CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 2: Imitation Learning

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

VILL PRESS

FOR

FOOD

Follow announcements and discussions on ed

• See website for schedule, recordings, resources, etc.

Quiz 1 due next Monday

• Exercise 1 to be published soon, due next Friday

Today's lecture

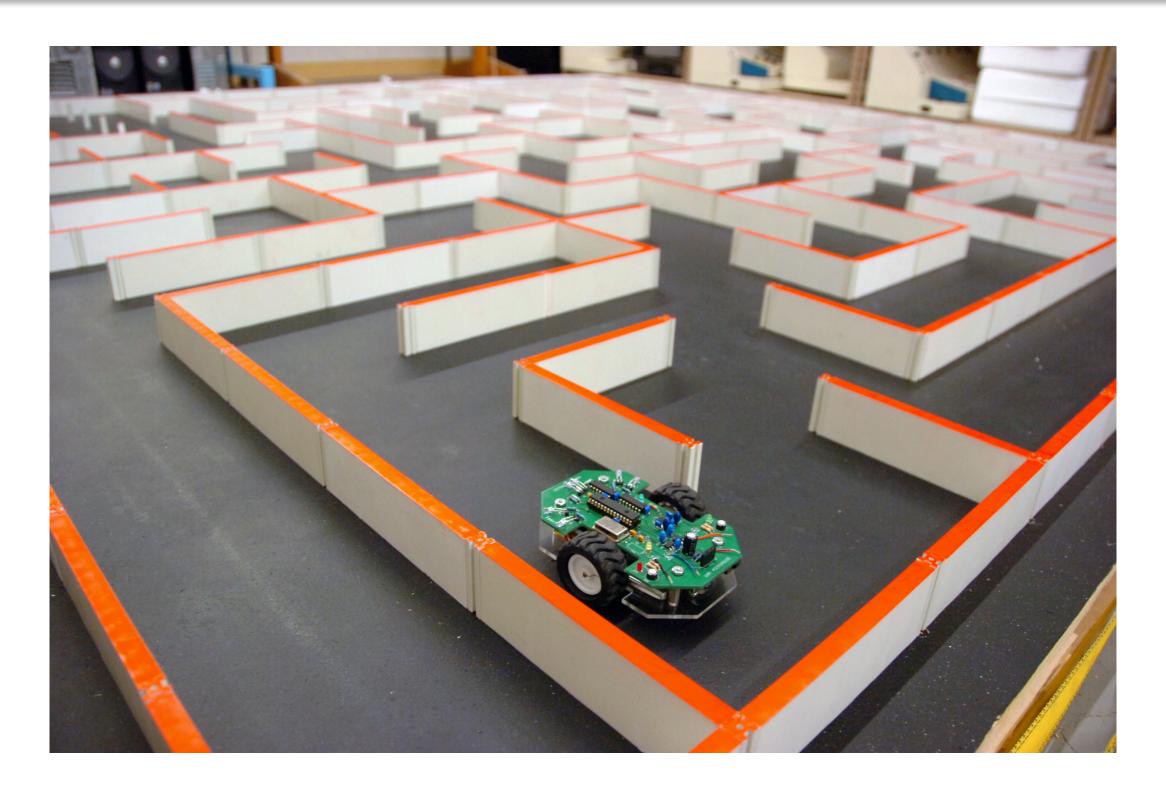
Basic RL concepts

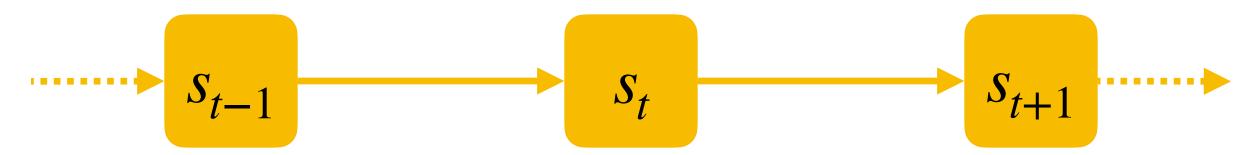
Behavior Cloning

Better behavior modeling

Alleviating train-test mismatch

System state





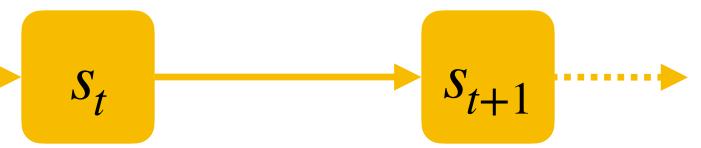
System state

$$p(s_{t+1}, s_{t+2}, \dots | s_0, s_2, \dots, s_t) = p(s_{t+1}, s_{t+2}, \dots | s_t)$$

- State = all relevant information from history for future!

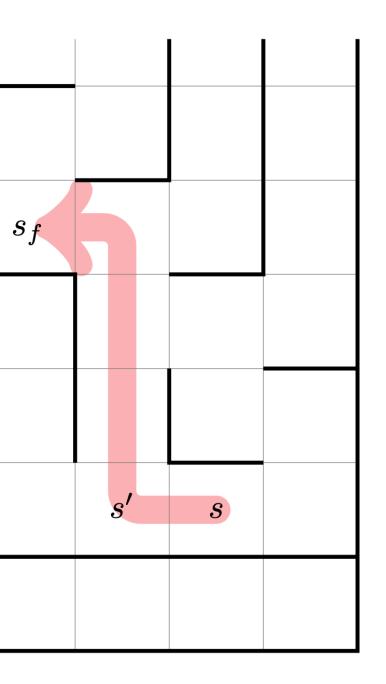
• Markov property: the future is independent of the past, given the present

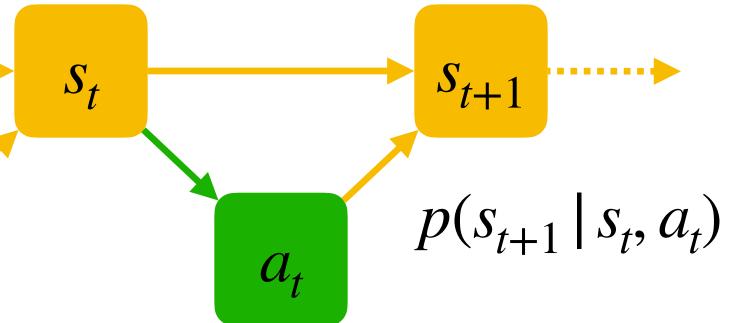
• Given s_t , the history $h = (s_0, \dots, s_t)$ and the future $(s_{t+1}, s_{t+2}, \dots)$ are independent



System = agent + environment

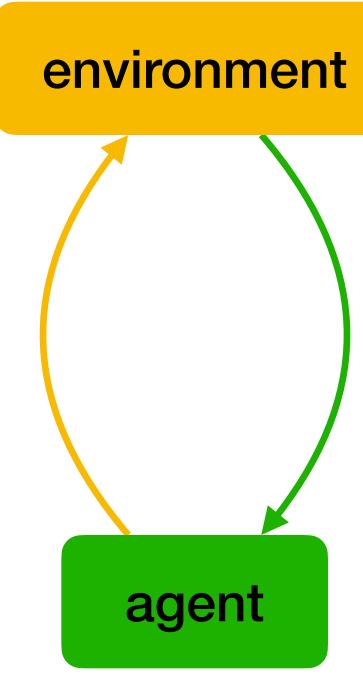






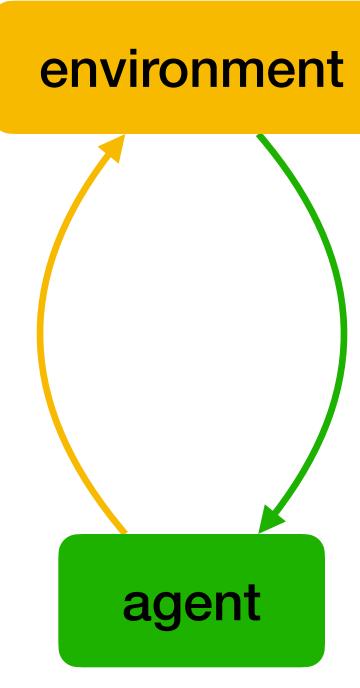
Markov Decision Process (MDP)

- Model of environment
 - $\mathcal{S} = \text{set of states}$
 - $\mathscr{A} = \text{set of actions}$
 - p(s' | s, a) = state transition probability
 - Probability that $s_{t+1} = s'$, if $s_t = s$ and $a_t = a$



Agent policy

- "Model" of agent decision-making
 - Policy $\pi(a \mid s)$ = probability of taking action $a_t = a$ in state $s_t = s_t$
 - In MDP, action a_t only depends on current state s_t :
 - Markov property = S_t is all that matters in history
 - Causality = cannot depend on the future



