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Logistics

logistics
• Follow announcements and discussions on ed


• See website for schedule, recordings, resources, etc.

exercises
• Quiz 1 due next Monday


• Exercise 1 to be published soon, due next Friday
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Today's lecture

Behavior Cloning

Better behavior modeling

Alleviating train–test mismatch

Basic RL concepts
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System state

st+1stst−1



Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

System state

• Markov property: the future is independent of the past, given the present


 


• State = all relevant information from history


‣ Given , the history  and the future  are independent


p(st+1, st+2, … |s0, s2, …, st) = p(st+1, st+2, … |st)

st h = (s0, …, st) (st+1, st+2, …)
for future!

st+1stst−1
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System = agent + environment

st+1stst−1

at−1 atagent

environment

π(at |st) p(st+1 |st, at)
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Markov Decision Process (MDP)

• Model of environment


‣  = set of states


‣  = set of actions


‣  = state transition probability


- Probability that , if  and 

𝒮

𝒜

p(s′￼|s, a)

st+1 = s′￼ st = s at = a
agent

environment
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Agent policy

• “Model” of agent decision-making


‣ Policy  = probability of taking action  in state 


‣ In MDP, action  only depends on current state :


- Markov property =  is all that matters in history


- Causality = cannot depend on the future

π(a |s) at = a st = s

at st

st

agent

environment
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Trajectories
• The agent's behavior iteratively uses (rolls out) the policy


• Trajectory: 


• MDP + policy induce distribution over trajectories





• Imitation learning: learn from dataset of expert demonstrations


‣ Supervised learning of  from “labeled” states 

ξ = (s0, a0, s2, a2, …, sT)

pπ(ξ) = p(s0)π(a0 |s0)p(s1 |s0, a0)⋯π(aT−1 |sT−1)p(sT |sT−1, aT−1)

= p(s0)
T−1

∏
t=0

π(at |st)p(st+1 |st, at)

π(a |s) (st, at)

agent

environment
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Learning from rewards

• Providing demonstrations is hard


‣ Particularly for learner-generated trajectories


• Can the teacher just score learner actions?


‣ Reward: 


• High reward is positive reinforcement for this behavior (in this state)


‣ Much closer to how natural agents learn


‣ Designing and programming  often easier than programming / demonstrating 

r(s, a) ∈ ℝ

r π

as in online learning
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Actions have long-term consequences

• Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)


‣ Fly drone: slow down to avoid crash?


‣ Games: slowly build strength? block opponent? all out attack?


‣ Stock trading: sell now or wait for growth?


‣ Infrastructure control: reduce power output to prevent blackout?


‣ Life: invest in college, obey laws, get started early on course project


• Forward thinking and planning are hallmarks of intelligence
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Discounted returns

• Return = total reward = 


‣ Summarize reward sequence  as single number to be maximized


• Discount factor 


‣ Higher weight to short-term rewards (and costs) than long-term


‣ Good mathematical properties:


- Assures convergence, simplifies algorithms, reduces variance


• Vaguely economically motivated (inflation)

R = ∑
t≥0

γtr(st, at)

rt = r(st, at)

γ ∈ [0,1]
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Other horizon classes

• Finite: 


• Infinite: 


• Discounted: 


• Episodic: 

RT(ξ) =
T−1

∑
t=0

r(st, at)

Ravg(ξ) = lim
T→∞

1
T

T−1

∑
t=0

r(st, at)

Rγ(ξ) =
∞

∑
t=0

γtr(st, at) 0 ≤ γ < 1

Rsf(ξ) =
T−1

∑
t=0

r(st, at) s.t. sT = sf
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Recap: basic RL concepts
• State: ; action: ; reward: 


• Dynamics:  for stochastic;  for deterministic


• Policy:  for stochastic;  for deterministic


• Trajectory: 


• Return: 


•
Value: 

s ∈ 𝒮 a ∈ 𝒜 r(s, a) ∈ ℝ

p(st+1 |st, at) st+1 = f(st, at)

π(at |st) at = π(st)

pπ(ξ = s0, a0, s1, a1, …) = p(s0)∏
t

π(at |st)p(st+1 |st, at)

R(ξ) = ∑
t

γtr(st, at) 0 ≤ γ < 1

V(s) = 𝔼ξ∼pπ
[R |s0 = s]

Q(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]
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Today's lecture

Behavior Cloning

Better behavior modeling

Alleviating train–test mismatch

Basic RL concepts



Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Imitation Learning (IL)
• How can we teach an agent to perform a task?


• Often there is an expert that already knows how to perform the task


‣ A human operator who controls a robot


‣ A black-box artificial agent that we can observe but not copy


‣ An agent with different representation or embodiment


• The expert can demonstrate the task to create a training dataset 


‣ Each demonstration is a trajectory 


‣ Then the learner imitates these demonstrations

𝒟 = {ξ(i)}i

ξ = s0, a0, s1, a1, …
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IL = Learning from Demonstrations (LfD)
• Teacher provides demonstration trajectories 


• Learner trains a policy  to minimize a loss 


• For example, negative log-likelihood (NLL):

 

𝒟 = {ξ(1), …, ξ(m)}

πθ ℒ(θ)

arg min
θ

ℒθ(ξ) = arg min
θ

(−log pθ(ξ))

= arg max
θ (log p(s0) +

T−1

∑
t=0

log πθ(at |st) + log p(st+1 |st, at))
= arg max

θ

T−1

∑
t=0

log πθ(at |st)

model-free 
= no need to know the environment dynamics p
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Behavior Cloning (BC)

• Behavior Cloning:


‣ Break down trajectories  into steps 


‣ Train  using supervised learning


{ξ(1), …, ξ(m)} {(s(1)
0 , a(1)

0 ), …, (s(m)
Tm−1, a(m)

Tm−1)}

πθ : s ↦ a

observations 
+ 

actions

training 
data 

𝒟 = {(s(i)
t , a(i)

t )}i,t

πθ(a |s)

max
θ

1
|𝒟 | ∑ log πθ(a |s)∑

(s,a)∈𝒟
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Behavior Cloning (BC)

• Benefits:


‣ Simple, flexible — can use any learning algorithm


‣ Model-free — never need to know the environment


• Drawbacks:


‣ Only as good as the demonstrator


‣ Only good in demonstrated states — how do we evaluate?


- Validation loss (on held out data)? Task success rate in rollouts?

training 
data

supervised 
learning

πθ(a |s)
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A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

[Bojarski et al., 2016]

π(at |st)
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Stochastic policies

• Learned models are often deterministic functions 


• To implement a stochastic policy: output distribution parameters


• Examples:


‣ Discrete action space: categorical distribution


- ; 


‣ Continuous action space: Gaussian distribution


- ; 

fθ : x ↦ y

πθ : s ↦ {λa}a πθ(a |s) = softmaxaλa ∝ exp λa

πθ : s ↦ (μ, Σ) πθ(a |s) = 𝒩(μ, Σ)
π(at |st)
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A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

π(at |st)
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A policy is a (stochastic) function

st+1stst−1

at−1 atagent

environment

ot−1 ot

observation action
π(at |ot)
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ALVINN

• Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)


[Pomerleau, 1989]
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Inaccuracy in BC

• We could evaluate on held out teacher data, but really interested in using 


• If the policy approximates the teacher 


‣ The trajectory distribution will also approximate teacher behavior 


• But errors accumulate over time


‣ May reach states not seen in the training dataset

πθ

πθ(at |st) ≈ π*(at |st)

pθ(ξ) ≈ p*(ξ)
no data here!

training 
data

supervised 
learning

πθ(a |s)

Image: Sergey Levine
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• Errors in learning are unavoidable


• What impact do they have on sequential behavior?


• Bounded one-step error in a dynamical model 


‣ Can lead to growing error over time 


‣ Not too bad by itself, but can drift outside training distribution 

∑
s′￼

pθ(s′￼|s) − p*(s′￼|s) ≤ ϵ

∑
st

pθ(st) − p*(st) ≤ ϵt

𝒟

The impact of inaccurate dynamics

st+1stst−1
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Today's lecture

Behavior Cloning

Better behavior modeling

Alleviating train–test mismatch

Basic RL concepts



Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Modeling other agents is hard

• Is there sufficient data? Demonstrating puts a burden on the teacher


• Are demonstrations correct? Humans are fallible, some supervision is hard 


• Are demonstrations consistent? Some tasks can be done in multiple ways


• Is the state partially observable? 


• Are the learner and teacher observations the same? 

ot
?= st

ot
?= o*t
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Inconsistent demonstrations: multiple goals

• What if the task is to reach one of multiple goals?


‣ Different episodes can successfully reach different goals


‣ We need to train one policy to reach multiple goals 


• If we know the goal, condition on it


‣ Goal-conditioned policy: 


• More generally: task-conditioned policy 


‣ Goal = desired final state; but how to represent other kinds of tasks?

πθ(at |st, g)

πθ(at |st, τ)

Image: puzzlesandriddles.com
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Goal-conditioned Behavior Cloning

• Can we train a goal-conditioned policy  from demonstrations?


‣ Assume goal = state that the agent should reach


• How can we know the goal in demonstrations ?


‣ Manual labeling? 


• Hindsight: take each  as the goal of the trajectory leading to it


 


‣ Supervised learning of  from data points  for 

πθ(at |st, g)

ξ = s0, a0, s1, a1, …

𝒟 = {(ξ(i), g(i))}i

st

s0, a0, …, st−1, at−1, st = g

π(a |s, g) ((st, g = st′￼
), at) t′￼ > t
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Inconsistency due to multimodal behavior
• Goal-conditioning assumes known goals


‣ More generally, known behavior modifiers


• Usually, the behavior mode is unknown


‣ Need multimodal policy 


- Mixture models (e.g. GMM)


- Latent-variable models (e.g. normalizing flows)


‣ Need to be consistent along a trajectory


- Condition the policy on memory of past actions 

π(a |s)

π(at |st, a≤t)
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Modeling partially observable behavior

• Partial observations are not Markov


‣ Generally, this means 


‣ Reactive policy  may not be optimal


- May need , or even ; but how?


• Can use RNNs , or other memory models


• But memory state is latent in demonstrations


‣ Modeling memory is hard → prior structure may help; more on this later

p(ot+1 |ot, at) ≠ p(ot+1 |o≤t, a≤t)

πθ(at |ot)

πθ(at |o≤t) πθ(at |o≤t, a<t)

fθ : (ht−1, at−1, ot) ↦ ht
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Modeling memory

st+1stst−1

at−1 atagent

environment

ot−1 ot
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• A common architecture:


‣ A recurrent model ; and an action model mt = fθ(mt−1, at−1, ot) πθ(at |mt)

Modeling memory

st+1stst−1

at−1 at

agent

environment

ot−1 ot

mt−1 mt

πθ(mt, at |mt−1, at−1, ot)
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Alleviating train–test mismatch
• ML promises generalization when training distribution = test distribution


‣ But this is challenging in IL: errors accumulate


‣ We can quickly get to error states that we haven't seen fixed


‣ Train–test distribution mismatch = covariate shift


• Ideas:


‣ Augment the training dataset to expand the distribution


‣ Update train distribution → test distribution


‣ Intervene during demonstrations to expand the distribution

no data here!
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Imitation Learning can work

Video: NVIDIA
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How did they do it?

augmented data to better cover test distribution
[Bojarski et al., 2016]
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• Can we collect demonstration data from the test distribution?


‣ We don't know  until we're done training 


‣ But we get closer and closer during training


pθ(ξ) θ

<latexit sha1_base64="BZgJsHRcvZTM/pIljjOLNaDVCPk="></latexit>

Algorithm DAgger
Collect dataset D of teacher demonstrations b ⇠ ?⇤

repeat
Train c\ on D
Execute c\ to get b ⇠ ?\
Ask teacher to label (0⇤C |BC) ⇠ c⇤

Aggregate {(BC , 0⇤C )}C into D

DAgger: Dataset Aggregation

but how? challenging...
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DAgger demo

Video: Stéphane Ross
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• Off-policy vs. on-policy


‣ On-policy = data comes from the learner's current policy


‣ Off-policy = data comes from another policy (another agent or past learner)


• In off-policy IL (e.g. BC) learner may go off the teacher's support


• In on-policy IL (e.g. DAgger) learner initially goes off, until corrected


• DART: increase the data support by injecting noise during demonstrations


‣ Force teacher into slight-error states, to see how they are fixed

DART: Disturbances Augmenting Robot Training
teacher 
learner

[Laskey et al., 2017]
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<latexit sha1_base64="lwJPF+jXOul3VCeiNOR/lbAStrQ="></latexit>

Algorithm DART
repeat

Collect dataset D of teacher demonstrations b ⇠ ?̃⇤

Train c\ on D
Update noise @ such that ?\ is better supported by ?̃⇤

• Noise = perturbation of actions 


‣ New effective dynamics: 


‣ For example, in continuous actions: 


q(ã |a)

p̃(s′￼|s, a) = ∑̃
a

q(ã |a)p(s′￼|s, ã)

ã = a + ϵ; ϵ ∼ 𝒩(0,Σ)

DART

Image: Michael Laskey
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Grasping task

Behavior Cloning DART

[Laskey et al., 2017]
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Recap
• Imitation Learning = Learning from Demonstrations


‣ Learn policy  from teacher demonstrations


• Behavior Cloning: supervised learning


‣ Minimize loss, e.g. NLL, on training set of trajectories


• Accurate imitation is crucial


‣ Improve imitation through goal-conditioning, multimodal policies, memory, etc.


• Errors accumulate and cause train–test distribution mismatch


‣ Can be alleviated through augmentation, on-policy data collection, noise injection

π(a |s)


