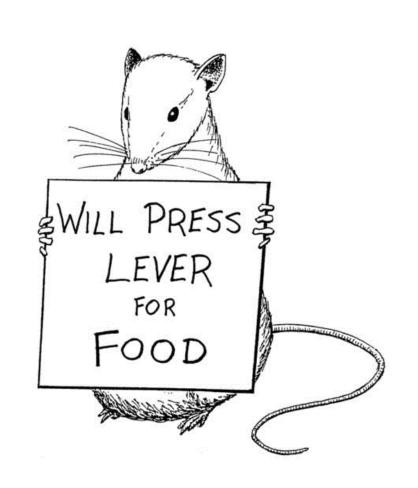


CS 277: Control and Reinforcement Learning Winter 2024

Lecture 6: Advanced Model-Free RL

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine



Logistics

assignments

- Quiz 3 due next Monday
- Exercise 2 due the following Monday

Today's lecture

Advantage estimation

Convergence of RL

Continuous action spaces

Trust-region methods

Baselines

ullet Constant shift b in return doesn't matter for the policy gradient

$$\mathbb{E}_{\xi \sim p_{\theta}}[(R(\xi) - b) \nabla_{\theta} \log p_{\theta}(\xi)] = \nabla_{\theta} \mathbb{E}_{\xi \sim p_{\theta}}[R(\xi) - b] = \nabla_{\theta} J_{\theta}$$

• But it can make a huge difference in its variance

- $\mathbb{E}[b] = b$ independent of θ
- ► Consider $\mathbb{E}[xy]$ vs. $\mathbb{E}[x(y+100)]$, with uniform $(x,y) \in \{-1,1\}^2$
- Making y b zero-mean (minimum V[y b]) is a good rule of thumb:
 - Update $b \to R(\xi)$ (approaches the expected return)
 - Estimate $\nabla_{\theta} J_{\theta} \approx (R(\xi) b) \nabla_{\theta} \log p_{\theta}(\xi)$

State-dependent baselines

What can b depend on?

$$\mathbb{E}_{(s_t, a_t) \sim p_{\theta}}[b \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)] = \mathbb{E}_{s_t \sim p_{\theta}}[\nabla_{\theta} \mathbb{E}_{(a_t | s_t) \sim \pi_{\theta}}[b]] = 0$$

- As long as b is independent of a_t given s_t (i.e. not caused by $\pi_{\theta}(a_t \mid s_t)$)
- Updating $b(s_t) \to R_{>t}(\xi) \Rightarrow$ we're learning $V_{\pi_0} = \mathbb{E}[R_{>t}(\xi) \mid s_t]$

future return estimator

In the TD PG version:

TD PG version: for action
$$a_t$$
 baseline
$$\nabla_{\theta} J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}} [(Q_{\pi_{\theta}}(s_t, a_t) - V_{\pi_{\theta}}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$$

Advantage estimation

• Advantage function: $A_{\pi}(s,a) = Q_{\pi}(s,a) - V_{\pi}(s)$

$$\text{ AC PG with baseline: } \nabla_{\theta}J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{(s_{t},a_{t}) \sim p_{\theta}} [A_{\pi_{\theta}}(s_{t},a_{t}) \, \nabla_{\theta} \log \pi_{\theta}(a_{t} \, | \, s_{t})]$$

- How to estimate A(s,a) using a critic $V_{\phi}(s)$?
 - MC:

$$A(s_t, a_t) \approx R_{\geq t}(\xi) - V_{\phi}(s)$$

► TD:

$$A(s,a) \approx r + \gamma V_{\phi}(s') - V_{\phi}(s)$$

Advantage Actor-Critic (A2C)

Algorithm Advantage Actor-Critic

Initialize π_{θ} and V_{ϕ}

repeat

Roll out $\xi \sim p_{\theta}$

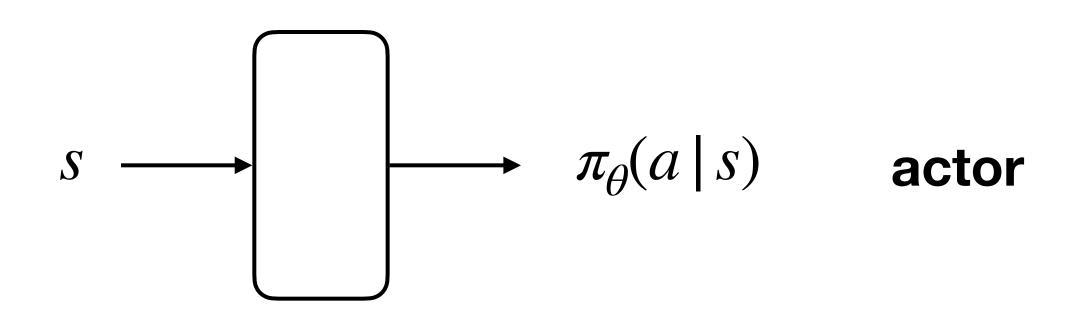
Update
$$\Delta\theta \leftarrow \sum_{t} (R_{\geq t}(\xi) - V_{\phi}(s_{t})) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})$$