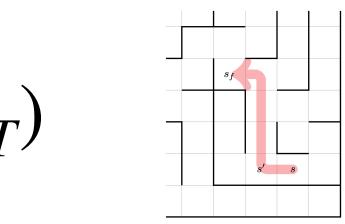
Trajectories

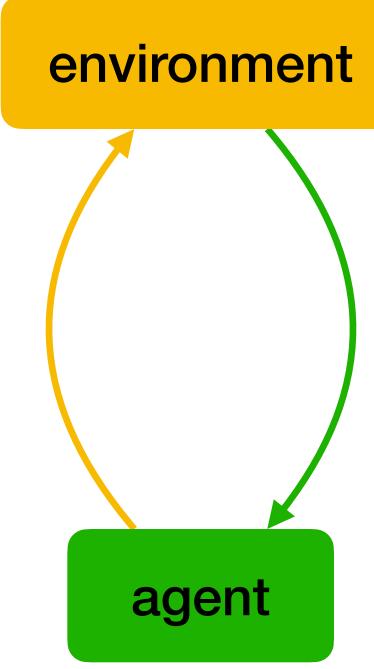
- The agent's behavior iteratively uses (rolls out) the policy
- Trajectory: $\xi = (s_0, a_0, s_2, a_2, \dots, s_T)$
- MDP + policy induce distribution over trajectories

$$p_{\pi}(\xi) = p(s_0)\pi(a_0 | s_0)p(s_1 | s_0, a_0)\cdots\pi(a_{T-1} | s_{T-1})p(s_T | s_{T-1}, a_{T-1})$$

= $p(s_0)\prod_{t=0}^{T-1}\pi(a_t | s_t)p(s_{t+1} | s_t, a_t)$

- Imitation learning: learn from dataset of expert demonstrations
 - Supervised learning of $\pi(a \mid s)$ from "labeled" states (s_t, a_t)





Learning from rewards

- Providing demonstrations is hard
 - Particularly for learner-generated trajectories
- Can the teacher just score learner actions?
 - Reward: $r(s, a) \in \mathbb{R}$
- High reward is positive reinforcement for this behavior (in this state)
 - Much closer to how natural agents learn

• Designing and programming r often easier than programming / demonstrating π

Actions have long-term consequences

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - Fly drone: slow down to avoid crash?
 - Games: slowly build strength? block opponent? all out attack?
 - Stock trading: sell now or wait for growth?
 - Infrastructure control: reduce power output to prevent blackout?
 - Life: invest in college, obey laws, get started early on course project
- Forward thinking and planning are hallmarks of intelligence

Discounted returns

- Return = total reward = $R = \sum \gamma^t r$ *t*>0
- Discount factor $\gamma \in [0,1]$
 - Higher weight to short-term rewards (and costs) than long-term
 - Good mathematical properties:
 - Assures convergence, simplifies algorithms, reduces variance
 - Vaguely economically motivated (inflation)

$$r(s_t, a_t)$$

• Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be maximized

Other horizon classes

Finite:
$$R^{T}(\xi) = \sum_{t=0}^{T-1} r(s_{t}, a_{t})$$

Infinite: $R^{\operatorname{avg}}(\xi) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_{t}, \xi)$
Discounted: $R^{\gamma}(\xi) = \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$
Episodic: $R^{s_{f}}(\xi) = \sum_{t=0}^{T-1} r(s_{t}, a_{t})$ s.

 a_t)

$0 \le \gamma < 1$

 $t. s_T = s_f$

Recap: basic RL concepts

- State: $s \in \mathcal{S}$; action: $a \in \mathcal{A}$; reward: $r(s, a) \in \mathbb{R}$
- Dynamics: $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- Policy: $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic

Trajectory:
$$p_{\pi}(\xi = s_0, a_0, s_1, a_1, ...) = p(s_0) \prod_t \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$$

Return:
$$R(\xi) = \sum_{t} \gamma^{t} r(s_{t}, a_{t})$$
 0 :

Value:
$$V(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s]$$

 $Q(s, a) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s, a_0 = s]$

 $\leq \gamma < 1$

Today's lecture

Basic RL concepts

Behavior Cloning

Better behavior modeling

Alleviating train-test mismatch

Imitation Learning (IL)

- How can we teach an agent to perform a task?
- Often there is an expert that already knows how to perform the task
 - A human operator who controls a robot
 - A black-box artificial agent that we can observe but not copy
 - An agent with different representation or embodiment
- The expert can demonstrate the task to create a training dataset $\mathcal{D} = \{\xi^{(i)}\}_i$
 - Each demonstration is a trajectory $\xi = s_0, a_0, s_1, a_1, \dots$
 - Then the learner imitates these demonstrations

IL = Learning from Demonstrations (LfD)

- Teacher provides demonstration tra
- Learner trains a policy π_{θ} to minimize a loss $\mathscr{L}(\theta)$
- For example, negative log-likelihood (NLL):

$$\arg \min_{\theta} \mathscr{L}_{\theta}(\xi) = \arg \min_{\theta} (-\log p_{\theta}(\xi))$$

$$= \arg \max_{\theta} \left(\log p(s_{0}) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_{t} | s_{t}) + \log p(s_{t+1} | s_{t}, a_{t}) \right)$$

$$= \arg \max_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_{t} | s_{t})$$
model-free
= no need to know the environment dynamics

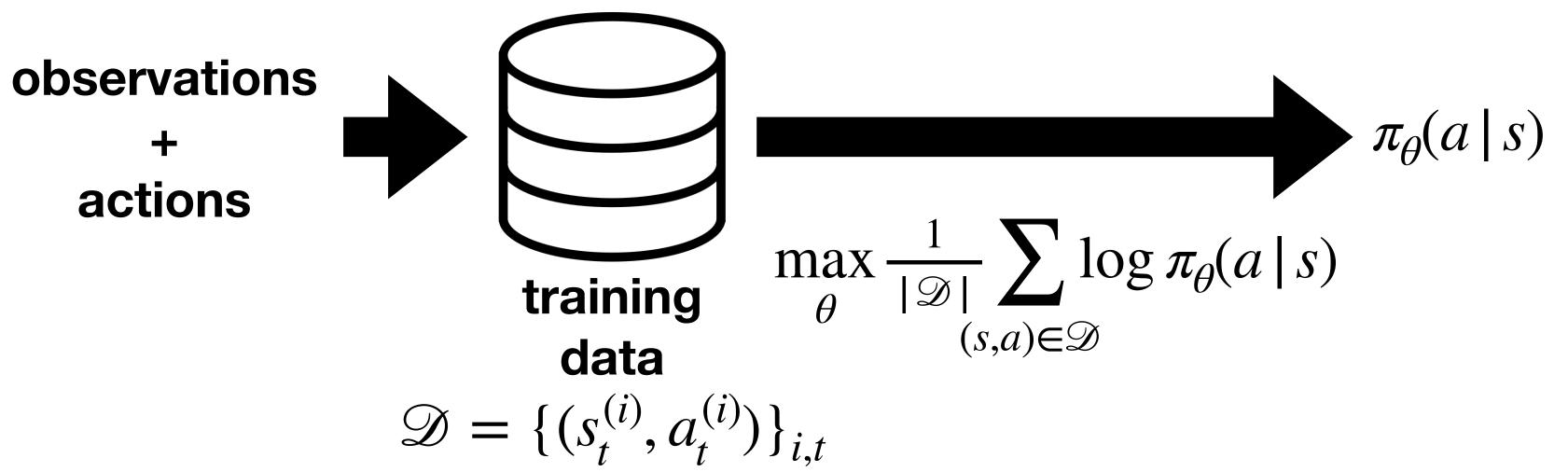
ajectories
$$\mathcal{D} = \{\xi^{(1)}, \dots, \xi^{(m)}\}$$

n

Behavior Cloning (BC)

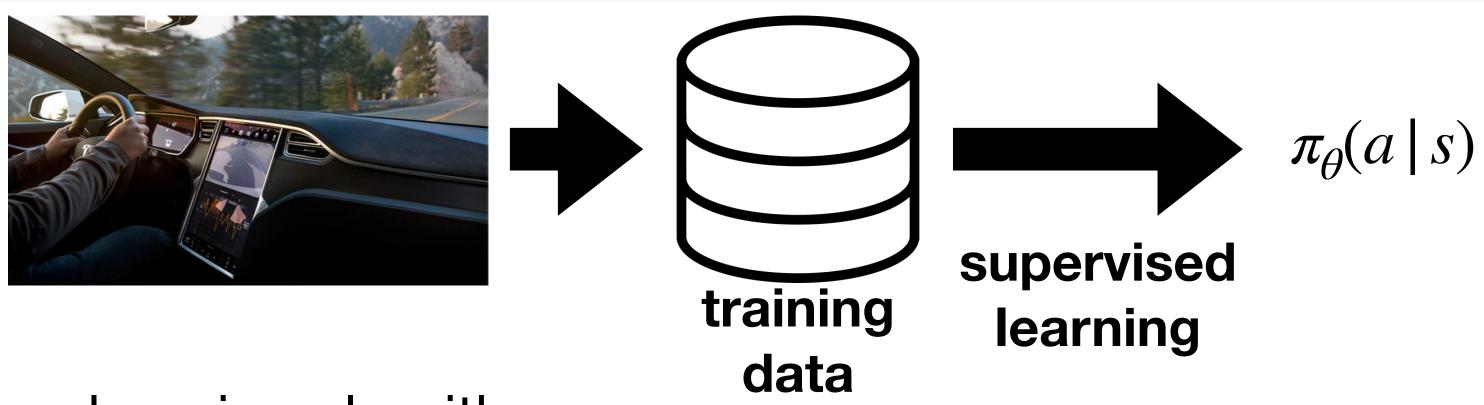
- Behavior Cloning:

 - Train π_{A} : $s \mapsto a$ using supervised learning



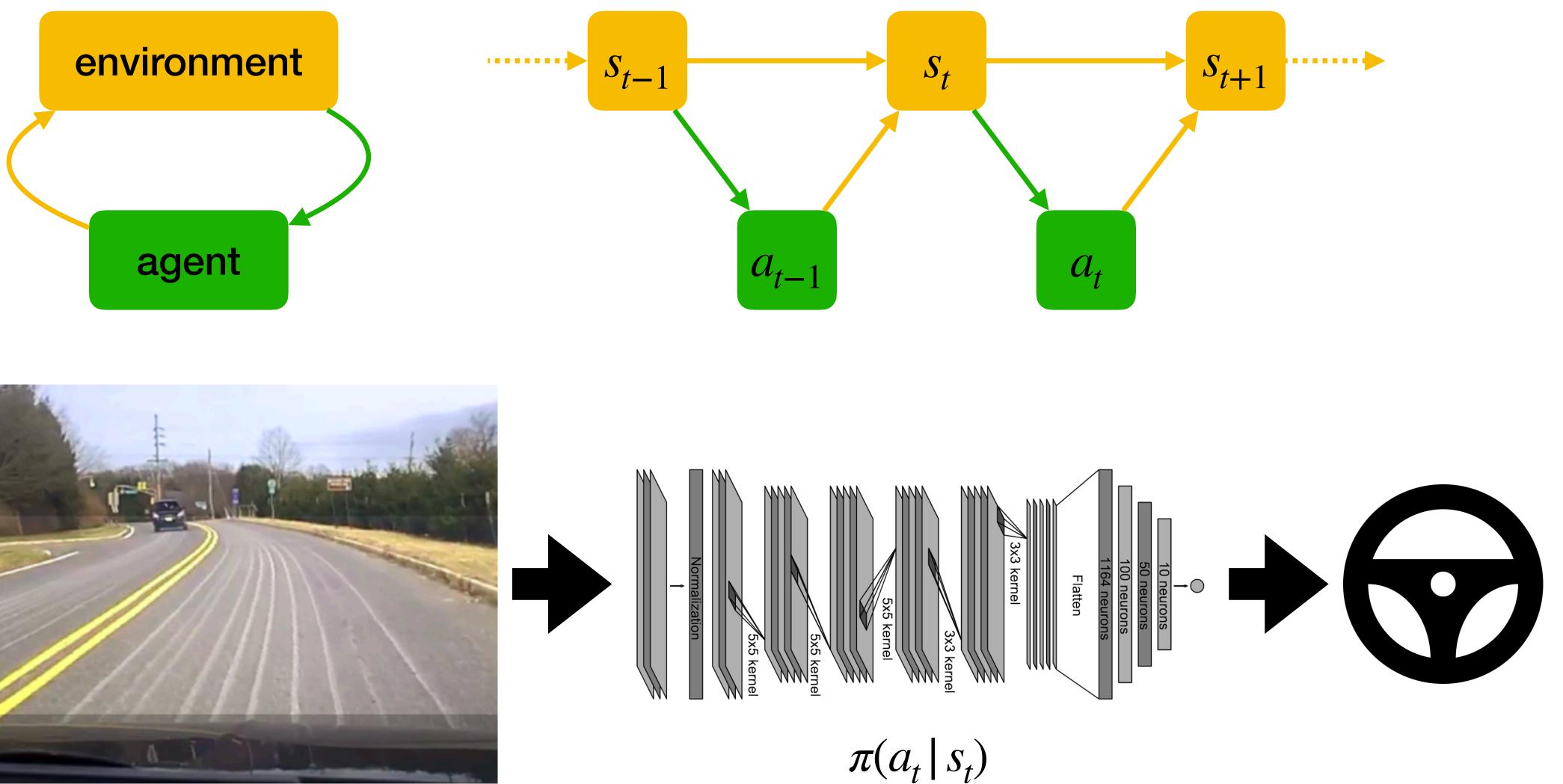
• Break down trajectories $\{\xi^{(1)}, \dots, \xi^{(m)}\}$ into steps $\{(s_0^{(1)}, a_0^{(1)}), \dots, (s_{T-1}^{(m)}, a_{T-1}^{(m)})\}$

Behavior Cloning (BC)



- Benefits:
 - Simple, flexible can use any learning algorithm
 - Model-free never need to know the environment
- Drawbacks:
 - Only as good as the demonstrator
 - Only good in demonstrated states how do we evaluate?
 - Validation loss (on held out data)? Task success rate in rollouts?

A policy is a (stochastic) function



Stochastic policies

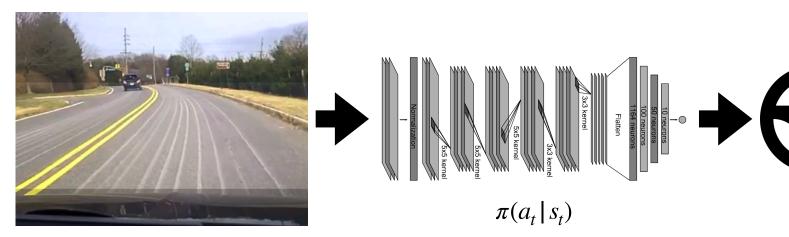
- Learned models are often deterministic functions $f_{\theta} : x \mapsto y$
- To implement a stochastic policy: output distribution parameters
- Examples:
 - Discrete action space: categorical distribution

- π_{θ} : $s \mapsto \{\lambda_{a}\}_{a}$; $\pi_{\theta}(a \mid s) = \text{softmax}_{\theta}$

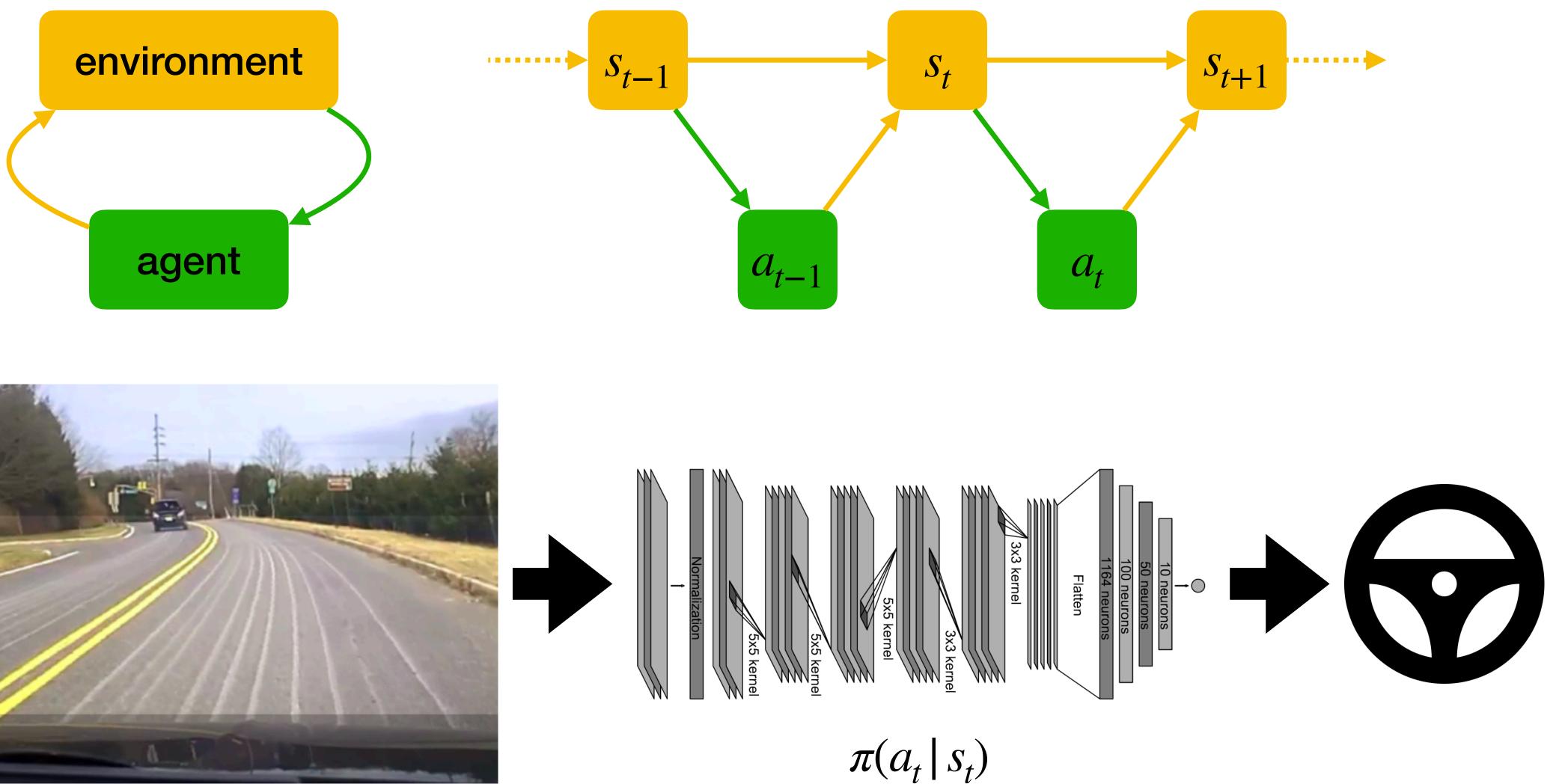
Continuous action space: Gaussian distribution

