CS 277 (W24): Control and Reinforcement Learning Quiz 1: Mathematical Background

Due date: Wednesday, January 17, 2024 (Pacific Time)

Roy Fox
https://royf.org/crs/CS277/W24

Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.

Question 1 The hybrid argument is a proof technique that will occasionally be useful in this course. Let x_{0}, \ldots, x_{T} be a sequence of $T+1$ real numbers. For some $\epsilon>0$, suppose that $\left|x_{t+1}-x_{t}\right| \leq \epsilon$ for all $t=0, \ldots, T-1$. Then of the following bounds on $\left|x_{T}-x_{0}\right|$, the tightest that always holds is:
$\square\left|x_{T}-x_{0}\right| \leq \epsilon$

- $\left|x_{T}-x_{0}\right| \leq \epsilon T$
- $\left|x_{T}-x_{0}\right| \leq \epsilon(T+1)$
- $\left|x_{T}-x_{0}\right| \leq 2 \epsilon T$
\square None of the above always holds.

Briefly justify:

Question 2 Let A be an $n \times n$ matrix and $p_{A}(\lambda)=|\lambda I-A|$ its characteristic polynomial of degree n. The Cayley-Hamilton theorem states that $p_{A}(A)=0$. This implies that the columns of A^{t} are always spanned by the columns of $\left[\begin{array}{lllll}I & A & A^{2} & \cdots & A^{t-1}\end{array}\right]$ when t is: (check the lowest that always holds)

- $t \geq n-1$

ㅁ $t \geq n$$t \geq n+1$
\square None of the above always hold.

Briefly justify:

Question 3 Consider the following Bayesian network:

Here $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}, x_{3}\right)$. Check all that hold:

- x_{1} and x_{4} are independent
- x_{1} and x_{4} are independent given $x_{2}$$x_{1}$ and x_{4} are independent given x_{2} and $x_{3}$$x_{2}$ and x_{3} are independentx_{2} and x_{3} are independent given $x_{1}$$x_{2}$ and x_{3} are independent given $x_{4}$$x_{2}$ and x_{3} are independent given x_{1} and x_{4}

Question 4 Check all that hold:
\square A geometric random variable t, i.e. having distribution $p(t)=(1-\gamma) \gamma^{t}$ for $t \geq 0$, is time-invariant, i.e. $p\left(t \mid t \geq t_{0}\right)=p\left(t-t_{0}\right)$ for all $t \geq t_{0}$.
\square For random variables x and y (not necessarily independent), $x+y$ and $x+\mathbb{E}[y]$ always have the same expectation but the latter always has lower variance.
\square If a function $g_{\theta}(x)$ approximates another function $f_{\theta}(x)$, i.e. there exists some ϵ such that $\left|g_{\theta}(x)-f_{\theta}(x)\right| \leq \epsilon$ for all x, then the gradient of g w.r.t. θ approximates the gradient of f.
\square If a distribution $p_{\theta}(x)$ and a real function $f_{\theta}(x)$ both depend on the same parameter θ, then the gradient of the expectation w.r.t. θ equals the expectation of the gradient, i.e. $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}}\left[f_{\theta}(x)\right]=\mathbb{E}_{x \sim p_{\theta}}\left[\nabla_{\theta} f_{\theta}(x)\right]$.