Descend
$$L_{\phi} = \sum_{t} (R_{\geq t}(\xi) - V_{\phi}(s_t))^2$$

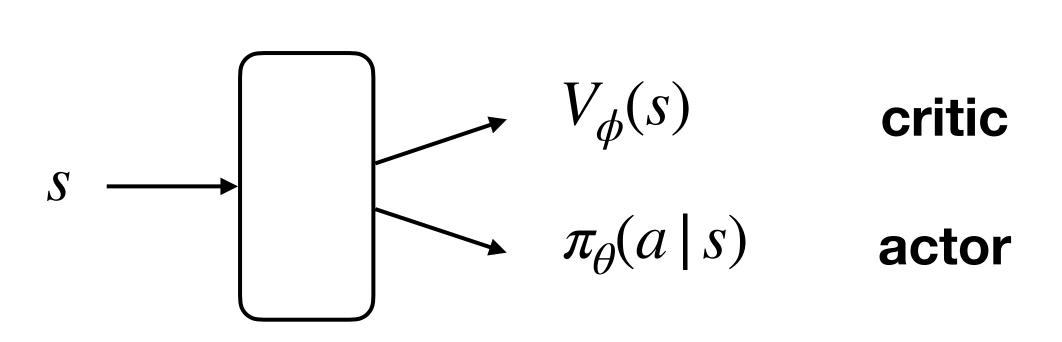
Practical considerations: param sharing

 $S \longrightarrow V_{\phi}(S)$ critic

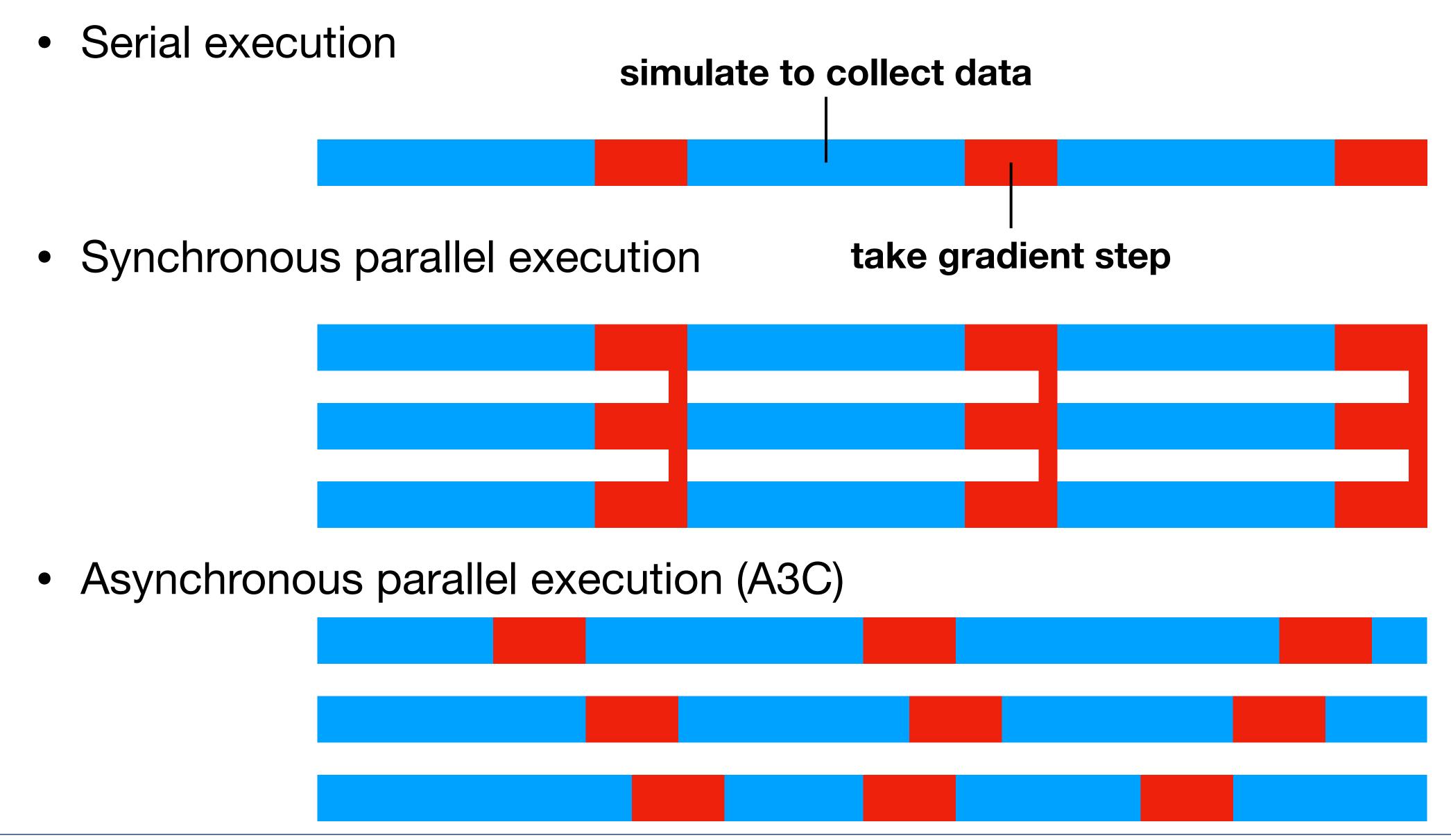
• Separate parameters:



- Shared parameters:
 - Can be more data efficient
 - Can be less stable



Practical considerations: distributed comp.



Comparing advantage estimators

Constant baseline

$$\nabla_{\theta} J_{\theta} \approx (R_{>t} - b) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

State-based baseline (MC)

$$\nabla_{\theta} J_{\theta} \approx (R_{\geq t} - V_{\phi}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

State-based baseline (TD)

$$\nabla_{\theta} J_{\theta} \approx (r_t + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

bias variance

none

high one gradient per trajectory

none

mid

state-dependent baseline

some

lower

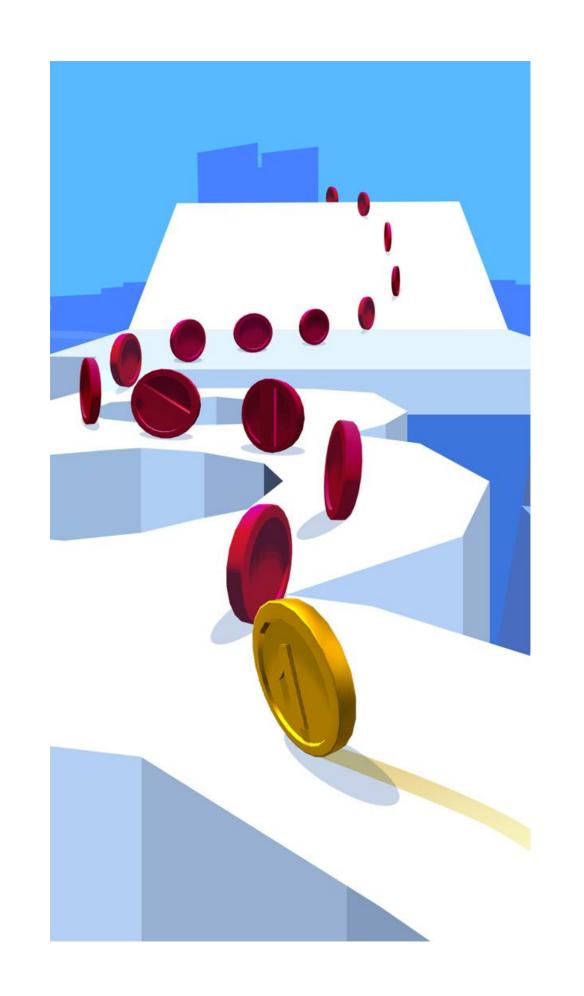
 V_{ϕ} is approximate

Multi-step TD

- 1-step TD: $A_t^1 = r_t + \gamma V(s_{t+1}) V(s_t)$
- 2-step TD: $A_t^2 = r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2}) V(s_t)$

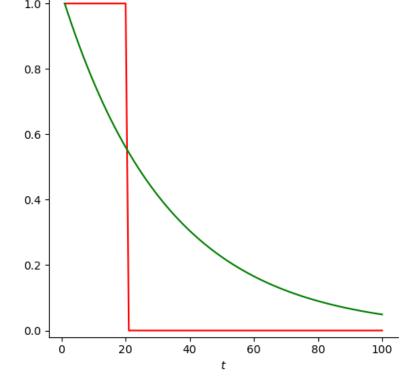
. . .

- $n\text{-step TD: } A^n_t = r_t + \cdots + \gamma^{n-1} r_{t+n-1} + \gamma^n V(s_{t+n}) V(s_t)$
- In the limit (MC): $A_t^{\infty} = -V(s_t) + r_t + \gamma r_{t+1} + \cdots$



$TD(\lambda)$

- How to choose *n*?
 - Any specific n is hard truncation of the window of evidence we consider
- Instead, use exponential window
 - ► Take *n*-step TD with weight proportional to λ^n , where $0 \le \lambda \le 1$



$$A_t^{\lambda} = (1 - \lambda) \sum_{n} \lambda^{n-1} A_t^n = \sum_{\Delta t} (\lambda \gamma)^{\Delta t} (r_{t+\Delta t} + \gamma V(s_{t+\Delta t+1}) - V(s_{t+\Delta t}))$$

$$A_t^{\lambda} = (1 - \lambda) \sum_{n} \lambda^{n-1} A_t^n = \sum_{\Delta t} (\lambda \gamma)^{\Delta t} (r_{t+\Delta t} + \gamma V(s_{t+\Delta t+1}) - V(s_{t+\Delta t}))$$

- Generalized Advantage Estimation (GAE(λ)): $\nabla_{\theta}J_{\theta} \approx A_t^{\lambda} \nabla_{\theta}\log \pi_{\theta}(a_t \mid s_t)$
 - GAE(1) = MC; GAE(0) = 1-step

Recap

- Policy Gradient = take the gradient of our objective w.r.t. policy parameters
 - Model-free, but on-policy and high variance
- Variance reduction:
 - Past rewards are independent of future actions
 - TD value estimation
 - Baselines, possibly state-dependent
 - ► $TD(\lambda)$ to trade off bias and variance

Today's lecture

Advantage estimation

Convergence of RL

Continuous action spaces

Trust-region methods

Backup operator

 $\quad \text{Value recursion: } V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[r(s,a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]] = \mathcal{T}_\pi[V_\pi](s)$

linear backup operator

In matrix notation:

$$\vec{v}_{\pi} = \vec{r}_{\pi} + \gamma P_{\pi} \vec{v}_{\pi}$$

$$\vec{v}_{\pi} = \vec{r}_{\pi} + \gamma P_{\pi} \vec{v}_{\pi} \qquad \qquad \begin{vmatrix} \vec{r} \\ |\mathcal{S}| \end{vmatrix} + \gamma \begin{vmatrix} P \\ |\mathcal{S}| \times |\mathcal{S}| \end{vmatrix} \cdot \begin{vmatrix} \vec{v} \\ |\mathcal{S}| \end{vmatrix}$$

$$\quad \text{where } r_\pi(s) = \mathbb{E}_{(a|s)\sim\pi}[r(s,a)], P_\pi(s,s') = \mathbb{E}_{(a|s)\sim\pi}[p(s'|s,a)]$$

Can be solved with linear algebra:

$$\vec{v}_{\pi} = (I - \gamma P_{\pi})^{-1} \vec{r}_{\pi}$$

largest eigenvalue magnitude

• The inverse always exists for $\gamma < 1$ because P_π has spectral radius 1

Bellman operator

Bellman operator: $\mathcal{T}[V](s) = \max_{a} r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')]$

DP

Action-value version: $\mathcal{T}[Q](s,a) = r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[\max_{a'} Q(s',a')]$

max

- Value Iteration = iteratively apply $\widetilde{\mathcal{T}}$
- Why is this guaranteed to converge? \mathcal{T} is a contraction:

$$\|\mathscr{T}[V_1] - \mathscr{T}[V_2]\|_{\infty} \le \max_{s,a} \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_1(s') - V_2(s')] \le \gamma \|V_1(s') - V_2(s')\|_{\infty}$$

replace $\mathbb{E}_{s'}$ with max

• $V^* = \mathcal{I}[V^*]$ is the unique fixed point

Q-Learning convergence

• Q-Learning: $Q(s, a) \rightarrow_{\alpha} r + \gamma \max_{a'} Q(s', a')$

- MF
- σ'

- In iteration i, use learning rate α_i
- Robbins–Monro: converges to Q^* with probability 1 (almost surely) if:

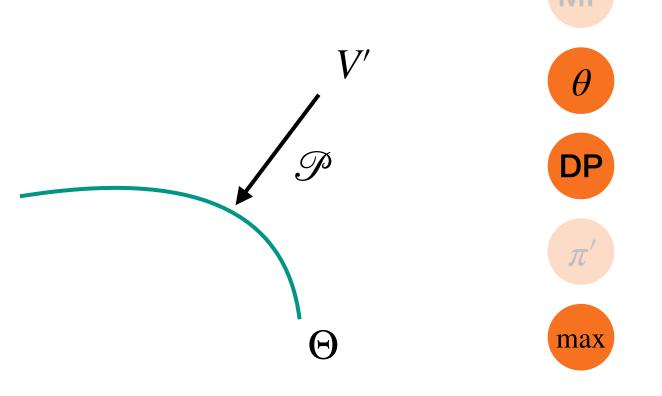
in expectation, this is $\mathcal{T}[Q]$

- $\sum_{i} \alpha_{i}^{2} < \infty, \text{ implying } \alpha_{i} \to 0 \text{ faster than } i^{-1/2}$
- $\sum_{i} \alpha_{i} = \infty, \text{ implying } \alpha_{i} \to 0 \text{ not faster than } i^{-1}$
- Example: $\alpha_i = i^{-1}$ (like in averaging)

Fitted Value Iteration

- Bellman (TD) error: $\mathcal{T}[V_{\bar{\theta}}](s) V_{\theta}$
- Minimizing the square error is a projection

$$\mathcal{P}[V'] = V_{\arg\min_{\theta \in \Theta} \|V' - V_{\theta}\|_{2}^{2}}$$



• If Θ is convex, the projection is a non-expansion

$$\|\mathscr{P}[V_1'] - \mathscr{P}[V_2']\|_2^2 \le \|V_1' - V_2'\|_2^2$$

- Composition of contractions contracts; but norms mismatch ($\mathcal{T}:L_{\infty};\,\mathcal{P}:L_{2}$)
 - ► So $\mathscr{P}\mathscr{T}$ is generally not a contraction \Rightarrow no convergence guarantee for FVI

But isn't DQN just SGD?