 $- \pi_{\theta} : s \mapsto (\mu, \Sigma); \pi_{\theta}(a \mid s) = \mathcal{N}(\mu, \Sigma)$

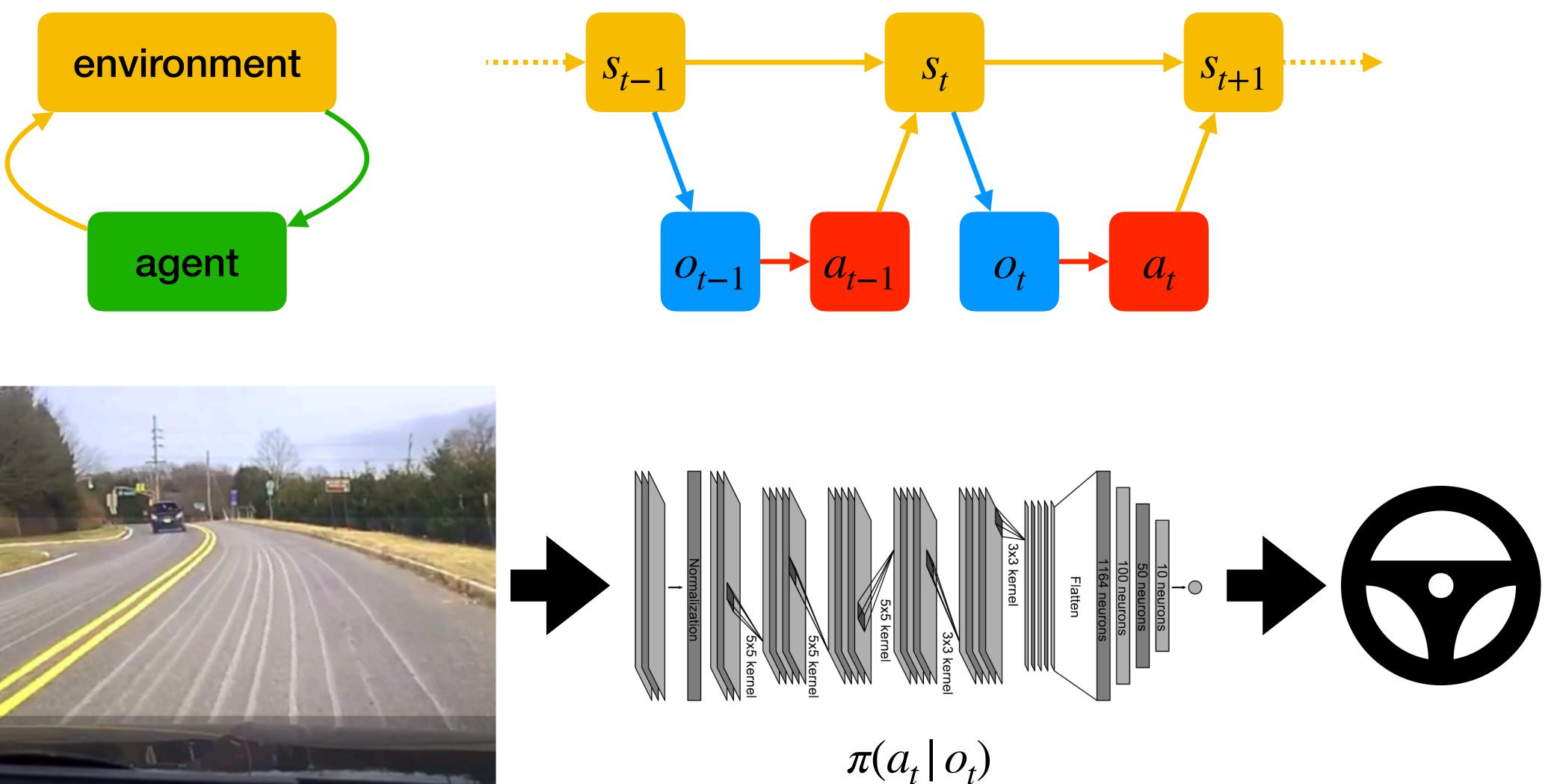
$$\lambda_a \propto \exp \lambda_a$$



A policy is a (stochastic) function

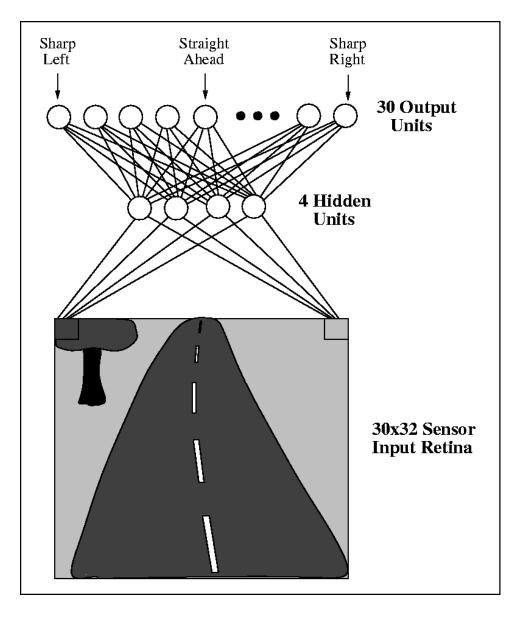


A policy is a (stochastic) function

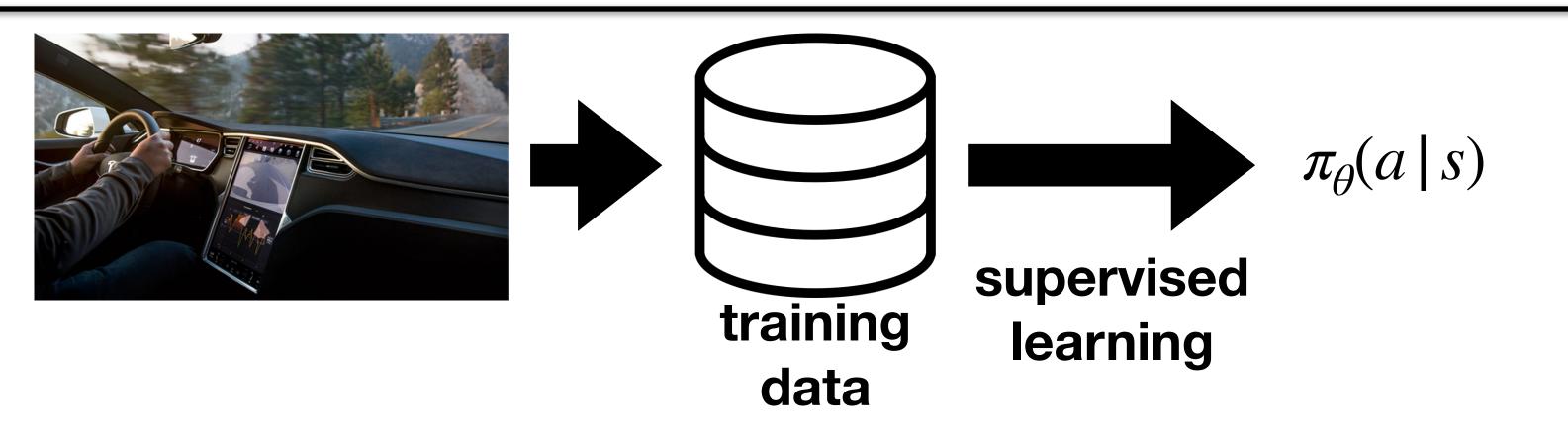


observation

Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)



Inaccuracy in BC



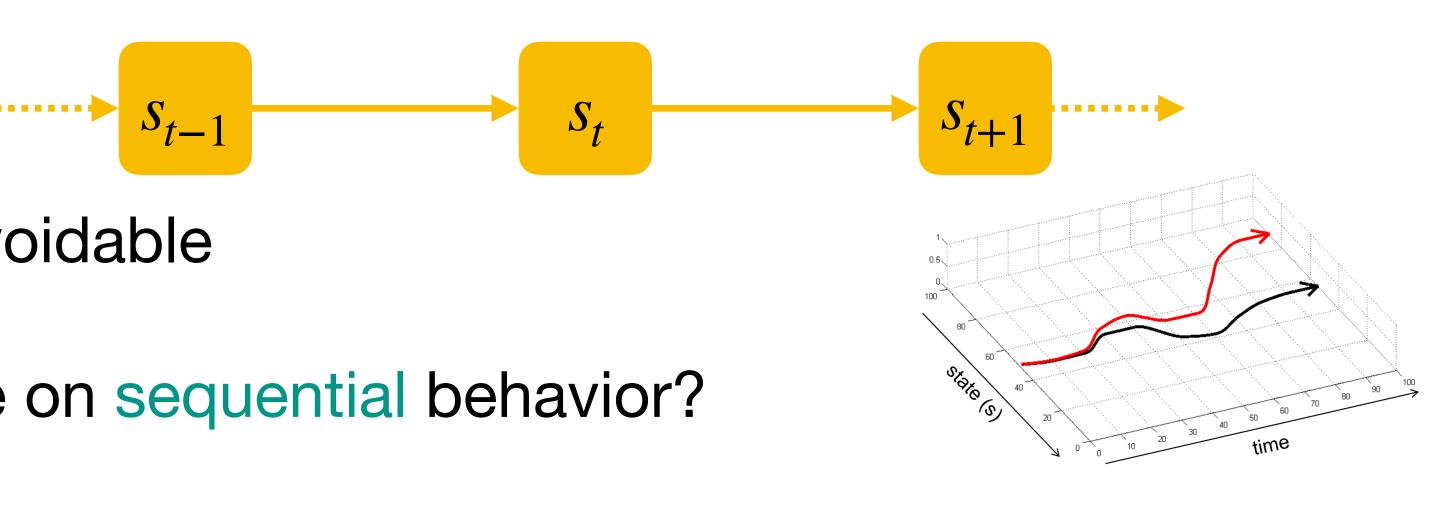
- If the policy approximates the teach
- But errors accumulate over time
 - May reach states not seen in the training dataset

• We could evaluate on held out teacher data, but really interested in using π_A

her
$$\pi_{\theta}(a_t | s_t) \approx \pi^*(a_t | s_t)$$

• The trajectory distribution will also approximate teacher behavior $p_{\theta}(\xi) \approx p^*(\xi)$

The impact of inaccurate dynamics



- Errors in learning are unavoidable
- What impact do they have on sequential behavior?
 - Bounded one-step error in a dynam

Can lead to growing error over time

• Not too bad by itself, but can drift outside training distribution \mathscr{D}

nical model
$$\sum_{s'} \left| p_{\theta}(s' \mid s) - p^*(s' \mid s) \right| \le \epsilon$$

$$\sum_{s_t} \left| p_{\theta}(s_t) - p^*(s_t) \right| \le \epsilon t$$

Today's lecture

Basic RL concepts

Behavior Cloning

Better behavior modeling

Alleviating train-test mismatch

Modeling other agents is hard

- Is there sufficient data? Demonstrating puts a burden on the teacher
- Are demonstrations correct? Humans are fallible, some supervision is hard
- Are demonstrations consistent? Some tasks can be done in multiple ways
- Is the state partially observable? O_f
- Are the learner and teacher observations the same? $o_t \stackrel{\prime}{=} o_t^*$

$$\stackrel{?}{=} s_t$$

Inconsistent demonstrations: multiple goals

- What if the task is to reach one of multiple goals?
 - Different episodes can successfully reach different goals
 - We need to train one policy to reach multiple goals
- If we know the goal, condition on it
 - Goal-conditioned policy: $\pi_{\theta}(a_t | s_t, g)$
- More generally: task-conditioned policy $\pi_{\theta}(a_t | s_t, \tau)$
 - Goal = desired final state; but how to represent other kinds of tasks?

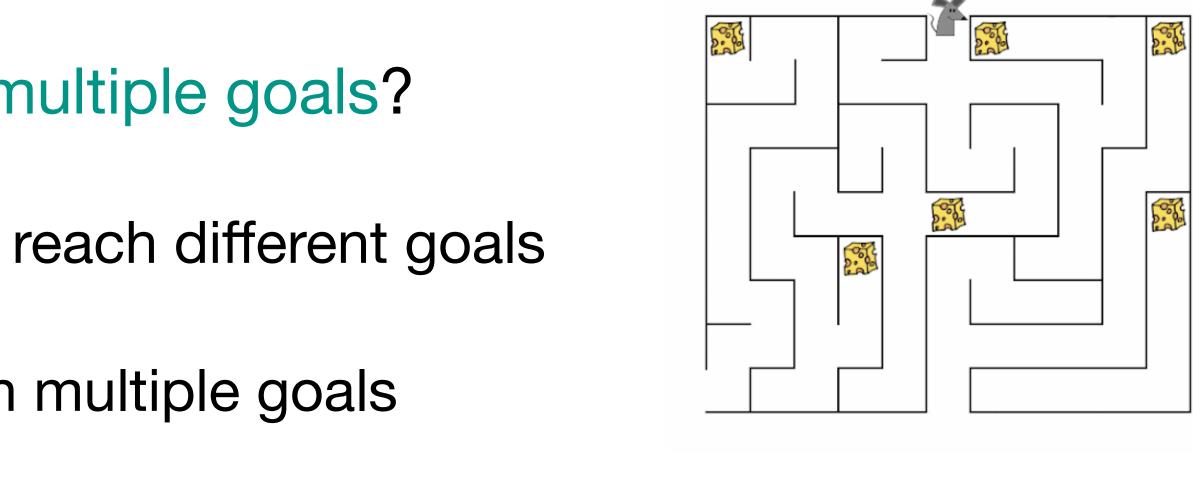


Image: puzzlesandriddles.com

Goal-conditioned Behavior Cloning

- Can we train a goal-conditioned policy $\pi_{\theta}(a_t | s_t, g)$ from demonstrations?
 - Assume goal = state that the agent should reach
- How can we know the goal in demo
 - Manual labeling? $\mathcal{D} = \{(\xi^{(i)}, g^{(i)})\}_i$
- Hindsight: take each S_{t} as the goal of the trajectory leading to it

 S_0, a_0, \ldots, S_n

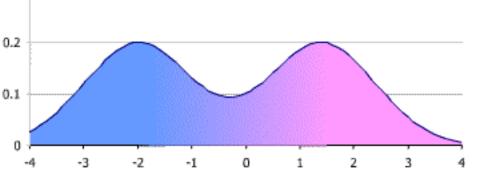
onstrations
$$\xi = s_0, a_0, s_1, a_1, ...?$$

$$s_{t-1}, a_{t-1}, s_t = g$$

• Supervised learning of $\pi(a \mid s, g)$ from data points $((s_t, g = s_{t'}), a_t)$ for t' > t

Inconsistency due to multimodal behavior

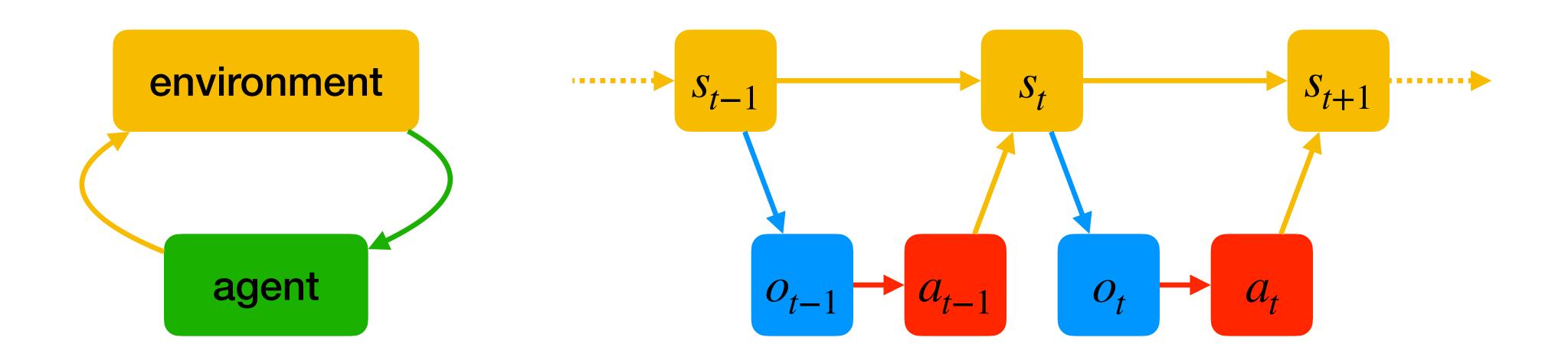
- Goal-conditioning assumes known goals
 - More generally, known behavior modifiers
- Usually, the behavior mode is unknown
 - Need multimodal policy $\pi(a \mid s)$
 - Mixture models (e.g. GMM)
 - Latent-variable models (e.g. normalizing flows)
 - Need to be consistent along a trajectory
 - Condition the policy on memory of past actions $\pi(a_t | s_t, a_{< t})$



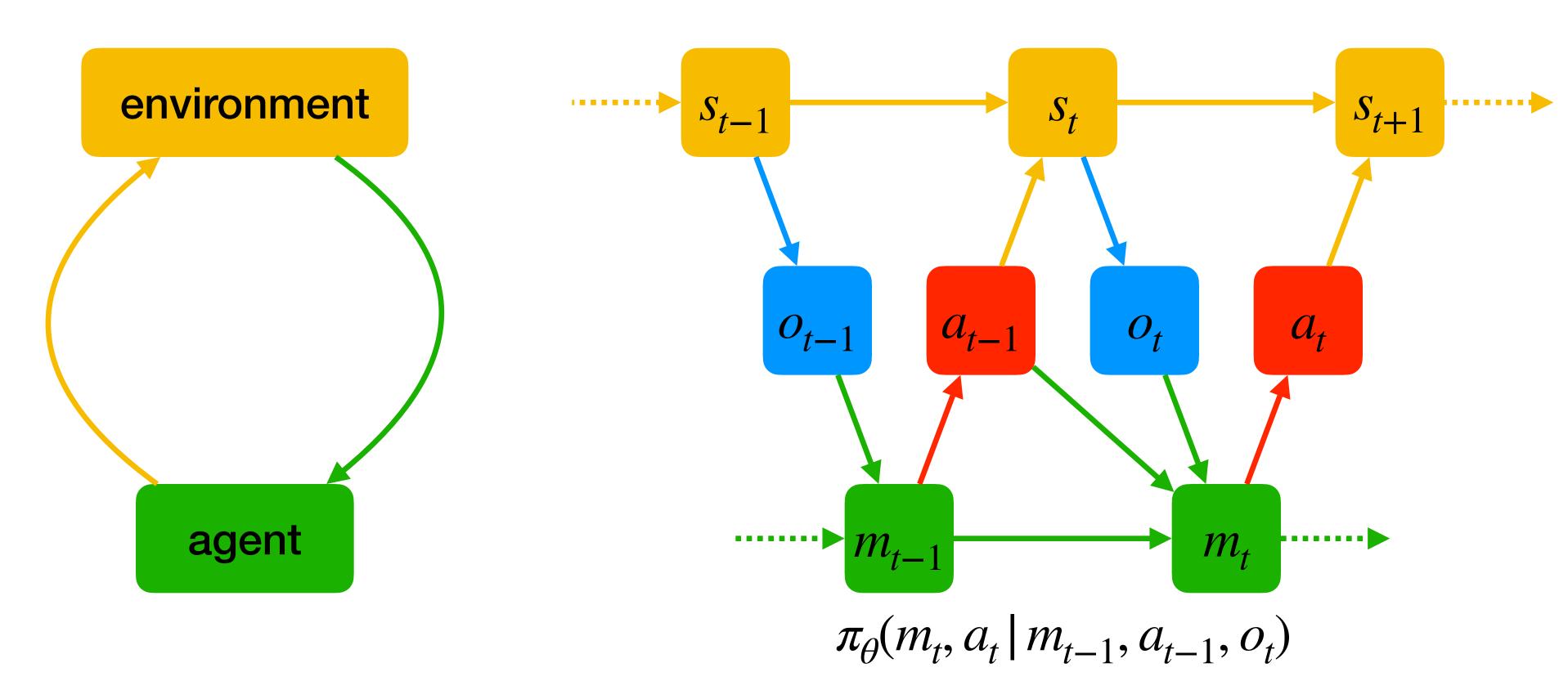
Modeling partially observable behavior

- Partial observations are not Markov
 - Generally, this means $p(o_{t+1} | o_t, a_t) \neq p(o_{t+1} | o_{< t}, a_{< t})$
 - Reactive policy $\pi_{\theta}(a_t | o_t)$ may not be optimal
 - May need $\pi_{\theta}(a_t | o_{< t})$, or even $\pi_{\theta}(a_t | o_{< t}, a_{< t})$; but how?
- Can use $\text{RNNs} f_{\theta}$: $(h_{t-1}, a_{t-1}, o_t) \mapsto h_t$, or other memory models
- But memory state is latent in demonstrations
 - Modeling memory is hard \rightarrow prior structure may help; more on this later

Modeling memory



Modeling memory



- A common architecture:
 - A recurrent model $m_t = f_{\theta}(m_{t-1}, a_{t-1})$

