## CS 277 (W24): Control and Reinforcement Learning Quiz 1: Mathematical Background

Due date: Wednesday, January 17, 2024 (Pacific Time)

Roy Fox https://royf.org/crs/CS277/W24

Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.

**Question 1** The *hybrid argument* is a proof technique that will occasionally be useful in this course. Let  $x_0, \ldots, x_T$  be a sequence of T + 1 real numbers. For some  $\epsilon > 0$ , suppose that  $|x_{t+1} - x_t| \le \epsilon$  for all  $t = 0, \ldots, T - 1$ . Then of the following bounds on  $|x_T - x_0|$ , the tightest that always holds is:

- $\Box |x_T x_0| \le \epsilon$
- $\Box |x_T x_0| \le \epsilon T$
- $\Box |x_T x_0| \le \epsilon (T+1)$
- $\Box |x_T x_0| \le 2\epsilon T$
- $\Box$  None of the above always holds.

**Briefly justify:** 

**Question 2** Let *A* be an  $n \times n$  matrix and  $p_A(\lambda) = |\lambda I - A|$  its characteristic polynomial of degree *n*. The *Cayley–Hamilton theorem* states that  $p_A(A) = 0$ . This implies that the columns of  $A^t$  are always spanned by the columns of  $\begin{bmatrix} I & A & A^2 & \cdots & A^{t-1} \end{bmatrix}$  when *t* is: (check the lowest that always holds)

- $\Box t \ge n 1$
- $\Box \ t \ge n$
- $\Box \ t \ge n+1$

 $\square$  None of the above always hold.

**Briefly justify:** 

**Question 3** Consider the following *Bayesian network*:



Here  $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2, x_3)$ . Check all that hold:

- $\Box$  *x*<sup>1</sup> and *x*<sup>4</sup> are independent
- $\Box$   $x_1$  and  $x_4$  are independent given  $x_2$
- $\Box$   $x_1$  and  $x_4$  are independent given  $x_2$  and  $x_3$
- $\square$  *x*<sup>2</sup> and *x*<sup>3</sup> are independent
- $\square$   $x_2$  and  $x_3$  are independent given  $x_1$
- $\square$   $x_2$  and  $x_3$  are independent given  $x_4$
- $\square$  x<sub>2</sub> and x<sub>3</sub> are independent given x<sub>1</sub> and x<sub>4</sub>

## **Question 4** Check all that hold:

- □ A geometric random variable *t*, i.e. having distribution  $p(t) = (1 \gamma)\gamma^t$  for  $t \ge 0$ , is time-invariant, i.e.  $p(t|t \ge t_0) = p(t t_0)$  for all  $t \ge t_0$ .
- □ For random variables x and y (not necessarily independent), x + y and  $x + \mathbb{E}[y]$  always have the same expectation but the latter always has lower variance.
- □ If a function  $g_{\theta}(x)$  approximates another function  $f_{\theta}(x)$ , i.e. there exists some  $\epsilon$  such that  $|g_{\theta}(x) f_{\theta}(x)| \le \epsilon$  for all *x*, then the gradient of *g* w.r.t.  $\theta$  approximates the gradient of *f*.
- □ If a distribution  $p_{\theta}(x)$  and a real function  $f_{\theta}(x)$  both depend on the same parameter  $\theta$ , then the gradient of the expectation w.r.t.  $\theta$  equals the expectation of the gradient, i.e.  $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}} [f_{\theta}(x)] = \mathbb{E}_{x \sim p_{\theta}} [\nabla_{\theta} f_{\theta}(x)].$