

CS 277: Control and Reinforcement Learning Winter 2024

Lecture 4: Deep Q-Learning

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Exercise 1 due tomorrow (or Sunday)
- Quiz 2 due next Monday

office hours

- Fixed hours starting next week
- Contact me for special accommodation
- Please keep using this resource!

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

The RL scheme

Policy improvement

A value function suggests the greedy policy:

$$\pi(s) = \arg\max_{a} Q(s, a) = \arg\max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$

- . The greedy policy may not be the optimal policy $\pi^* = \arg\max_{\pi} J_{\pi}$
 - But is the greedy policy always an improvement?
- Proposition: the greedy policy for Q_π (value of π) is never worse than π
- Corollary (Bellman optimality): if π is greedy for its value Q_{π} then it is optimal
 - In a finite MDP, the iteration $\pi \xrightarrow{\text{evaluate}} Q_\pi \xrightarrow{\text{greedy}} \pi \xrightarrow{\text{converges}}$, and then π is optimal

Policy Iteration

MF

• If we know the MDP (model-based), we can just alternate evaluate/greedy:

Algorithm Policy Iteration

Initialize some policy π repeat

Evaluate the policy $Q(s, a) \leftarrow \mathbb{E}_{\xi \sim p_{\pi}}[R|s_0 = s, a_0 = a]$ Update to the greedy policy $\pi(s) \leftarrow \arg\max_a Q(s, a)$

• Upon convergence, $\pi=\pi^*$ and $Q=Q^*$

Value Iteration

We can also alternate evaluate/greedy inside the loop over states:

- Algorithm Value Iteration
 - Initialize some value function V

repeat

for each state s

Update
$$V(s) \leftarrow \max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$$

- Must update each state repeatedly until convergence
- Upon convergence, $\pi^*(s) = \arg\max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$

Generalized Policy Iteration

We can even alternate in any order we wish:

$$V(s) \leftarrow \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')]]$$

$$\pi(s) \leftarrow \arg\max_{a}(r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')])$$

- As long as each state gets each of the two update without starvation
 - The process will eventually converge to V^* and π^*

Model-free reinforcement learning

• We can be model-free using MC policy evaluation:

Algorithm MC model-free RL

Initialize some policy π

repeat

Initialize some value function Q

repeat to convergence

Sample $\xi \sim p_{\pi}$

Update $Q(s_t, a_t) \to R_{\geq t}(\xi)$ for all $t \geq 0$

 $\pi(s) \leftarrow \arg\max_a Q(s, a) \text{ for all } s$

On-policy policy evaluation in the inner loop — very inefficient

Off-policy model-free reinforcement learning

- Value iteration is model-based: $V(s) \leftarrow \max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$
- . Action-value version: $Q(s,a) \leftarrow r(s,a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\max_{a'} Q(s',a')]$
- A model-free (data-driven) version Q-Learning:
 - On off-policy data (s, a, r, s'), update

$$Q(s, a) \rightarrow r + \gamma \max_{a'} Q(s', a')$$

Recap

- Policy evaluation: model-based, Monte Carlo, or Temporal-Difference
 - Temporal-Difference exploits the sequential structure using dynamic programming
- TD can be off-policy by considering the action-value Q function
 - Off-policy data can be thrown out less often as the policy changes
- Policy improvement can be greedy
 - Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)
- Many approaches can be made differentiable for Deep RL

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Fitted Value-Iteration (FVI)

Algorithm Value Iteration

MF

Initialize some value function V

 θ

repeat

for each state s

Update
$$V(s) \leftarrow \max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$$

• Fitted Value-Iteration (FVI):

$$\theta^{i+1} \leftarrow \arg\min_{\theta} \mathbb{E}_{s \sim \mu} \left[\left(\max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p} [V_{\theta^i}(s')] \right) - V_{\theta}(s) \right)^2 \right]$$

• For some state distribution μ

Can use losses other than square

$$\pi$$

Fitted Q-Iteration (FQI)