$$(a_t, o_t)$$
; and an action model $\pi_{\theta}(a_t \mid m_t)$

Today's lecture

Basic RL concepts

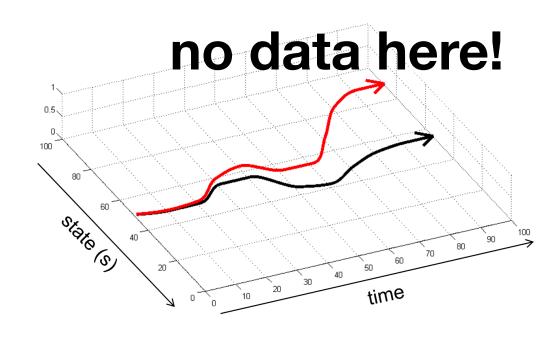
Behavior Cloning

Better behavior modeling

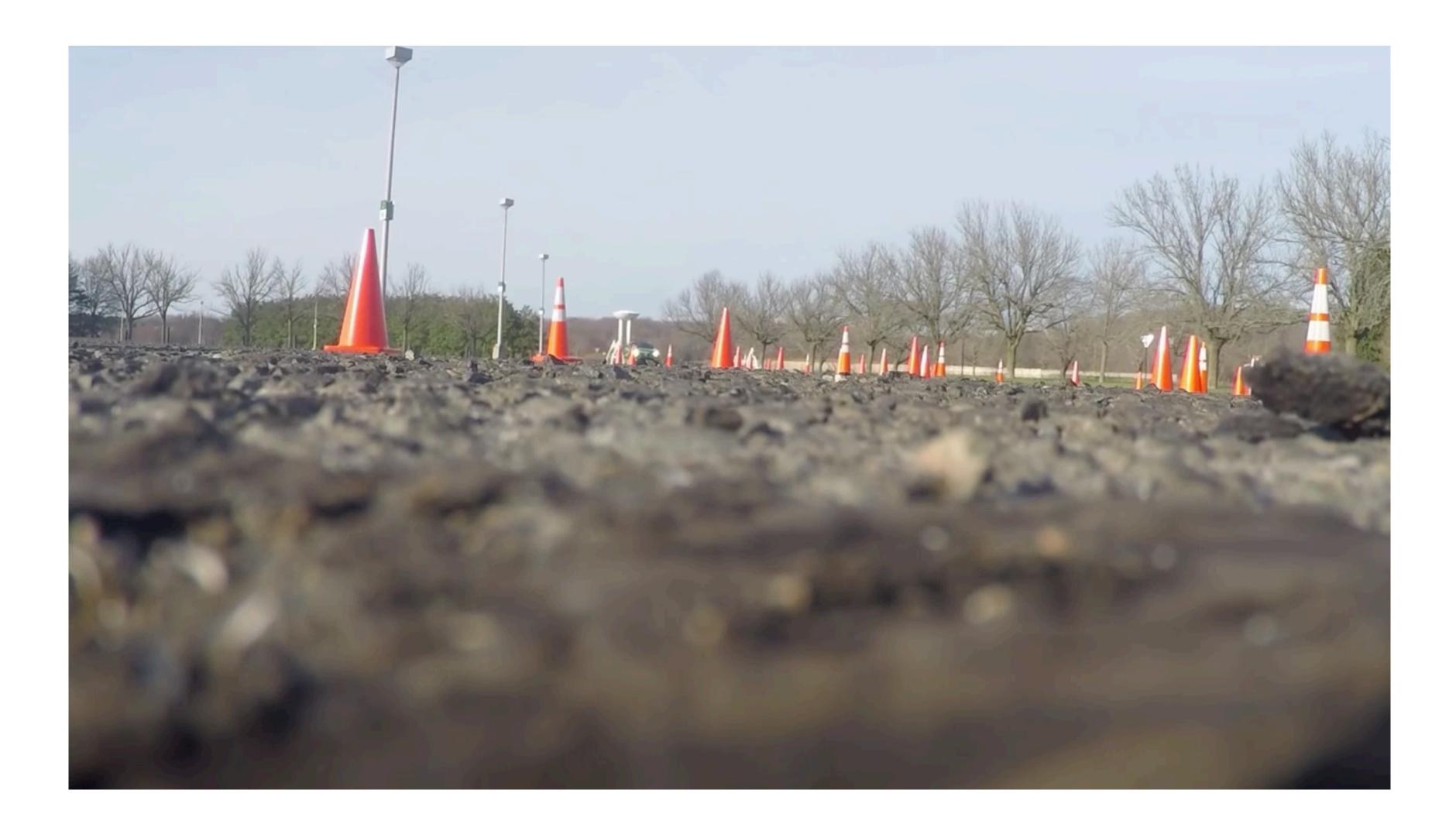
Alleviating train-test mismatch

Alleviating train-test mismatch

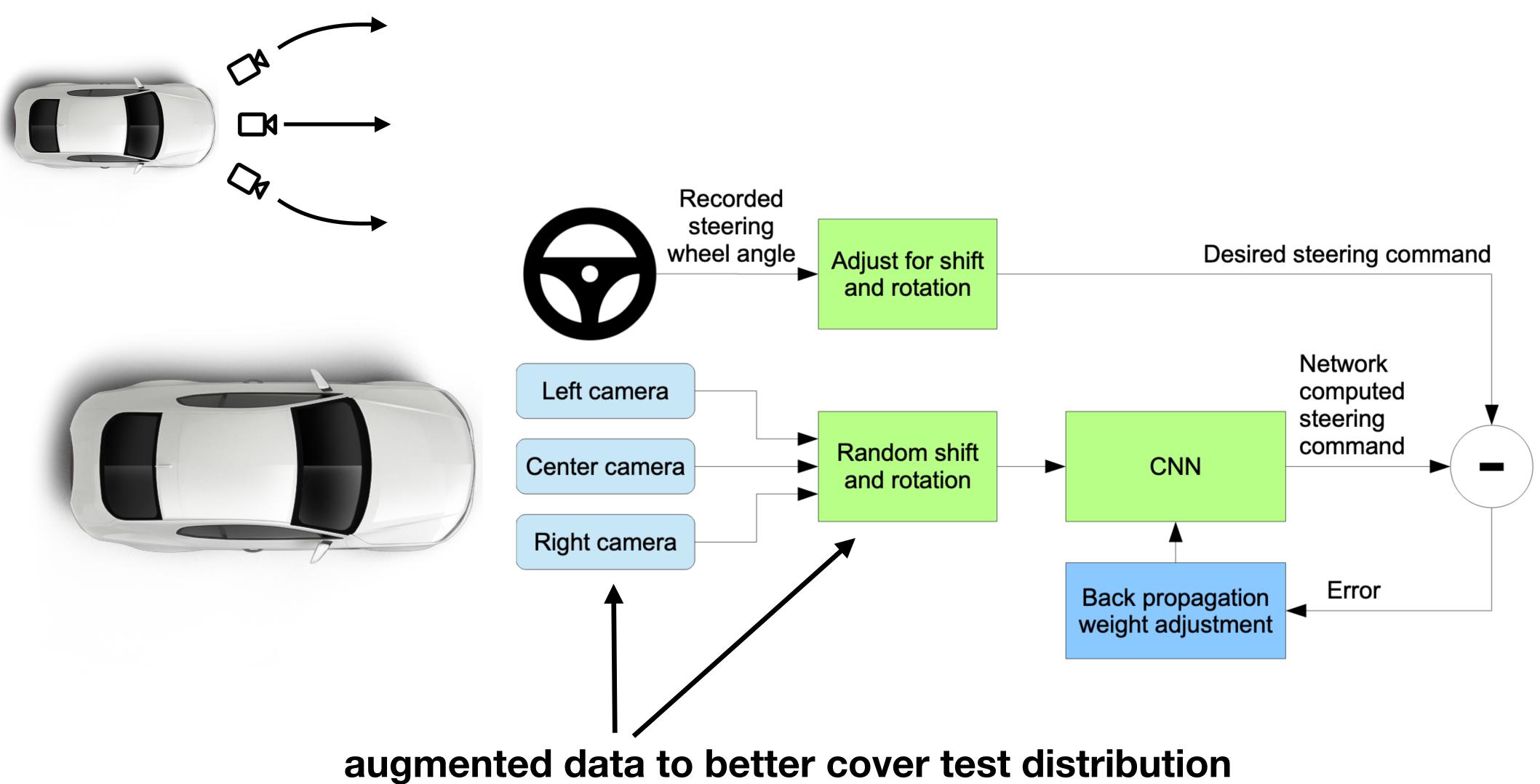
- ML promises generalization when training distribution = test distribution
 - But this is challenging in IL: errors accumulate
 - We can quickly get to error states that we haven't seen fixed
 - Train-test distribution mismatch = covariate shift
- Ideas:
 - Augment the training dataset to expand the distribution
 - ► Update train distribution → test distribution
 - Intervene during demonstrations to expand the distribution

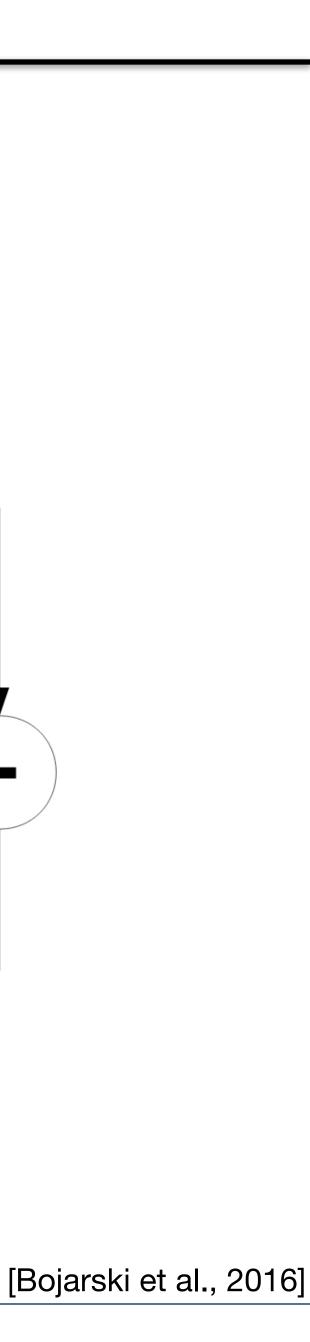


Imitation Learning can work



How did they do it?





DAgger: Dataset Aggregation

- Can we collect demonstration data from the test distribution?
 - We don't know $p_{\theta}(\xi)$ until we're done training θ
 - But we get closer and closer during training

Algorithm DAggerCollect dataset \mathcal{D} of teachrepeatTrain π_{θ} on \mathcal{D} Execute π_{θ} to get $\xi \sim$ Ask teacher to label (AAggregate $\{(s_t, a_t^*)\}_t$

Collect dataset \mathcal{D} of teacher demonstrations $\xi \sim p^*$

$$p_{\theta}$$

$$a_t^*|s_t) \sim \pi^*$$
into \mathcal{D}

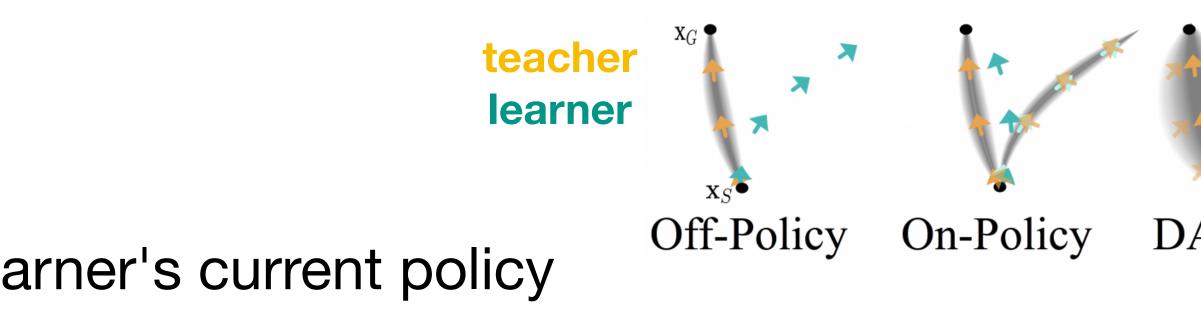
but how? challenging...