Algorithm DQN

Initialize
$$\theta$$
, set $\bar{\theta} \leftarrow \theta$

 $s \leftarrow$ reset state

for each interaction step

Sample $a \sim \epsilon$ -greedy for $Q_{\theta}(s, \cdot)$

Get reward r and observe next state s'

Add (s, a, r, s') to replay buffer \mathcal{D}

Sample batch $(\vec{s}, \vec{a}, \vec{r}, \vec{s}') \sim \mathcal{D}$

$$y_{i} \leftarrow \begin{cases} r_{i} & s'_{i} \text{ terminal} \\ r_{i} + \gamma \max_{a'} Q_{\bar{\theta}}(s'_{i}, a') & \text{otherwise} \end{cases}$$
Descend $\mathcal{L}_{\theta} = (\vec{y} - Q_{\underline{\theta}}(\vec{s}, \vec{a}))^{2}$

moving target ≠ SGD

every T_{target} steps, set $\theta \leftarrow \theta$

 $s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

Is PG just SGD?

Algorithm REINFORCE

 θ

Initialize π_{θ}

repeat

Roll out $\xi \sim p_{\theta}$

Update with gradient $g \leftarrow R(\xi) \sum_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

- The gradient is unbiased for $abla_{ heta}J_{ heta}$
- The objective J_{θ} changes with θ , but so does $\mathbb{E}_{x\sim D}[L_{\theta}(x)]$ in general ML
- But the data distribution changes
- Still, convergence guaranteed as long as we avoid $\pi(a \mid s) = 0$ [Agarwal et al., 2021]

Today's lecture

Advantage estimation

Convergence of RL

Continuous action spaces

Trust-region methods

Continuous actions spaces

- What do we need for policy-based methods?
 - For rollouts: given s, sample from $\pi_{\theta}(a \mid s)$
 - For policy update: given s and a, compute $\nabla_{\theta} \log \pi_{\theta}(a \mid s)$
- What do we need for value-based methods?
 - For rollouts: given s, compute $\arg\max_a Q_{\theta}(s,a)$
 - For value updates: given s, compute $\max_{a} Q_{\theta}(s,a)$

How can we use value-based methods with continuous action spaces?

Idea 1: DQN with stochastic optimization

- . Think of $\max_a Q(s,a)$ as an optimization problem, solved in inner loop
 - Example: stochastic optimization = learn ad-hoc approximately greedy policy π
- Run value-based algorithm; whenever it needs $\max_a Q(s,a)$ search for it:

Algorithm Stochastic optimization

```
Initialize \pi
```

repeat

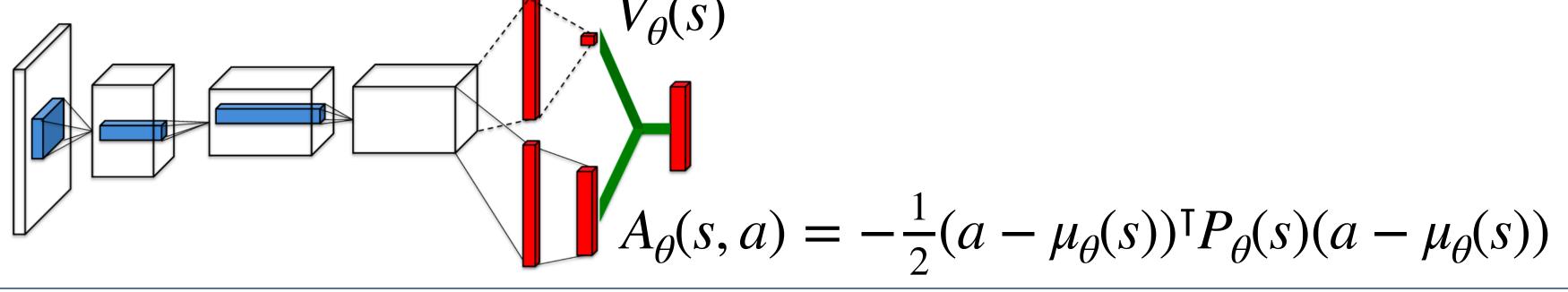
```
Sample a_1, \ldots, a_k \sim \pi
Select k/c top values Q(s, a_i) for i = 1, \ldots k
Fit \pi to these "elites"
```

Idea 2: easily maximizable Q

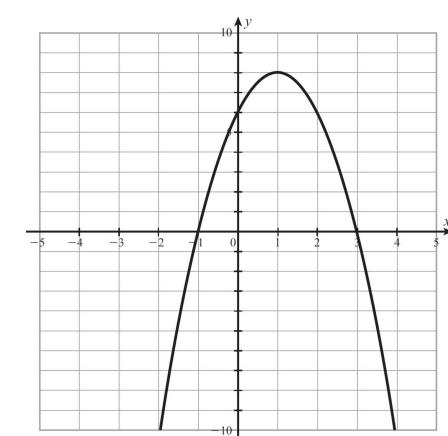
- Represent Q_{θ} in a way that is directly maximizable
- Example: quadratic $Q_{\theta}(s,a) = -\frac{1}{2}(a-\mu_{\theta}(s))^{\mathsf{T}}P_{\theta}(s)(a-\mu_{\theta}(s)) + V_{\theta}(s)$

$$\arg \max_{a} Q_{\theta}(s, a) = \mu_{\theta}(s)$$

$$\max_{a} Q_{\theta}(s, a) = V_{\theta}(s)$$



MF



Idea 3: learn optimizing policy

- ullet Previous methods: represent a Q maximizer or train one ad-hoc
- More general method: let a deterministic $\mu_{\theta}(s)$ learn to maximize $Q_{\phi}(s,a)$
 - This makes it an Actor-Critic method
- Deterministic Policy Gradient Theorem:

$$\begin{split} \nabla_{\theta} V_{\mu_{\theta}}(s) &= \nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s, \mu_{\theta}(s)) = \nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s, \mu_{\theta}(s)) + \nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s, \mu_{\bar{\theta}}(s)) \\ &= \nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s, \mu_{\theta}(s)) + \gamma \mathbb{E}_{(s'|s, \mu_{\theta}(s)) \sim p} \left[\nabla_{\theta} V_{\mu_{\theta}}(s') \right] \end{split}$$

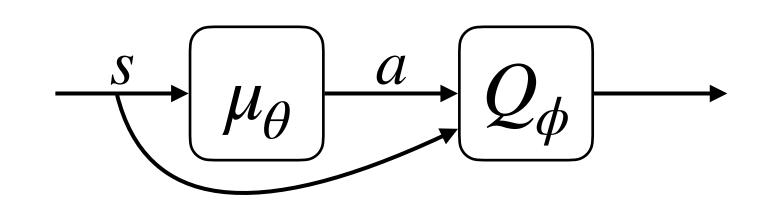
$$\nabla_{\theta} J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{s_{t} \sim p_{\theta}} [\nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s_{t}, \mu_{\theta}(s_{t}))] = \frac{1}{1 - \chi} \mathbb{E}_{s \sim p_{\theta}} [\nabla_{\theta} Q_{\mu_{\bar{\theta}}}(s, \mu_{\theta}(s))]$$

$$t \sim \text{Geo}(1 - \gamma)$$

[Silver et al., 2014]

Deep Deterministic Policy Gradient (DDPG)

• Evaluating Q: feed actor $\mu_{\theta}(s)$ into critic $Q_{\phi}(s,a)$



Back-propagation (chain rule):

$$- \nabla_{\theta} \mu_{\theta}(s) \quad \nabla_{a} Q_{\phi}(s, a) -$$

$$\nabla_{\theta} J_{\theta} = \mathbb{E}_{s \sim p_{\theta}} [\nabla_{\theta} Q_{\phi}(s, \mu_{\theta}(s))]$$

$$= \mathbb{E}_{s \sim p_{\theta}} [\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\phi}(s, a = \mu_{\theta}(s))]$$

- DDPG:
 - Train critic Q_{ϕ} : TD policy evaluation
 - Train actor π_{θ} : ascend $Q_{\phi}(s,\mu_{\theta})$ with gradient through μ_{θ}

Today's lecture

Advantage estimation

Convergence of RL

Continuous action spaces

Trust-region methods

Importance Sampling

- Suppose you want to estimate $\mathbb{E}_{x \sim p}[f(x)]$
 - but only have samples $x \sim p'$

Importance sampling:

$$\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim p'} \left[\frac{p(x)}{p'(x)} f(x) \right]$$

Importance (IS) weights:
$$\rho(x) = \frac{p(x)}{p'(x)}$$

• Estimate: $\rho(x)f(x)$ with $x \sim p'$

IS application 1: multi-step Q-Learning

• *n*-step Q-Learning:
$$Q(s_t, a_t) \to \sum_{\Delta t=0}^{n-1} \gamma^{\Delta t} r_{t+\Delta t} + \gamma^n \max_a Q(s_{t+n}, a)$$

 π'

• Reminder: $Q^*(s_t, a_t)$ evaluates any a_t but optimal behavior afterward

max

We need data from
$$a_{t+\Delta t} = \arg\max_{a} Q(s_{t+\Delta t}, a)$$
 for RHS to estimate optimal target

To be off-policy: update
$$Q(s_t, a_t) \to \sum_{\Delta t=0}^{n-1} \gamma^{\Delta t} \rho_t^{\Delta t} r_{t+\Delta t} + \gamma^n \max_a Q(s_{t+n}, a)$$

with
$$\rho_t^{\Delta t} = \prod_{i=t+1}^{t+\Delta t} \frac{\pi(a_i | s_i)}{\pi'(a_i | s_i)}$$
 for data from π'

IS application 2: off-policy policy evaluation

$$\quad \text{Estimate } J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)] \text{ off-policy: } J_\pi = \mathbb{E}_{\xi \sim p_{\pi'}}[\rho_\pi^\pi(\xi)R(\xi)]$$

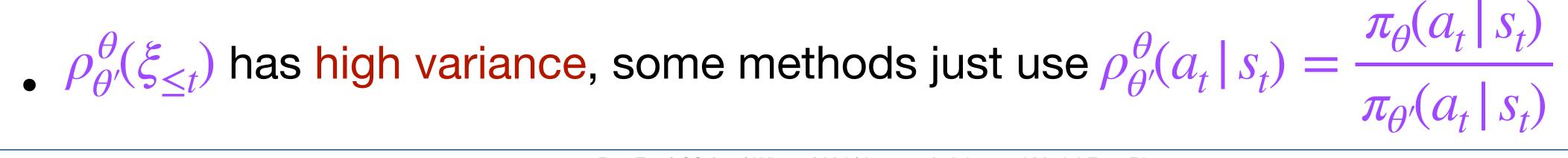
- with $\rho_{\pi'}^{\pi}(\xi) = \frac{p_{\pi}(\xi)}{p_{\pi'}(\xi)} = \prod_{t} \frac{\pi(a_{t} \mid s_{t})}{\pi'(a_{t} \mid s_{t})}$ $p(s' \mid s, a) \text{ cancels out}$
- $\rho(\xi)$ can be very large or small \Rightarrow high variance
- Some reduction: r_t is not affected by future actions

$$J_{\pi} = \sum_{t} \mathbb{E}_{\xi_{\leq t} \sim p_{\pi'}} [\gamma^{t} \rho_{\pi'}^{\pi}(\xi_{\leq t}) r_{t}] = \sum_{t} \mathbb{E}_{\xi_{\leq t} \sim p_{\pi'}} \left[\gamma^{t} r_{t} \prod_{t' \leq t} \frac{\pi(a_{t'} | s_{t'})}{\pi'(a_{t'} | s_{t'})} \right]$$

IS application 3: Off-policy Policy Gradient

Policy Gradient:
$$\nabla_{\theta}J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{\xi \sim p_{\theta}}[R_{\geq t}(\xi) \nabla_{\theta}\log \pi_{\theta}(a_{t} \mid s_{t})]$$

- Off-Policy PG: $\nabla_{\theta} J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{\xi \sim p_{\theta'}} [\rho_{\theta'}^{\theta}(\xi_{\leq t}) R_{\geq t}(\xi) \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t})]$
 - $R_{\geq t}(\xi) = \text{future discounted rewards affected by } \pi_{\theta}(a_t \mid s_t)$
 - $\rho_{\theta'}^{\theta}(\xi_{\leq t})$ = past probability ratios that affect $\pi_{\theta}(a_t \mid s_t)$



Performance Difference Lemma

Policy gradient = small changes in policy; can we make large changes?
 telescopic cancelation

$$\text{For any } \pi, \ \xi \text{: } \sum_{t} \gamma^t A_\pi(s_t, a_t) = \sum_{t} \gamma^t (r_t + \gamma V_\pi(s_{t+1}) - V_\pi(s_t)) = R(\xi) - V_\pi(s_0)$$
 advantage of entire trajectory

Expectation by different policy: Performance Difference Lemma

$$\sum_t \gamma^t \mathbb{E}_{(s_t,a_t) \sim p_\pi} [A_{\bar{\pi}}(s_t,a_t)] = \mathbb{E}_{\xi \sim p_\pi} [R(\xi) - V_{\bar{\pi}}(s_0)] = J_\pi - J_{\bar{\pi}}$$

$$s_0 \sim p \text{ in both } \pi \text{ and } \pi'$$

• We want to maximize over π , with $\bar{\pi}$ fixed

Compare: PG Theorem
$$\nabla_{\theta}J_{\theta} = \sum_{t} \gamma^{t} \mathbb{E}_{(s_{t},a_{t}) \sim p_{\theta}} [A_{\pi_{\theta}}(s_{t},a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t})]$$

