CS 277 (W24): Control and Reinforcement Learning Quiz 6: Planning and MBRL

Due date: Wednesday, February 21, 2024 (Pacific Time)

Roy Fox https://royf.org/crs/CS277/W24

Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.

Question 1 When sampling experience (s, a, r, s') for RL, an arbitrary-reset simulator $\hat{p}(s'|s, a)$, which can be reset to any state *s*, is more useful than a simulator that cannot, in the following ways (check all that hold):

- \Box s can be sampled from an arbitrary distribution.
- \Box *a* can be sampled on-policy $(a|s) \sim \pi$.
- \Box (*r*, *s'*|*s*, *a*) can be sampled multiple times.
- \Box s can be set to s' after every sample (except when s' is terminal), to get entire trajectories.
- \square None of the above

Question 2 In model-based exploration algorithms, let \hat{M} be a good approximation of the real MDP in a subset *S* of states (*known* states). \hat{M}' is similar to \hat{M} , except that \hat{M} gives reward 0 in unknown states, while \hat{M}' gives the maximum reward r_{max} . Check all that hold for the optimal policy π in \hat{M} and the optimal policy π' in \hat{M}' :

- \square If π has low probability to reach an unknown state, than it is near-optimal in M.
- \square If π' has low probability to reach an unknown state, than it is near-optimal in *M*.
- \Box π tends to have a higher probability than does π' to reach an unknown state.
- \square E³ uses π' rather than π for exploration, because π' is optimistic under uncertainty and thus explores more.
- \square None of the above

Question 3 Model Predictive Control (MPC) uses an approximate model for planning, but then only executes each plan for a single step, and re-plans after every action. This scheme partly mitigates the accumulation of model error. This is true regardless of observability, and is equally beneficially in unobservable environments. **Yes / No**.

Briefly justify: