

CS 277: Control and Reinforcement Learning Winter 2024

Lecture 3: Temporal-Difference Methods

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Exercise 1 due Friday
- Quiz 2 to be published soon, due next Monday

resources

- Lots of resources on the website
- Will be updated with papers relevant to each lecture

Today's lecture

Policy evaluation

Temporal Difference

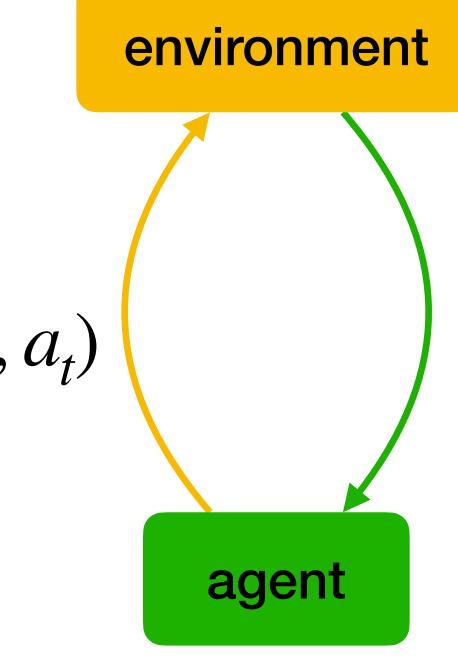
Policy improvement

Basic RL concepts

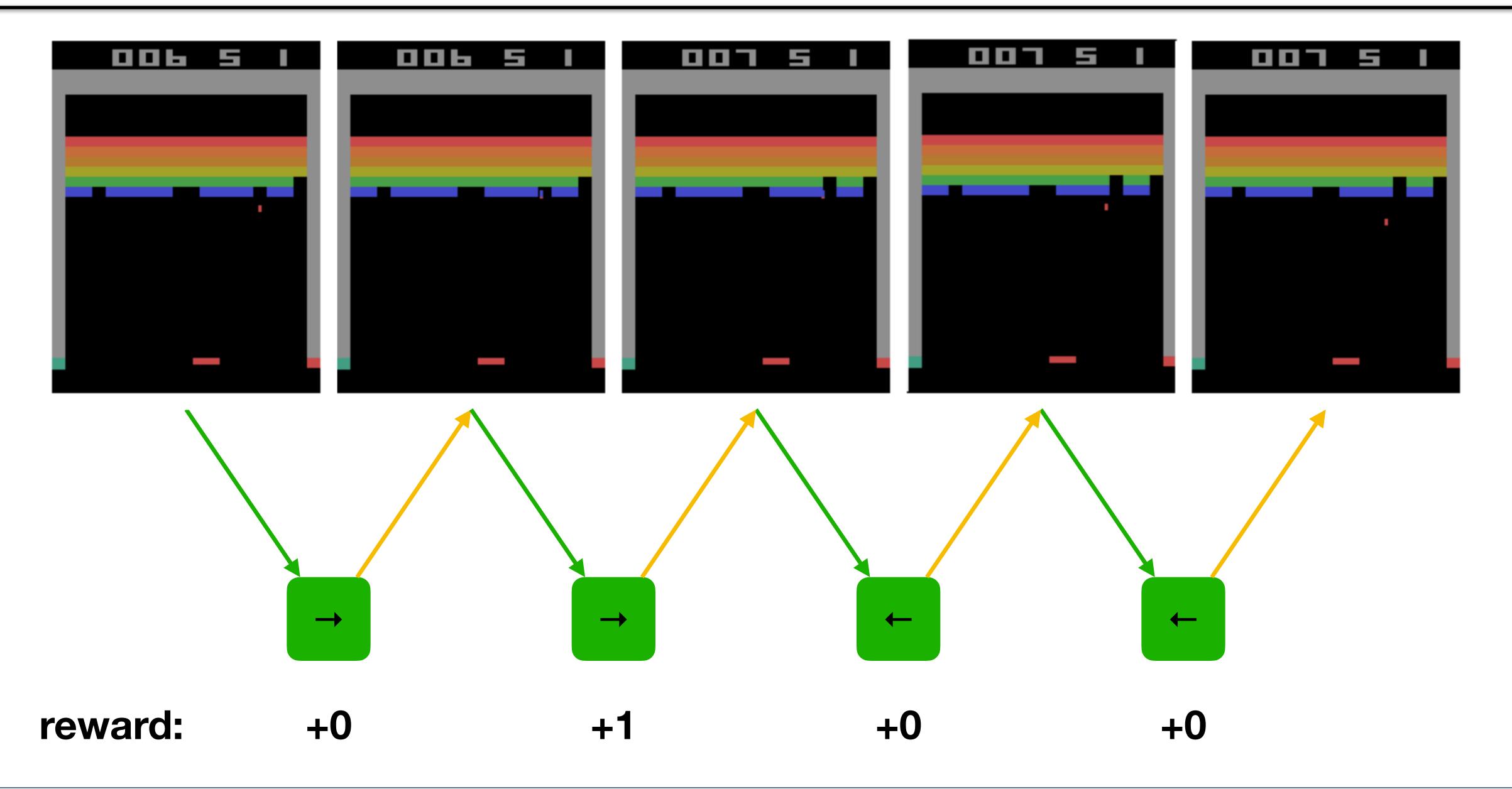
- State: $s \in S$; action: $a \in A$; reward: $r(s, a) \in \mathbb{R}$
- Dynamics: $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- MDP: $\mathcal{M} = \langle S, A, p \rangle$ or $\langle S, A, p, r \rangle$
- Policy: $\pi(a_t \mid s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic

Trajectory:
$$p_{\pi}(\xi = s_0, a_0, s_1, a_1, \ldots) = p(s_0) \prod_{t \geq 0} \pi(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)$$

Return:
$$R(\xi) = \sum_{t \ge 0} \gamma^t r(s_t, a_t)$$
 $0 \le \gamma < 1$



Example: Breakout



Formulating reward: considerations

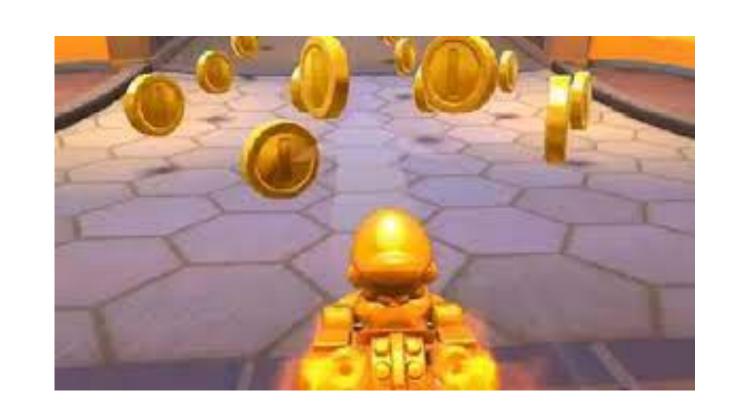
- We define r(s, a), is that general enough?
- What if the reward depends on the next state s'?
 - If we only care about expected reward, define $r(s, a) = \mathbb{E}_{(s'|s,a) \sim p}[r(s, a, s')]$
- What if the reward is a random variable \tilde{r} ?
 - Define $r(s, a) = \mathbb{E}[\tilde{r} | s, a]$
 - ► In practice we see $\tilde{r} \Rightarrow$ don't just assume you know $r(s, a) = \tilde{r}$

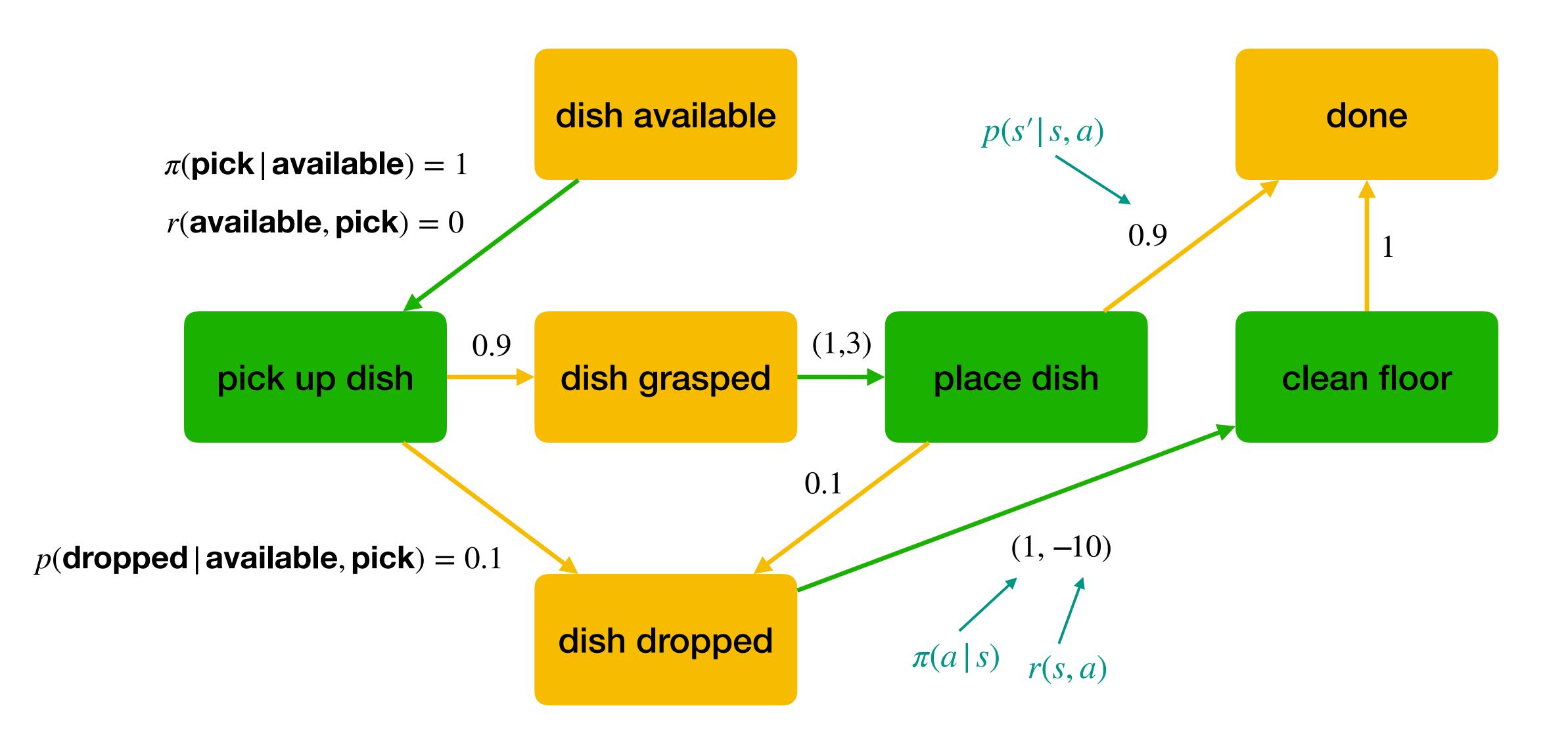
RL objective: expected return

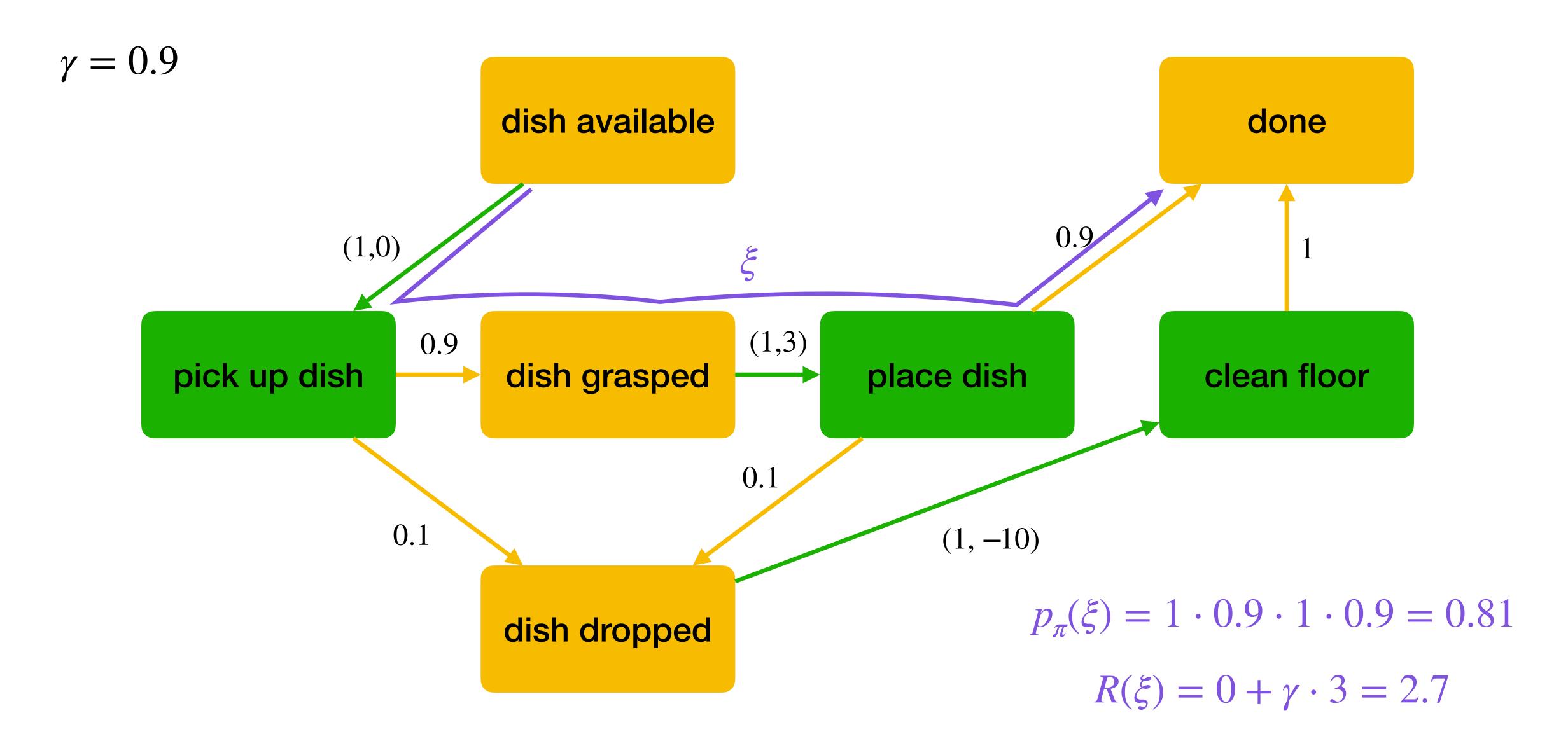
- We need a scalar to optimize
- Step 1: we have a whole sequence of rewards $\{r_t = r(s_t, a_t)\}_{t \ge 0}$

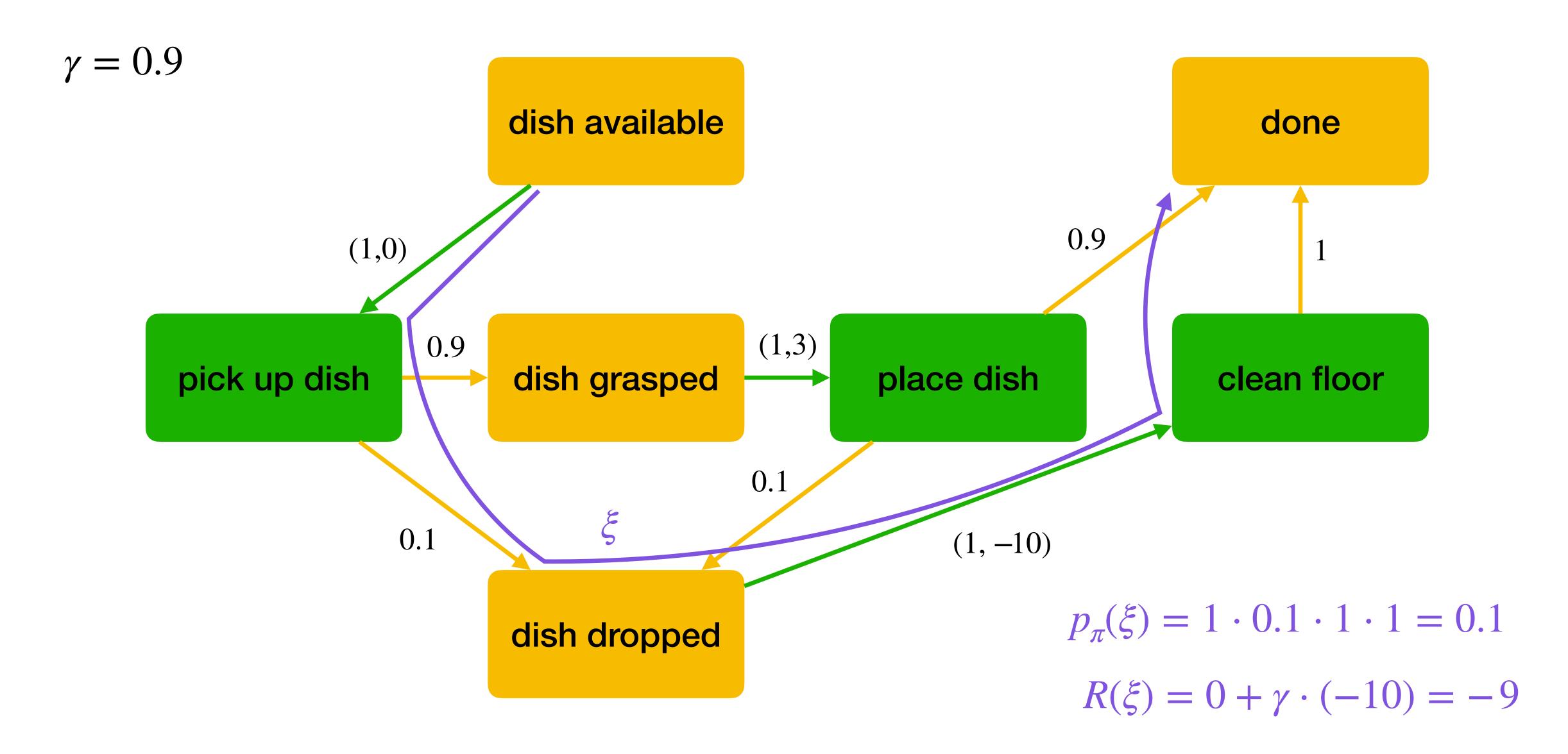
Summarize as return
$$R(\xi) = \sum_{t \geq 0} \gamma^t r(s_t, a_t)$$

- Step 2: $R(\xi)$ is a random variable, induced by $p_{\pi}(\xi)$
 - Take expectation $J_{\pi} = \mathbb{E}_{\xi \sim p_{\pi}}[R(\xi)]$
- J_{π} can be calculated and optimized









Monte Carlo (MC) policy evaluation

. Computing
$$J_\pi=\mathbb{E}_{\xi\sim p_\pi}[R(\xi)]=\sum_\xi p_\pi(\xi)R(\xi)$$
 can be hard

- Exponentially many trajectories
- ► Model-based = requires p(s'|s,a), which may not be known
- Monte Carlo: estimate expectation using empirical mean

$$J_{\pi} \approx \frac{1}{m} \sum_{i} R(\xi^{(i)}) \qquad \xi^{(i)} \sim p_{\pi}$$

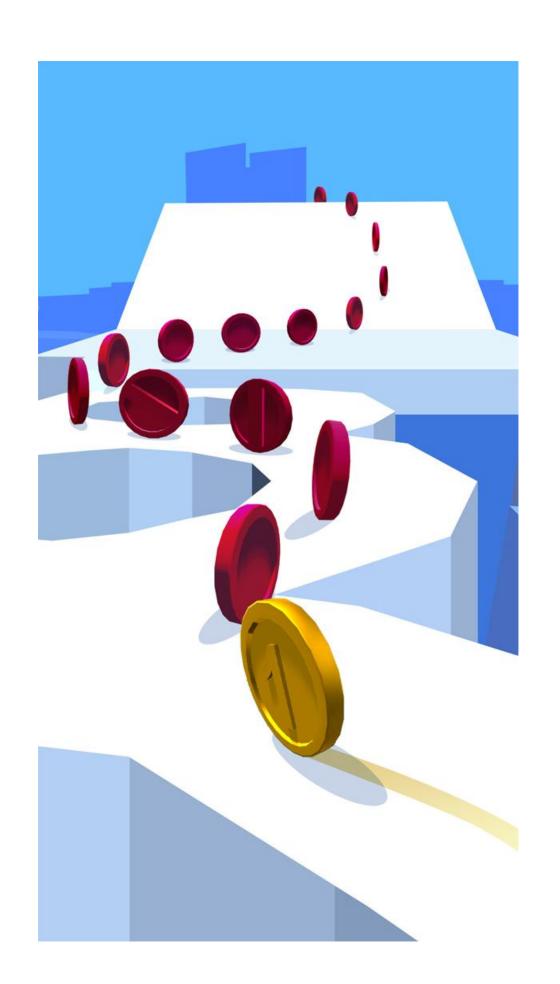
► Model-free = can sample with rollouts, without knowing p

MC: iterative computation

- We can keep a running average $ar{R}^{(i)}$ of the first i returns
 - ▶ Update: $\bar{R}^{(i)} = ((i-1)\bar{R}^{(i-1)} + R(\xi^{(i)}))\frac{1}{i}$ residual /
 - More generally: $\bar{R}^{(i)} = (1 \alpha)\bar{R}^{(i-1)} + \alpha R(\xi^{(i)}) = \bar{R}^{(i-1)} + \alpha (R(\xi^{(i)}) \bar{R}^{(i-1)})$
 - ightharpoonup lpha is a learning rate, exact average when it vanishes harmonically as $rac{1}{i}$
- To simplify expressions, we denote this update: $J \to_{\alpha} R(\xi)$
 - Read: update J toward $R(\xi)$ at rate α

Value function

- RL objective: maximize expected return $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R]$
- We don't control s_0 , can break down: $J_\pi = \mathbb{E}_{s_0 \sim p}[V_\pi(s_0) \,|\, s_0]$
 - with the value function $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \, | \, s_0 = s]$
- $V_{\pi}(s)$ is the expected reward-to-go (= future return):
 - For any t_0 , define $R_{\geq t_0} = \sum_{t \geq t_0} \gamma^{t-t_0} r(s_t, a_t)$ future reward after being in state s in time t_0
 - $\quad \text{Then } V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R_{\geq t_0} | s_{t_0} = s]$



MC for value-function estimation

MF

Algorithm MC for value-function estimation

Initialize $V(s) \leftarrow 0$ for all $s \in S$ repeat

Sample $\xi \sim p_{\pi}$ Update $V(s_0) \to R(\xi)$

Why not use the same samples for non-initial states?

Algorithm MC for value-function estimation (version 2)

Initialize $V(s) \leftarrow 0$ for all $s \in S$ repeat

Sample $\xi \sim p_{\pi}$ Update $V(s_t) \to R_{>t}(\xi)$ for all $t \ge 0$

MC with function approximation

- What if the state space is large?
 - Can't represent V(s) as a big table
 - Won't have enough data to estimate each V(s)
- Function approximation: represent $V_{ heta}:S
 ightarrow \mathbb{R}$

Algorithm MC with function approximation

Initialize V_{θ} repeat $Sample \ \xi \sim p_{\pi}$ $Descend on \ \mathcal{L}_{\theta} = \sum_{t \geq 0} (R_{\geq t}(\xi) - V_{\theta}(s_t))^2$

with tabular representation:

$$V(s_t) += -\alpha \nabla_{V(s_t)} \mathcal{L} = 2\alpha (R_{\geq t}(\xi) - V(s_t))$$
 same as in previous slide

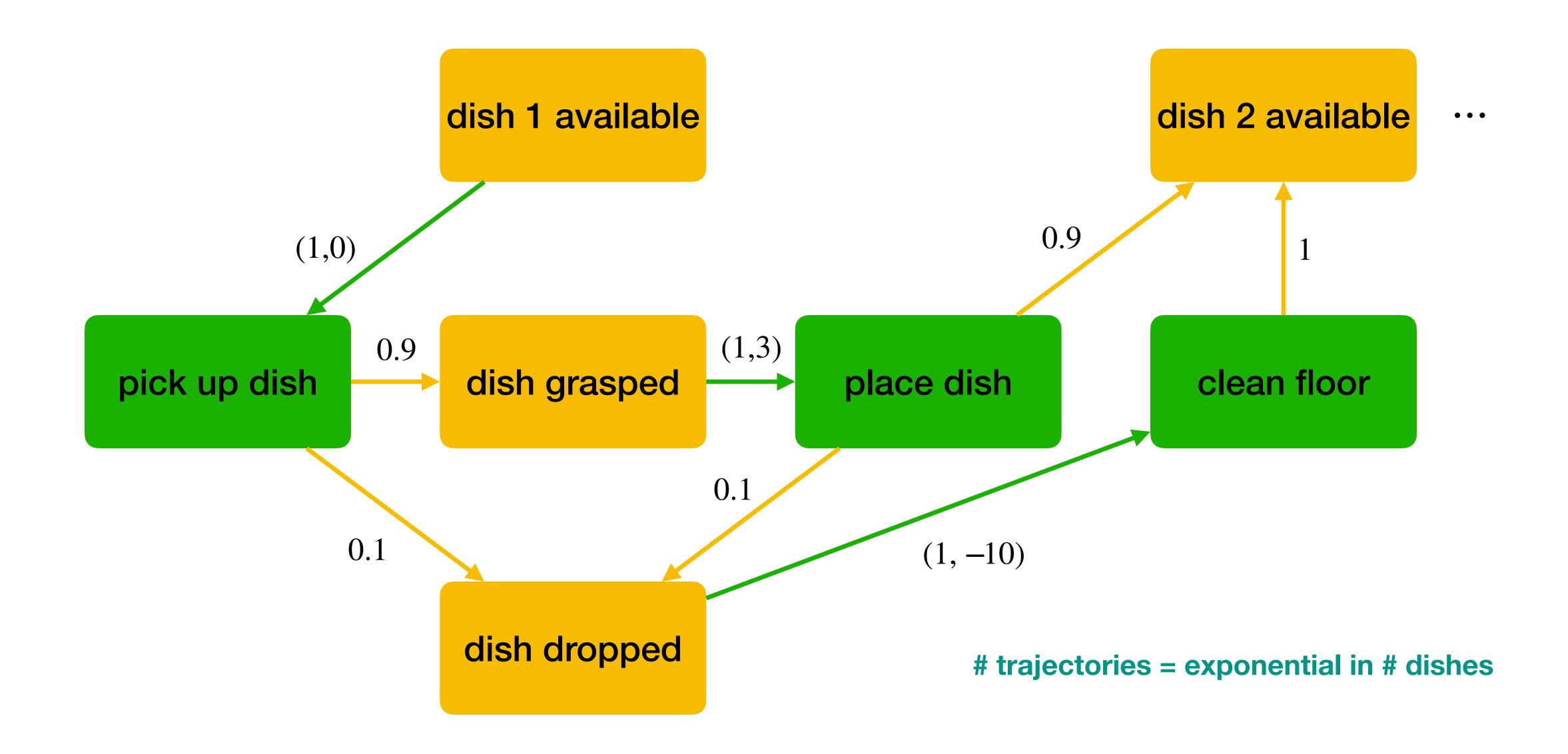
- $\theta \in \Theta$, a parametric family of functions; for example, a neural network
- Generalization over state space ⇒ data efficiency

Today's lecture

Policy evaluation

Temporal Difference

Policy improvement



MC inefficiency

- The MC estimator is unbiased (correct expectation), but high variance
 - Requires many samples to give good estimate
- But MC misses out on the sequential structure
- Example:

- ▶ Day 1: I take route 1 to work 40 minutes; I take route 2 home 10 minutes
- ▶ Day 2: I take route 3 to work 30 minutes; I take route 4 home 30 minutes
- Which route should I take to work?
 - ► Route 1 \rightarrow 50-minute daily commute, route 3 \rightarrow 60-minute; is route 1 better?

Dynamic Programming (DP)

- Dynamic Programming = remember reusable partial results
- Value recursion:

$$V_{\pi}(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s]$$

break down sum of rewards

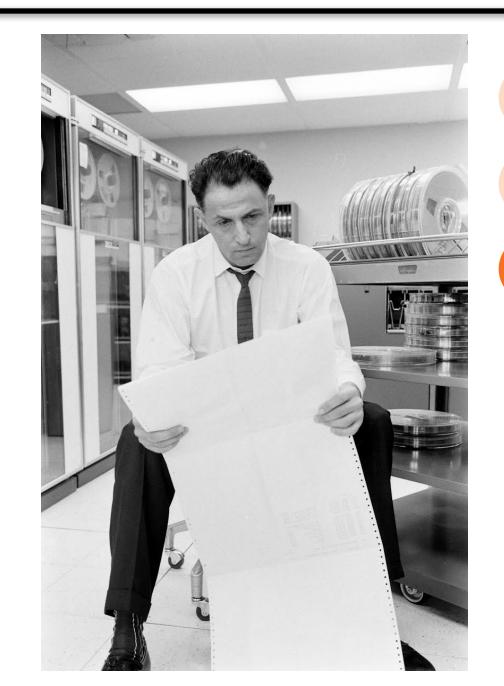
$$= \mathbb{E}_{\xi \sim p_{\pi}} [r(s_0, a_0) + \gamma R_{\geq 1} | s_0 = s]$$

first reward only depends on
$$a=\mathbb{E}_{(a|s)\sim\pi}[r(s,a)+\gamma\mathbb{E}_{\xi\sim p_\pi}[R_{\geq 1}\,|\,s_0=s,a_0=a]]$$

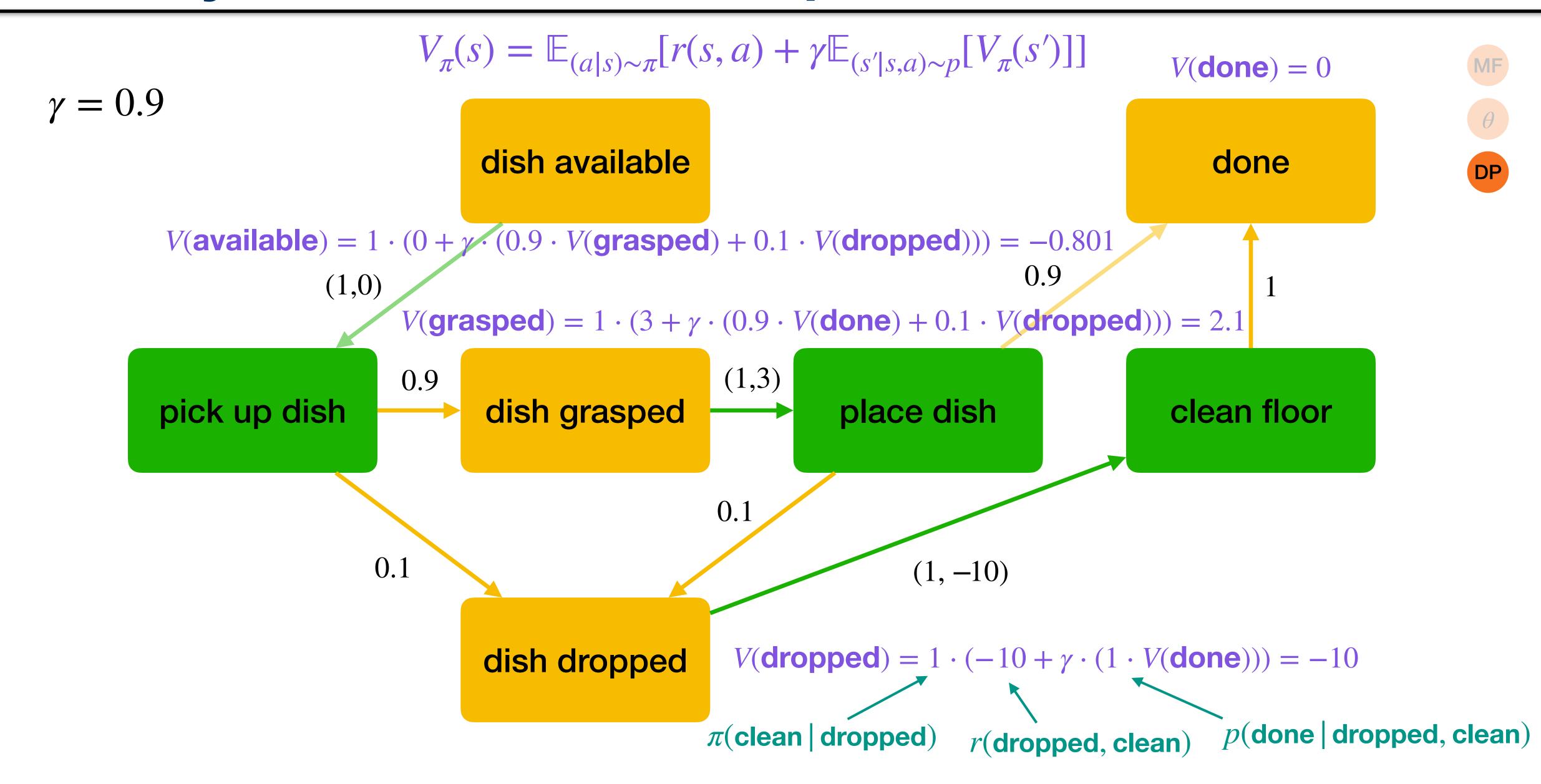
$$s' \text{ is a state, all that matters for } R_{\geq 1} = \mathbb{E}_{(a|s) \sim \pi}[r(s,a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\mathbb{E}_{\xi \sim p_{\pi}}[R_{\geq 1} \mid s_1 = s']]]$$

definition of
$$V_{\pi}(s')$$

$$= \mathbb{E}_{(a|s)\sim\pi}[r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[V_{\pi}(s')]]$$



Richard Bellman



DP + MC: Temporal Difference (TD)

- Policy evaluation with DP: $V_{\pi}(s) = \mathbb{E}_{(a|s)\sim\pi}[r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[V_{\pi}(s')]]$
 - Drawback: model-based = need to know p

recursion from s' to s
= backward in time!

- MC: $V(s) \to R_{\geq t}(\xi)$, where $\xi \sim p_{\pi}$ and $s_t = s$
 - Drawback: high variance
- Put together: $V(s) \rightarrow r + \gamma V(s')$

- MF
- θ

- where $s = s_t$, $r = r(s_t, a_t)$, and $s' = s_{t+1}$ in some trajectory
 - temporal difference between V(s') and V(s)
- In other words: $V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') V(s))$

Q function

- To approach V_{π} when we update $V(s) \to r + \gamma V(s')$, we need on-policy data
 - Roll out π to see transition $(s, a) \rightarrow s'$ with reward r
- On-policy data is expensive: need more every time π changes
- Action-value function: $Q_\pi(s,a) = \mathbb{E}_{\xi \sim p_\pi}[R \,|\, s_0 = s, a_0 = a]$
 - Compare: $V_{\pi}(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s] = \mathbb{E}_{(a\mid s) \sim \pi}[Q_{\pi}(s, a)]$

- Action-value backward recursion: $Q_{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[V_{\pi}(s')]$

TD from off-policy data

Backward recursion in two parts:

$$V_{\pi}(s) = \mathbb{E}_{(a|s) \sim \pi}[Q_{\pi}(s, a)] \qquad Q_{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V_{\pi}(s')]$$

- This should hold in every state and action
 - (s,a) can be sampled from any distribution $p_{\pi'}$ for any alternative π'
- Put together, we update $Q(s,a) \to r + \gamma \mathbb{E}_{(a'|s')\sim\pi}[Q(s',a')]$

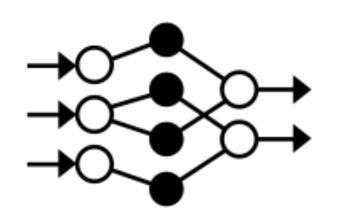
- MF
- For any distribution of (s, a), giving reward r and following state $s' \sim p(\cdot \mid s, a)$
- DP

temporal difference

In other words: $Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s',a')] - Q(s,a)$

TD with function approximation

- With large state space: represent $V_{\theta}:S \to \mathbb{R}$ or $Q_{\theta}:S \times A \to \mathbb{R}$
- Instead of the update $V(s) \rightarrow r + \gamma V(s')$



- Descend on square loss $\mathcal{L}_{\theta} = (r + \gamma V_{\bar{\theta}}(s') - V_{\theta}(s))^2$

 θ

• On on-policy experience (s, a, r, s')

only learn $V_{\theta}(s)$ $V_{\bar{\theta}}(s') \text{ is the target}$ \Rightarrow don't take its gradient!

