UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2024

Lecture 9: Planning

2
Roy Fox =N
. %\/\/]LL PREss &
Department of Computer Science LEVER |
School of Information and Computer Sciences R
University of California, Irvine A S

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Logistics

_ e Quiz 5 to be published soon, due next Monday

 EXxercise 3 due following Monday

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Today's lecture

Model-based learning

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Planning

 Planning: finding a good policy 7 when we “know” the MDP model
> MDP = dynamics + reward function

e When do we “know” the model?

» \Well-modeled environments

- Dynamics equations
» Simulators

» |Learned models

» System identification: the agent itself learns a model

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Levels of “knowing”™ a model

e What does it mean to have a “known” model?

> A really fast simulator

- Analytic model, fast implementation, parallelization, approximate (high-level) model

> A simulator that can be reset to any given state
- Sample p(s’| s, a) for any (s, a), rather than an entire trajectory p_(&) with s ~ p_

> An analytic model (e.g. equations) that can be manipulated symbolically

» A differentiable model

- Backprop gradients through p

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a really fast simulator

* Any RL algorithm can benefit from more data
Algorithm MC model-free RL

Initialize some policy
repeat
Initialize some value function Q
repeat to convergence
Sample & ~ p,
Update Q(s;,a;) = R>,(&) forallt > 0

(s) « argmax, Q(s,a) for all s

need to add exploration

e Simple, unbiased, consistent algorithm

 High variance = with fast simulator, can sample many trajectories

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use an arbitrary-reset simulator

e Arbitrary-reset simulator allows sampling from (s’| s, a) ~ p for any (s, a) we want

 Small state space — can run Value lteration with tabular parametrization:

V(s) < maxr(s, a) + yE 5.0~ pl V()] o

 Large state space — should we use Fitted Value lteration?

39(S) — (mln r(S9 CZ) + }/ _(S/‘S,a)Np[Vé(S/)] T VH(S))z

> Problem: must have s ~ py(&), or suffer covariate shift (train-test mismatch)

- po(&) requires sampling entire trajectories, starting from s, arbitrary-reset is no help (for this)

» Simulator does enable data augmentation: perturb s, ~ p,(£) and see how it evolves

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Deterministic dynamics

o With deterministic dynamics, we can fully predict future states

> Open-loop control: policy doesn't depend on observations = sequence of actions

max R(a) = max r(sy, ap) + yr(f(so, ap), a;) + v2r(f(f(sg, ap), ay), ay) + ++-

A

 Use any black-box optimizer; e.g. stochastic optimization:

Algorithm Stochastic optimization

Inmitialize
repeat
Sample ay,...,ay ~ 7
Run model to get returns Ry, ..., R;
Select k /c top returns
Fit v to these “elites”

e Scales poorly with the dimension of a

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Discrete action space: optimal exploration

« Action sequences have a tree structure >0
» Shallow (short) prefixes are visited often = possible to learn their value S1 S|
> Deep (long) sequences are visited rarely = we can only explore S|t
 Monte Carlo Tree Search (MCTS): S|t Sitl
» Select leaf of the already-learned subtree random
actions
> Explore to end of episode
» Update nodes along branch to leaf _
exploration bonus
Selecting a leaf: recursively maximize log N, icita(S€EIN)
. V(child) + C ViSIts otherwise

NVISItS(ChIId)

l

R

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Today's lecture

Model-based learning

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for ¢-perturbation (0x, ou) around a trajectory (X, it):

/ interesting dependence on x, and u,

fix,u) = f(&, 1) + O(e)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for ¢-perturbation (0x, ou) around a trajectory (X, it):

/ captures linear dependence on x; and u,

foe,u) = f&,0)+6x,V f+éuV, f,+ O

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for ¢-perturbation (0x, ou) around a trajectory (X, it):

foe,u) = f&,04)+6x,V_f,+éuV, f,+ O

C(x,u) =c(x,u,)+ 0(6),\

interesting dependence on x, and u,

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for ¢-perturbation (0x, ou) around a trajectory (X, it):

foe,u) = f&,04)+6x,V_f,+éuV, f,+ O
C(x,u) = 6%, i)+ ox, V. ¢ + ouV, ¢, + O(e?)