- Action-value iteration: $Q(s,a) \leftarrow r(s,a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\max_{a'} Q(s',a')]$
- Fitted Q-Iteration (FQI):

$$\theta^{i+1} \leftarrow \arg\min_{\theta} \mathbb{E}_{(s,a)\sim\mu}[(r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[\max_{a'} Q_{\theta^i}(s',a')]) - Q_{\theta}(s,a))^2]$$

- For some state-action distribution μ
- We can also combine
 - Policy evaluation: MC with function approximation
 - Policy improvement: greedy

Q-Learning

Algorithm Q-Learning

Initialize Q

 $s \leftarrow \text{reset state}$

repeat

Take some action a

Receive reward r

Observe next state s'

Update
$$Q(s, a) \rightarrow \begin{cases} r & s' \text{ terminal} \\ r + \gamma \max_{a'} Q(s', a') & \text{otherwise} \end{cases}$$

 $s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

s' terminal

Sampling-based Fitted Q-Iteration

FQI can be model-free by sampling from p

MF

• We can sample using environment interaction with some π' , if $\mu=p_{\pi'}$

DP

• Or sample using a simulator we can reset to any state $s \sim \mu$

may

Anyway, this is off-policy from the greedy policy $\arg\max_a Q_{\theta}(s,a)$

Algorithm Sampling-based Fitted Q-Iteration

Initialize θ

repeat

Sample a batch $(\vec{s}, \vec{a}) \sim \mu$

Feed to simulator to get batch (\vec{r}, \vec{s}')

Descend
$$\mathcal{L}_{\theta} = (\vec{r} + \gamma \max_{\vec{a}'} Q_{\bar{\theta}}(\vec{s}', \vec{a}') - Q_{\theta}(\vec{s}, \vec{a}))^2$$

[Munos and Szepesvári, 2008]

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Experience policy

- Which distribution should the training data have?
 - The policy may not be good on other distributions / unsupported states
 - ightharpoonup ideally, the test distribution p_{π} for the final π
- On-policy methods (e.g. MC): must use on-policy data (from the current π)
- Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)
 - But both should eventually use p_{π} or suffer train-test distribution mismatch

Exploration policies

• Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}

- Suppose route 1 really has expected time 30min, should you commit to it forever?
- To avoid overfitting, we must try all actions infinitely often
- ϵ -greedy exploration: select uniform action with prob. ϵ , otherwise greedy
- Boltzmann exploration:

$$\pi(a \mid s) = \operatorname{soft} \max_{a}(Q(s, a); \beta) = \frac{\exp(\beta Q(s, a))}{\sum_{\bar{a}} \exp(\beta Q(s, \bar{a}))}$$

• Becomes uniform as the inverse temperature $\beta \to 0$, greedy as $\beta \to \infty$

Experience replay

- On-policy methods are inefficient: throw out all data with each policy update
- Off-policy methods can keep the data = experience replay
 - Replay buffer: dataset of past experience
 - Diversifies the experience (beyond current trajectory)
- Variants differ on
 - How often to add data vs. sample data
 - How to sample from the buffer
 - When to evict data from the buffer, and which

Why use target network?

. Fitted-Q loss:
$$\mathcal{L}_{\theta}=(r+\gamma\max_{a'}Q_{\bar{\theta}}(s',a')-Q_{\theta}(s,a))^2$$
 no gradient from the target term

- Target network = lagging copy of $Q_{\theta}(s, a)$
 - ▶ Periodic update: $\bar{\theta} \leftarrow \theta$ every T_{target} steps
 - Exponential update: $\bar{\theta} \leftarrow (1 \eta)\bar{\theta} + \eta\theta$
- $Q_{ar{ heta}}$ is more stable
 - Less of a moving target
 - Less sensitive to data ⇒ less variance
- But $\bar{\theta} \neq \theta$ introduces bias

Putting it all together: DQN

Deep Q-Learning (DQN)

Algorithm DQN

MF

Initialize θ , set $\bar{\theta} \leftarrow \theta$

 θ

 $s \leftarrow \text{reset state}$

for each interaction step

Sample $a \sim \epsilon$ -greedy for $Q_{\theta}(s, \cdot)$

max

Get reward r and observe next state s'