Finding best next policy

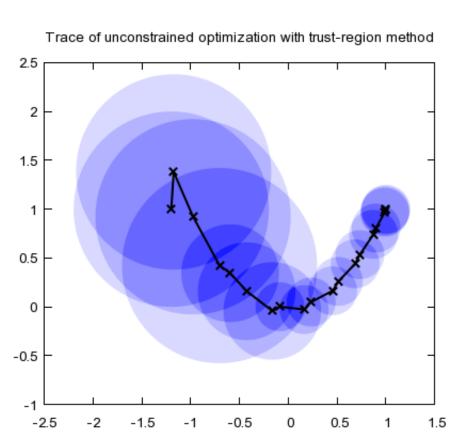
- $\text{With current policy } \bar{\pi} \text{: find } \max_{\pi} J_{\pi} J_{\bar{\pi}} = \max_{\pi} \sum_{t} \gamma^{t} \mathbb{E}_{(s_{t}, a_{t}) \sim p_{\pi}} [A_{\bar{\pi}}(s_{t}, a_{t})]$
 - Can use $\bar{\pi}$ to evaluate $A_{\bar{\pi}}$
- But we don't have data $(s_t, a_t) \sim p_\pi$; idea: sample from $\bar{\pi}$
 - Trick question: is this on-policy or off-policy? On-policy data, but needs IS weight

$$\max_{\pi} \sum_{t} \gamma^{t} \mathbb{E}_{\xi_{\leq t} \sim p_{\bar{\pi}}} [\rho_{\bar{\pi}}^{\pi}(\xi_{\leq t}) A_{\bar{\pi}}(s_{t}, a_{t})]$$

Is it reasonable to use
$$\rho_{\bar{\pi}}^{\pi}(a_t | s_t) = \frac{\pi(a_t | s_t)}{\bar{\pi}(a_t | s_t)}$$
 instead? i.e. drop $\rho_{\bar{\pi}}^{\pi}(\xi_{< t})$

Trust-Region Policy Optimization (TRPO)

- Trust region = space around $\bar{\pi}$ where $\rho(\xi_{< t}) \approx 1$
 - Easier to consider $\mathbb{E}_{\xi_{< t} \sim p_{\bar{\pi}}}[\log \rho(\xi_{< t})] \approx 0$



$$-\mathbb{E}_{\xi_{< t} \sim p_{\bar{\pi}}}[\log \rho(\xi_{< t})] = \mathbb{D}[\bar{\pi}(\xi_{< t}) || \pi(\xi_{< t})] = \sum_{t' < t} \mathbb{E}_{\xi_{< t'} \sim p_{\bar{\pi}}}[\mathbb{D}[\bar{\pi}(a_{t'} | s_{t'}) || \pi(a_{t'} | s_{t'})]]$$

- $\text{TRPO:} \max_{\theta} \mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[\rho_{\bar{\theta}}^{\theta}(a \mid s)A_{\bar{\theta}}(s,a)] \text{ s.t. } \mathbb{E}_{s \sim p_{\bar{\theta}}}[\mathbb{D}[\pi_{\bar{\theta}}(a \mid s) \| \pi_{\theta}(a \mid s)]] \leq \epsilon$
- MF
- θ
- DP
- π'
- max

- $A_{ar{ heta}}$ estimated with critic A_{ϕ}
- Computational tricks for gradient-based optimization

Proximal Policy Optimization (PPO)

- Same motivation: ascend $\mathbb{E}_{(s,a)\sim p_{\bar{\theta}}}[\rho_{\bar{\theta}}^{\theta}(a\mid s)A_{\bar{\theta}}(s,a)]$ with π_{θ} staying near $\pi_{\bar{\theta}}$
- MF
- θ

▶ PPO-Penalty: add a penalty term for $\mathbb{E}_{s \sim p_{\bar{\theta}}}[\mathbb{D}[\pi_{\bar{\theta}}(a \mid s) || \pi_{\theta}(a \mid s)]]$

DP

PPO-Clip: ascend $\mathbb{E}_{(s,a)\sim p_{\bar{a}}}[L^{\theta}_{\bar{a}}(s,a)]$ with

$$L_{\bar{\theta}}^{\theta}(s,a) = \min(\rho_{\bar{\theta}}^{\theta}(a \mid s) A_{\bar{\theta}}(s,a), A_{\bar{\theta}}(s,a) + |\epsilon A_{\bar{\theta}}(s,a)|)$$

• This caps the incentive for θ to deviate from $\bar{\theta}$ at:

no incentive ≠ doesn't happen PPO has lots more tricks to limit divergence

- $\rho_{\bar{\theta}}^{\theta}(a \mid s) \leq 1 + \epsilon \text{ for } A_{\bar{\theta}}(s, a) \geq 0 \text{ (when we want to increase } \pi_{\theta}(a \mid s))$
- $\rho_{\bar{\theta}}^{\theta}(a \mid s) \ge 1 \epsilon \text{ for } A_{\bar{\theta}}(s, a) \le 0 \text{ (when we want to decrease } \pi_{\theta}(a \mid s) \text{)}$

Recap

- Model-based policy evaluation can be solved linearly
- Deep RL isn't just SGD
 - Exception: policy gradient on offline (batch) data
- Value-based methods struggle to max in continuous action spaces
 - DDPG: π_{θ} learns to maximize Q_{ϕ} (actor–critic method)
- Importance Sampling decouples expectation and sampling distributions
 - Optimize on-policy objectives with off-policy data
 - TRPO and PPO: sample from current policy to evaluate next policy, if it's close