DAgger demo

It turns automatically to avoid trees based on what its camera sees

DART: Disturbances Augmenting Robot Training

- Off-policy vs. on-policy
 - On-policy = data comes from the learner's current policy
 - Off-policy = data comes from another policy (another agent or past learner)
- In off-policy IL (e.g. BC) learner may go off the teacher's support
- In on-policy IL (e.g. DAgger) learner initially goes off, until corrected
- DART: increase the data support by injecting noise during demonstrations
 - Force teacher into slight-error states, to see how they are fixed



DART

• Noise = perturbation of actions $q(\tilde{a} \mid a)$

New effective dynamics: $\tilde{p}(s'|s, a) = \sum q(\tilde{a}|a)p(s'|s, \tilde{a})$

For example, in continuous actions: $\tilde{a} = a + \epsilon$; $\epsilon \sim \mathcal{N}(0, \Sigma)$

Algorithm DART

repeat

Collect dataset \mathcal{D} of teacher demonstrations $\xi \sim \tilde{p}^*$ Train π_{θ} on \mathcal{D} Update noise q such that p_{θ} is better supported by \tilde{p}^*

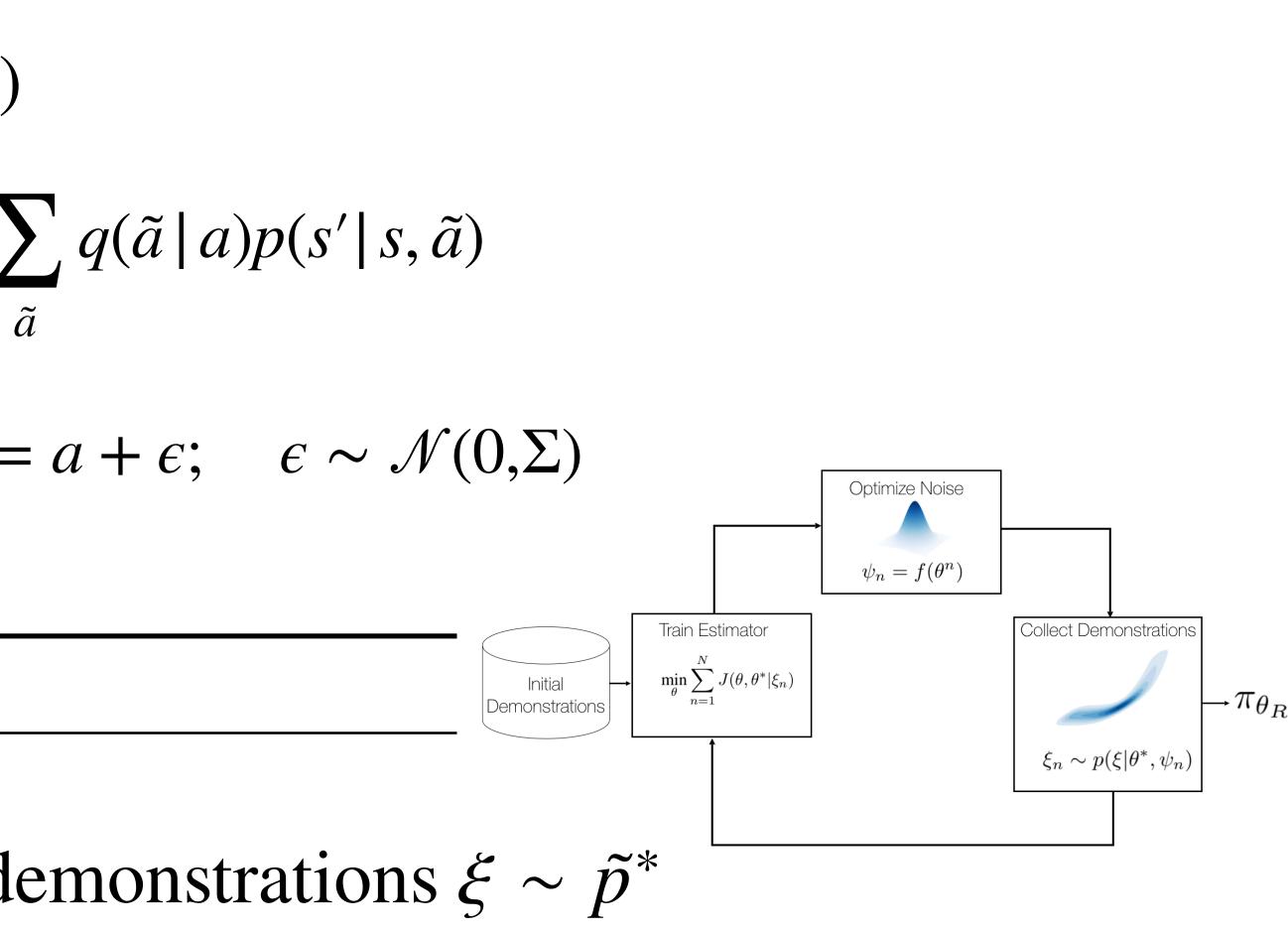
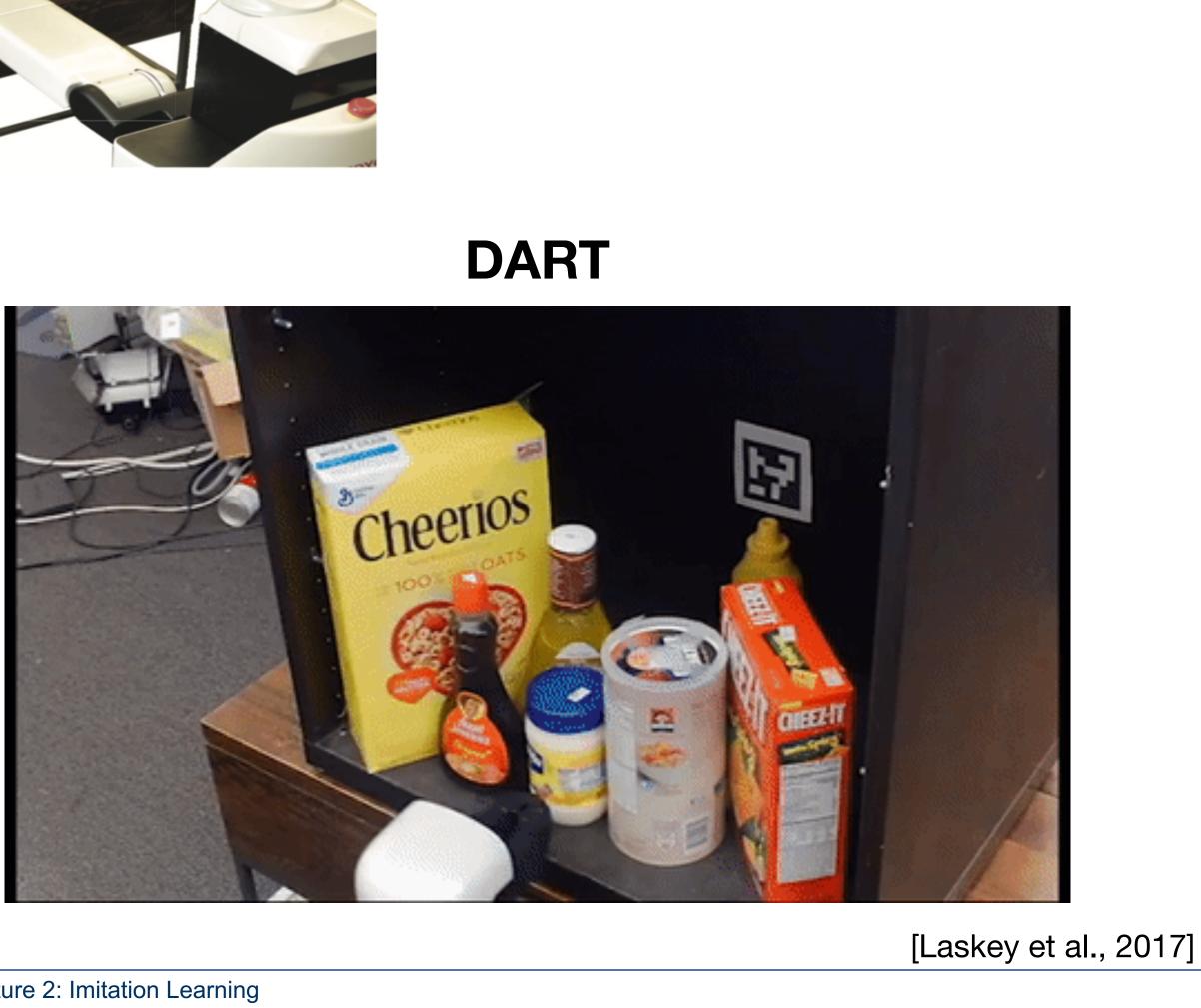


Image: Michael Laskey

Grasping task

Behavior Cloning



Recap

- Imitation Learning = Learning from Demonstrations
 - Learn policy $\pi(a \mid s)$ from teacher demonstrations
- Behavior Cloning: supervised learning
 - Minimize loss, e.g. NLL, on training set of trajectories
- Accurate imitation is crucial
 - Improve imitation through goal-conditioning, multimodal policies, memory, etc.
- Errors accumulate and cause train-test distribution mismatch
 - Can be alleviated through augmentation, on-policy data collection, noise injection