Add (s, a, r, s') to replay buffer \mathcal{D}

Sample batch $(\vec{s}, \vec{a}, \vec{r}, \vec{s}') \sim \mathcal{D}$

$$y_i \leftarrow \begin{cases} r_i & s_i' \text{ terminal} \\ r_i + \gamma \max_{a'} Q_{\bar{\theta}}(s_i', a') & \text{otherwise} \end{cases}$$

Descend $\mathcal{L}_{\theta} = (\vec{y} - Q_{\theta}(\vec{s}, \vec{a}))^2$

every T_{target} steps, set $\bar{\theta} \leftarrow \theta$

 $s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Value estimation bias

- Q-value estimation is optimistically biased
- ullet Jensen's inequality: for a random vector Q

$$\mathbb{E}[\max_{a} Q_{a}] \ge \max_{a} \mathbb{E}[Q_{a}]$$

- . While there's uncertainty in $Q_{ar{ heta}}$, $\max_{a'} Q_{ar{ heta}}(s',a')$ is positively biased
- So how can this converge?
 - As certainty increases, the bias of each update decreases
 - Existing bias attenuates with repeated discounting by γ

Double Q-Learning

- Idea: keep two value estimates \mathcal{Q}_1 and \mathcal{Q}_2

• Update:
$$Q_i(s, a) \rightarrow r + \gamma Q_{-i}(s', \arg\max_{a'} Q_i(s', a'))$$

$$-i = \text{the other}$$

- How to use this with DQN?
- Idea 1: use target network as the other estimate

• Idea 2: Clipped Double Q-Learning

$$Q_{\theta_i}(s,a) \to r + \gamma \min_{i=1,2} Q_{\bar{\theta}_i}(s', \arg\max_{a'} Q_{\theta_i}(s', a'))$$

Prioritized Experience Replay

- . Bellman error (= TD error): $\delta(s, a, r, s') = r + \gamma \max_{a'} Q(s', a') Q(s, a)$
 - Optimality: $\delta \equiv 0$; that's why we usually descend the square loss δ^2
- Experience with high error ⇒ more important to see
- Prioritized Experience Replay:
 - Sample instance i with prob. $p_i \propto \delta_i^{\omega}$; e.g. $\omega = 0.6$
 - Update with Importance Sampling (IS) weight $(m \cdot p_i)^{-\beta}$; e.g. $\beta = 0.4$
- . δ is computed during the updates; new experience is weighted $\max_i \delta_i^\omega$

Dueling Networks

- Advantage function: $A_{\pi}(s,a) = Q_{\pi}(s,a) V_{\pi}(s)$
- $A_{\pi}(s,a)$ can be more consistent across states with similar effect of actions
 - Even if their value $V_{\pi}(s)$ is very different
- $V_{\pi}(s)$ is a scalar, which can be easier to learn

• Issue: Q = (V + c) + (A - c) is underdetermined

Stabilize with
$$Q(s,a) = V(s) + \left(A(s,a) - \max_{\bar{a}} A(s,\bar{a})\right)$$

Multi-step Q Learning

- MC is high variance but unbiased: $Q(s_t, a_t) \to R_{\geq t} = \sum_{t' > t} \gamma^{t'-t} r_{t'}$
- TD is lower variance but biased: $Q(s_t, a_t) \to r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$
 - Because $\max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$ isn't really the next-step value, while still learning
- Let's trade them off, *n*-step Q-Learning:

$$Q(s_t, a_t) \to r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a_{t+n}} Q(s_{t+n}, a_{t+n})$$

Rainbow DQN

- Rainbow DQN = DQN + a powerful combination of tricks
 - Double Q-Learning
 - Prioritized Experience Replay
 - Dueling Networks
 - Multi-step Q-Learning
 - Distributional RL
 - Noisy Nets

Recap

- RL algorithms can be implemented with function approximation
- There are (at least) 2 important policies
 - ► The learner policy should be the best possible (e.g. greedy)
 - ▶ The experience policy should explore (e.g. ϵ -greedy)
- Replay buffer: store data for longer (off-policy), diversify
- Target network: reduce variance, stabilize the target
- In practice, add lots of tricks and heuristics to the theory