstrations, using lattices to group the exponentially many latent stack
trajectories into a manageable set. Parametrized hierarchical procedures (PHPs) [8] maintain a similar
call-stack, and train it with an exact inference method that is limited to shallow hierarchies without
procedure arguments. In this work, we extend PHPs to train multi-level hierarchies of procedures that
take arguments, via a variational inference method based on the principles of autoencoders [10, 11].
Variational inference was previously used to model time series [20, 21, 22]. Our method extends
SRNNs [22] to model hierarchical control.

3 Hierarchical Imitation Learning

3.1 Imitation Learning as Stochastic Inference

We model an agent’s interaction with its environment as a Partially Observable Markov Decision
Process (POMDP). At time t, the environment is in state st P S, and emits an observation ot P O.
Upon seeing the observation, the agent makes a stochastic choice of an update for its internal
memory state to mt PM, and of an action at P A, according to a policy pθpmt, at|mt´1, otq. The
environment then makes a stochastic transition to the next state and observation ppst`1, ot`1|st, atq.

We consider the imitation learning setting in which a teacher provides a set of demonstrations
D “ txju, where each demonstration is an observable trace x “ o0, a0, o1, a1, . . . , oT , aT induced
by the execution of a teacher policy in the environment. Here aT is the first occurrence in the sequence
of a termination actionH. The learning problem is to find the parameter θ of a policy pθ that gives
high likelihood to the observed data, i.e. to maximize log pθpDq “

ř

j log pθpxjq. Denoting the
latent sequence of memory states by z “ m0, . . . ,mT , we have

log pθpxq “ log
ÿ

z

pθpz, xq “ log
ÿ

z

T
ź

t“0

pθpmt, at|mt´1, otq ` const, (1)

with the constant incorporating the log-probability of the environment steps ppst`1, ot`1|st, atq.

When the memory update is non-deterministic, the support of z has size exponential in the horizon T ,
which prevents direct optimization of (1). Existing approaches are either to have no memory state,
allowing only reactive policies pθpat|otq, or more generally to have deterministic memory updates
mt “ fθpmt´1, otq, and by extension z “ fθpxq, e.g. using recurrent neural networks (RNNs).

In this work, we propose to instead use variational inference (VI), i.e. to train an inference model
qφpz|xq to guide the training of the generator model pθpz, xq. While this can be done under any
structural constraint on these models, we consider controllers that have the hierarchical structure
detailed below.
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3.2 Parametrized Hierarchical Procedures

Structure in the policy pθ is an inductive bias that can facilitate sample-efficient generalization from
the demonstrated behavior to execution on unseen states. In this work, we build on the hierarchical
control framework of parametrized hierarchical procedures (PHPs) [8], in which a hierarchical
controller is modelled as a set of procedures H. Each procedure is tasked with performing a specific
behavior, which it does by breaking the task down into a sequence of simpler sub-tasks, and calling
a sequence of sub-procedures and elementary actions to perform these sub-tasks. Inspired by the
analogy to procedural programming, we extend PHPs to have procedures pass real-vector arguments
to sub-procedures and actions, and return real-vector values to their callers upon termination.

Similarly to computer programs, the hierarchical controller’s execution is managed by a call-stack,
onto which sub-procedures are pushed when called, and from which they are popped when they
terminate. Each frame in the stack has the format ph, u, τ, h´, u´q, consisting of: (1) the procedure
identifier h P H; (2) its argument u P Rd; (3) the counter τ P N of steps that the procedure executed
so far; (4) the procedure’s most recent sub-procedure or action, h´ P HYA; and (5) u´ P Rd, the
return value of h´. All identifiers are one-hot encoded. For simplicity, vectors have a fixed length d.

The controller is executed by following Algorithm 1 in Appendix A. In step i of the execution, let the
top stack frame be phi, ui, τi, h´i , u

´
i q. Then procedure hi takes a stochastic step with distribution

pθph
`
i , u

`
i |hi, ui, τi, h

´
i , u

´
i , otq, (2)

where h`i P H YAY tHu is the sub-procedure, action, or termination, and u`i P Rd is either the
argument for that sub-procedure or action, or the return value for termination. For each hi, the PHP
pθp¨, ¨|hi, . . .q is represented by a neural network, and jointly they all induce the stochastic process
z “ tziu, with zi “ ph`i , u

`
i q. Note that the observation ot is not stored on the stack, and that the

time t advances only in PHP steps i that take elementary actions at “ h`i P A.