\’\

linear dependence on x, and u,
optimal control: oo

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a differentiable model

» Suppose we have differentiable x,, | = f(x,, u,) and c(x,, u,)

 Taylor expansion for ¢-perturbation (0x, ou) around a trajectory (X, it):

NOW we can neglect these

foe,u) = f&.0)+6x, V. f,+6uV, f+ O(e?)~

c(x, u) = c(x,u,) +ox,V.c,+ouV,kc,

+%(5xtT(Vi)ox, + dul(Vié)ou, + 26x1(V,,E,)du) + O(e”)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

lterative LQR (iLQR)

Algorithm 1LQR
Initialize X, i

linearize dynamics around current trajectory (X, il
repeat — ’ jectory (410

Set A B «— Vx ft, ’ ft A/quadratic cost approximation around (X, it)
Set O, R,N,q,1 « V2,V 8, Veu 6,V 64,V 6

Lta ft — LQR o1 5xt = Xy — Xt, 5l/it — l/tt — l/tt > place “origin” at (X, i)
0X, 0l execute policy ou; = L.6x, + ft 1n env

/
X «— X + 536 1 — U+ 0l roll out to get new trajectory (X, it)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Newton's method

. Compare iLQR with Newton's method for optimizing min f(x)
X

Algorithm Newton’s method

repeat

g — Vi f(X)
H « V= f(%)
X «— argmin, %5XTH5X +gTox

. ILQR approximates this method for min ¥ ()

u

* This would be exact if we expanded the dynamics to 2nd order

> Similar to ILQR, called Differential Dynamic Programming (DDP)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Today's lecture

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Learning vs. planning

 Model = dynamics + reward function
> Planning = finding a good policy with access to a model
e |_earning = iImproving performance using data

» Are rollouts from the model considered “data”?

- If yes, planning can involve learning
 Model-based learning = methods that explicitly learn the model

> Unlike planning, access to a model is not given; it is learned

> Usually, focus on dynamics p, because reward function 7 is simulated

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Model-based learning

e |s alearning algorithm & model-based?

e |n tabular representation — just count parameters:
» Model-free = O(| & | - | |) (to represent z(a | s) or O(s, a))
» Model-based = Q(| & |2 - | & |) (to represent p(s’| s, a))
* Not always clear-cut:
~ If intermediate features of DQN Qy(s, a) are informative of s’, is this model-free?

* Not to be confused with ML terminology calling anything learned a “model”

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Model-based learning: benefits

* Dynamics p has “more parameters” than & = harder to learn? not always

> p can have simpler form and generalize better to unseen states and actions and

> p can be learned locally; 7 or O encode global knowledge (long-term planning)
 Model-based methods produce transferable knowledge
> Useful it MDP changes only slightly / partially (hon-stationary environment)

- E.g. only the task changes, i.e. r changes but not p

- (Can generalize across environment changes, e.g. friction or arm length

- Can help transfer learning in an inaccurate simulator to the real world (simZ2real)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to learn a model

* |nteract with environment to get trajectory data

> Deterministic continuous dynamics / reward: minimize MSE loss
L y(s,a,1,5") = |Is" = f,(s, @)|5 + (r — ry(s,a))”
> Stochastic dynamics: minimize NLL loss
Z y(s,a,8") = — 10gp¢(s’\ S, Q)
 Data can be off-policy = unbiased estimate, but with covariate shift

> Random policy is often used

* Another possiblility discussed later

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a learned model

* Recall how planning benefitted from access to a model:
> As a fast simulator
> As an arbitrary-reset simulator

» As a differentiable model

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

How to use a learned model

* Recall how planning benefitted from access to a model:

» As a fast simulator

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Policy Gradient through the model

e Model is often learned with SGD = must be differentiable

Jo=) V'eC.u) =) v'e(f(-fxp. myxp)) -+, my(x,_). mp(x)

 Just do Policy Gradient over JAQ?

> Chain rule = back-propagation through time (BPTT)

. VQJA@ can be bad approximation of V ,J,; also, j@ is ill-conditioned for SGD:

» Perturbing one action individually may change fg unreasonably little / much
- Vanishing / exploding gradients

» Second-order methods can help, but Hessian is even nastier — for the same reason

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

PG with a model

* Luckily, we have the Policy Gradient Theorem

Vé’je = E¢., Z }/tQQ(St, a,) Vlog my(a,|s,)
[

» |dea: use the model as a fast simulator just to estimate Qg(st, a,)
> E.g., by MC or TD
> Avoids complications of gradients through the model

- Only backprop through single-step log zy(a, | s,)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

Recap

o A fast simulator is good for any RL algorithm, particularly MC

» MCTS explores optimally in the discrete deterministic case

 An arbitrary-reset simulator has surprisingly little use

> Notable exception: domain randomization
 An analytic model may allow direct optimization, or very fast simulation

 We can plan in a differentiable model by iterative linearization (ILQR)

Roy Fox | CS 277 | Winter 2024 | Lecture 9: Planning