- Instead of the update $Q(s,a) \to r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s',a')]$
 - $\text{Descend on square loss } \mathscr{L}_{\theta} = (r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q_{\bar{\theta}}(s',a')] Q_{\theta}(s,a))^2$

 θ

• On off-policy experience (s, a, r, s')

only learn $Q_{\theta}(s, a)$ $Q_{\bar{\theta}}(s', a')$ is the target \Rightarrow don't take its gradient!

DP

Roy Fox | CS 277 | Winter 2024 | Lecture 3: Temporal-Difference Methods

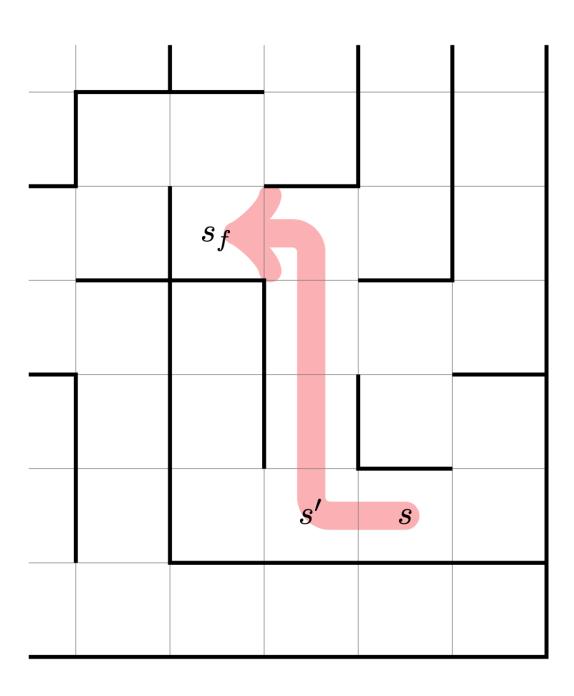
Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

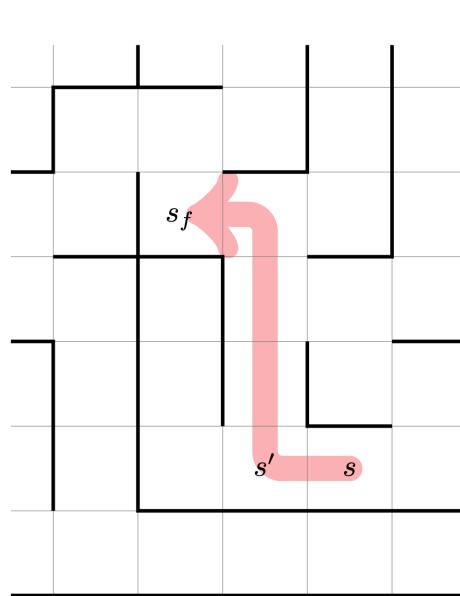
Special case: shortest path



- Deterministic dynamics: in state s, take action a to get to state s' = f(s, a)
 - Example above: $s' = f(s, a_{left})$
- Reward: (-1) in each step (until the goal s_f is reached)

Shortest path: optimality principle

- Proposition: ξ is shortest from s to s_f through $s'\Rightarrow$ suffix of ξ is shortest from s' to s_f
- Proof: otherwise, let ξ' be a shorter path from s' to s_f , then take $s \xrightarrow{\xi} s' \xrightarrow{\xi'} s_f$
- The proposition is "if" but not "only if", because we don't know which s' is best
 - ► Try them all: for each a, try s' = f(s, a)
- Let V(s) be the shortest path length from s to s_f
 - For each candidate s', the shortest path through it is 1 + V(s')



Bellman-Ford shortest path algorithm

• For all
$$s \neq s_f$$
, we have $V(s) = \min_a (1 + V(f(s, a)))$

Algorithm Bellman-Ford

$$V(s_f) \leftarrow 0$$

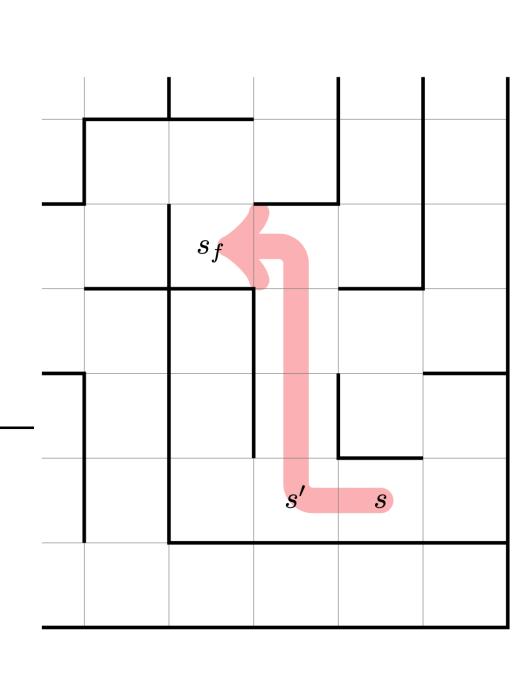
 $V(s) \leftarrow \infty$ for each non-terminal state s