4 Variational Inference of Control Programs

As discussed in Section 3.1, since we cannot directly optimize the objective (1), we will optimize a
proxy. In amortized variational inference, this proxy is the evidence lower bound (ELBO): for any
distribution qφpz|xq, we have

log pθpxq “ Ez|x„qφ

„

log
pθpz, xq

qφpz|xq



`Drqφpz|xq}pθpz|xqs ě Ez|x„qφ

„

log
pθpz, xq

qφpz|xq



. (3)

Maximizing the lower bound on the right-hand side of (3) over θ and φ is therefore trading off
maximizing our log-likelihood objective on the left-hand side, with minimizing the Kullback–Leibler
(KL) divergence of an inference model qφpz|xq from the true, computationally infeasible posterior of
the generator model pθpz|xq.

In the following, we rewrite the standard expression (3) as Drqφpz, x|xq}pθpz, xqs. This notation
highlights a natural representation of qφ: whereas pθpz, xq is the product of PHP step transitions (2),
for qφpz, x|xq we can consider the same PHP step, with two differences. First, the distribution qφ is
conditioned on the entire demonstration x, both its past and future. Following stochastic recurrent
neural networks (SRNNs) [22], we process the demonstration x using a bidirectional RNN bφpxq, to
obtain a time-dependent posterior context bt, and by analogy to (2) compute

qφph
`
i , u

`
i |hi, ui, τi, h

´
i , u

´
i , btq. (4)

The second difference between posterior PHP steps of qφ and the ordinary PHP steps of pθ, is that
we must ensure that qφpz, x1|x2q “ 0 for all x1 ‰ x2. At time t, if we have prior knowledge that
some sub-procedure cannot lead to choosing at, we mask in log qφ the logit of that sub-procedure to
´8 before normalizing qφ with softmax. In particular, we preclude any action selection other than
at, including its argument.

4.1 Algorithmic Considerations

Analytic KL computation. Computing (3) “analytically”, with an explicit sum over all values of
z, often outperforms sampling z|x „ qφ [10]. This is attributed to the high variance of the gradient
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of the log term in (3), particularly when qφpz|xq is a poor approximation of the posterior pθpz|xq.
In fact, the gradient of the log term with respect to φ has expectation 0, but its variance increases
without bound as some values of qφpz|xq tend to 0. The latter is an important case in our setting,
since we wish q to reveal the “correct” latent structure, and give negligible likelihood to other values
of z. We also note that, in practice, the exploding variance manifests as bias (see Appendix B).

Since the support of z has size exponential in the horizon T , we break down the objective into
individual PHP steps, and compute each one analytically with

Drqφpz, x|xq}pθpz, xqs “
ÿ

i

Ezăi|x„qφrDrqφpzi, xi|zăi, xq}pθpzi, xi|zăi, xăiqss. (5)

For every PHP step i, we sample zăi “ z0, . . . , zi´1 by extending zăi´1 from the previous step, and
compute the one-step KL analytically. Here xi “ pat, st`1, ot`1q for every PHP step i in which an
action at is taken, and note again that the environment dynamics factors out as a constant.

Sequential Score-Function Trick. The score-function trick is a method for taking the gradient of
an expectation over a parametric distribution [23]. Usefully, it can also be decomposed over PHP
steps similarly to (5), to compute

∇Drqφpz, x|xq}pθpz, xqs “
ÿ

i

p∇Di `Di∇ log qφpẑăi|xqq, (6)

where Di “ Drqφpẑi, xi|ẑăi, xq}pθpẑi, xi|ẑăi, xăiqs and ẑ|x „ qφ.

5 Results
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Figure 1: Fraction of completely correct test traces,
averaged over 6 trials, after 50K steps of learning
4-level controllers with our VI method and end-
to-end RNN training. VI is able to extract more
information from the same data by discovering a
latent hierarchical structure that generalizes better.

Figure 1 summarizes the preliminary results of
training a 4-level hierarchical controller to per-
form the BubbleSort algorithm using our varia-
tional inference (VI) method, compared to end-
to-end training of a 4-layer RNN (the architec-
tures and hyperparameters are detailed in Ap-
pendix C). The error rate is the fraction of test
traces in which the trained policy takes the cor-
rect action in every step. These results suggest
that VI is able to extract more information than
end-to-end RNN training from the same amount
of data. With 40 demonstrations, VI already
generalizes to exactly match 88% of test traces,
while the RNN requires more than 90 demon-
strations to achieve that performance.

6 Conclusion

In this paper we proposed a variational infer-
ence method for training hierarchical controllers
from demonstrations in which the structure is
latent. In training the BubbleSort algorithm, dis-
covery of the latent structure improved learning
and reduced by more than half the number of
demonstrations needed to perfectly generalize
to 88% of test cases.

Our method can benefit from introducing control variates, such as RELAX [24], to reduce the variance
of the gradient estimators. Tighter bounds on the log-likelihood objective, such as IWAE [25], can
also help in cases where qφ is insufficiently expressive to match the posterior, however an open
question is how to combine such bounds with the considerations of Section 4.1.
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Appendix

A Hierarchical Control Structure

Algorithm 1 Execute hierarchical controller with root procedure h0 and task specification u0
Initialize stackÐ rph0, u0, 0,H,Hqs
Initialize iÐ 0
repeat

Let phi, ui, τi, h´i , u
´
i q be the top stack frame

Draw ph`i , u
`
i q with distribution pθph`i , u

`
i |hi, ui, τi, h

´
i , u

´
i q

if h`i “ H then // hi terminates
Pop the top stack frame
If stack is not empty, set the top return value to u`i

Otherwise
Increment the top step counter
if h`i P A then // hi takes elementary action h`i

Set the top sub-procedure to h`i
Take action h`i with argument u`i in the environment
Set the top return value to the action’s return value

Otherwise // hi calls sub-procedure h`i
Set the top sub-procedure to h`i
Push ph`i , u

`
i , 0,H,Hq onto the stack

iÐ i` 1
until stack is empty

B Analytic KL Avoids Biased Gradient Estimation

We note that in practice, the exploding variance of the log term in (3) also manifests as bias. For the
purpose of this analysis, let qpz|xq be ε for z “ 0, and 1´ ε for z “ 1. If we use the score-function
trick to estimate

BεEz|x„q

„

log
ppz, xq

qpz|xq



« Bε log
ppẑ, xq

qpẑ|xq
` log

ppẑ, xq

qpẑ|xq
Bε log qpẑ|xq ẑ|x „ q,

we find as ε tends to 0, and as the rare event z “ 0 disappears from samples of qpz|xq, that the
estimate is

´Bε logp1´ εq ` plog pp1, xq ´ logp1´ εqq Bε logp1´ εq « 1´
log pp1, xq

1´ ε
ą 0.

Intriguingly, even as q approaches the correct distribution and samples correct values of z, the
gradient indicates, incorrectly, that the objective would be improved by increasing ε. This hinders the
convergence of q to a correct deterministic distribution.

C Experiment Details

The architecture of the hierarchical controller consists of 6 PHPs in a partial binary tree. Each PHP is
represented by two multi-layer perceptrons (MLPs), to each of which softmax is applied, to select
a sub-procedure and to generate its one-hot argument. The sub-procedure MLP has a hidden layer
of size 16, and the argument MLP has no hidden layers. The posterior RNNs in qφ have the same
architecture, applied to the output of a 32-node bidirectional LSTM instead of the observation.

The baseline RNN is a 4-layer, 64-node LSTM, with each of the 4 layers feeding into the next. The
input observation is preprocessed by a 64-node MLP, and the last layer’s output is postprocessed by a
64-node MLP to which softmax is applied to select the action.

The optimization algorithm is Adam with weight decay 10´3 and PyTorch default hyperparameters.
Each batch consists of 4 traces. The model is trained from demonstration datasets of varying sizes for
50K steps, where a step consists of one training trace sampled from the dataset.
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