for |S| - 1 iterations

for each non-terminal state s

$$V(s) \leftarrow \min_{a \in A} (1 + V(f(s, a)))$$

. The optimal policy is $\pi(s) = \arg\min_{a} (1 + V(f(s, a)))$



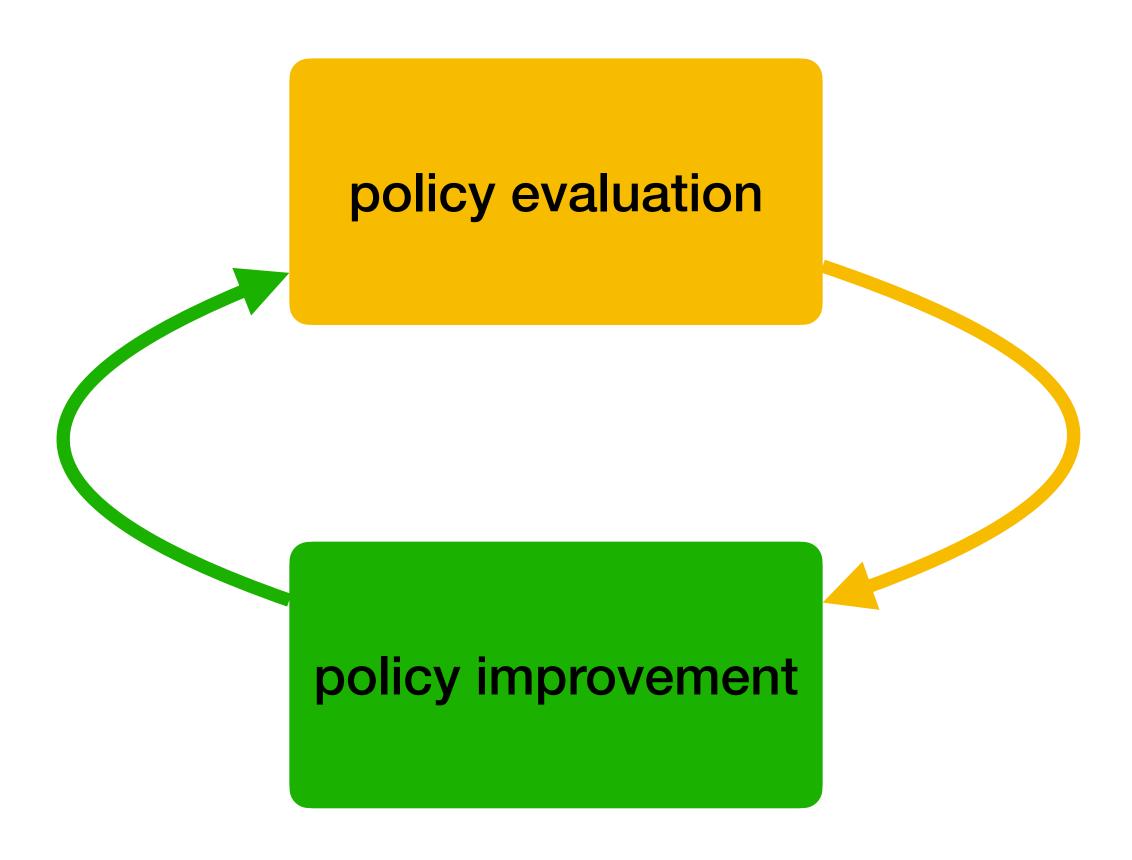
Policy improvement

A value function suggests the greedy policy:

$$\pi(s) = \arg\max_{a} Q(s, a) = \arg\max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$

- . The greedy policy may not be the optimal policy $\pi^* = \arg\max_{\pi} J_{\pi}$
 - But is the greedy policy always an improvement?
- Proposition: the greedy policy for Q_π (value of π) is never worse than π
- Corollary (Bellman optimality): if π is greedy for its value Q_{π} then it is optimal
 - In a finite MDP, the iteration $\pi \xrightarrow{\text{evaluate}} Q_\pi \xrightarrow{\text{greedy}} \pi \text{ converges}$, and then π is optimal

The RL scheme



Policy Iteration

MF

If we know the MDP (model-based), we can just alternate evaluate/greedy:

Algorithm Policy Iteration

Initialize some policy π repeat

Evaluate the policy $Q(s, a) \leftarrow \mathbb{E}_{\xi \sim p_{\pi}}[R|s_0 = s, a_0 = a]$ Update to the greedy policy $\pi(s) \leftarrow \arg\max_a Q(s, a)$

• Upon convergence, $\pi=\pi^*$ and $Q=Q^*$

Value Iteration

We can also alternate evaluate/greedy inside the loop over states:

Algorithm Value Iteration

Initialize some value function V

repeat

for each state s

Update
$$V(s) \leftarrow \max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$$

- Must update each state repeatedly until convergence
- Upon convergence, $\pi^*(s) = \arg\max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$

Generalized Policy Iteration

We can even alternate in any order we wish:

$$V(s) \leftarrow \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')]]$$

$$\pi(s) \leftarrow \arg\max_{a}(r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')])$$

- As long as each state gets each of the two update without starvation
 - The process will eventually converge to V^* and π^*

Model-free reinforcement learning

• We can be model-free using MC policy evaluation:

Algorithm MC model-free RL

Initialize some policy π

repeat

Initialize some value function Q

repeat to convergence

Sample $\xi \sim p_{\pi}$

Update $Q(s_t, a_t) \to R_{\geq t}(\xi)$ for all $t \geq 0$

 $\pi(s) \leftarrow \arg\max_a Q(s, a) \text{ for all } s$

On-policy policy evaluation in the inner loop — very inefficient

Off-policy model-free reinforcement learning

- Value iteration is model-based: $V(s) \leftarrow \max_{a} (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$
- . Action-value version: $Q(s,a) \leftarrow r(s,a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\max_{a'} Q(s',a')]$
- A model-free (data-driven) version Q-Learning:
 - On off-policy data (s, a, r, s'), update

$$Q(s, a) \rightarrow r + \gamma \max_{a'} Q(s', a')$$

Recap

- Policy evaluation: model-based, Monte Carlo, or Temporal-Difference
 - Temporal-Difference exploits the sequential structure using dynamic programming
- TD can be off-policy by considering the action-value Q function
 - Off-policy data can be thrown out less often as the policy changes
- Policy improvement can be greedy
 - Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)
- Many approaches can be made differentiable for Deep RL