CS 277: Control and

U CI University of
California, Irvine

Reinforcement Learning

Winter 2024

ecture 2: Imitation Learning

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

%\/\/ILL PREsS 2
L EVER
FOR

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Logistics

 See website for schedule, recordings, resources, etc.

e Quiz 1 due next Monday

_ e Follow announcements and discussions on ed

 Exercise 1 to be published soon, due next Friday

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Today's lecture

Behavior Cloning

Better behavior modeling

Alleviating train—test mismatch

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

System state

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

System state

 Markov property: the future is independent of the past, given the present

D(Sii 158005 oo 1805 S95 +vvsS) = P(S15Sp00s --- | S))

o State = all relevant information from history

\A
for future!

~ Given s,, the history 1 = (s, ..., s,) and the future (s,, |, 5,.5, ...) are independent

S:1—1 S; St41

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

System = agent + environment

environment

St—
= W .

St41

p(s.q1ls,a,)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Markov Decision Process (MDP)

e Model of environment
environment

» & = set of states

» of = set of actions

> p(s’| s, a) = state transition probability

- Probability that s, ; = s',if s, = sand a, = a -

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Agent policy

 “Model” of agent decision-making |
environment

» Policy zz(a | s) = probability of taking action a, = a in state s, = s

> In MDP, action a, only depends on current state ;.

- Markov property = s, Is all that matters in history

- (Causality = cannot depend on the future -

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Trajectories

 The agent's behavior iteratively uses (rolls out) the policy

rd]
» Trajectory: & = (Sp, dg, S, Ay, - -, ST) W | [

environment

« MDP + policy induce distribution over trajectories

P(&) = p(sp)a(ay | sp)p(sy | 8o, ag)---m(ar_y | S7_)p(Sy| S7_1, ar_1)

T—1
= P(S())H n(a, | St)p(St+1 | Sp> y)
=0

o |mitation learning: learn from dataset of expert demonstrations

> Supervised learning of z(a | s) from “labeled” states (s,, a,)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Learning from rewards

* Providing demonstrations is hard

> Particularly for learner-generated trajectories
as in online learning
/

e (Can the teacher just score learner actions?

» Reward: r(s,a) € |
 High reward is positive reinforcement for this behavior (in this state)

> Much closer to how natural agents learn

> Designing and programming 7 often easier than programming / demonstrating 7

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Actions have long-term consequences

e Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
> Fly drone: slow down to avoid crash?
» Games: slowly build strength? block opponent? all out attack?
» Stock trading: sell now or wait for growth?
> Infrastructure control: reduce power output to prevent blackout?

> Life: invest in college, obey laws, get started early on course project

* Forward thinking and planning are hallmarks of intelligence

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Discounted returns

Return = total reward = R = Z y'r(s,a,)

>0

» Summarize reward sequence r, = r(s,, d,) as single number to be maximized

 Discount factor y € [0,1]

> Higher weight to short-term rewards (and costs) than long-term

> Good mathematical properties:
- Assures convergence, simplifies algorithms, reduces variance

e Vaguely economically motivated (inflation)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Other horizon classes

T—1
. Finite: RT(&) =) r(s,. a)
=0
T—1
Infinite: RY4(§) = llm —) r(s,, a,)
* T—oo 1 0

Discounted: RY(¢) = 2 y'r(s,a,) 0<y<l
=0

-1

Episodic: R¥(&) = 2 r(s,a,) st s;= Y
=0

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Recap: basic RL concepts

e State: s € &; action: a € ; reward: r(s,a) € |
» Dynamics: p(s,, | $;, a,) for stochastic; s, | = f(s,, a,) for deterministic

» Policy: n(a,|s,) for stochastic; a, = n(s,) for deterministic

Trajectory: p_(& = sy, Ay, S1, A1y -..) = p(SO)H m(a,| s)p(S,.1 18, a,)
[

Return: R(&) = Z y'r(s,a,) 0<y<l
[

Value: V(s) = E 5Npﬂ[R | 59 =]

Q(s,a) = "ngﬂ[R | S0 = §, 0y = al

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Today's lecture

Basic RL concepts

Better behavior modeling

Alleviating train—test mismatch

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Imitation Learning (IL)

« How can we teach an agent to perform a task?
e Often there is an expert that already knows how to perform the task

> A human operator who controls a robot

> A black-box artificial agent that we can observe but not copy

> An agent with different representation or embodiment

. The expert can demonstrate the task to create a training dataset @ = {£®) i

~ Each demonstration is a trajectory & = s, @y, 51,4y, - - .

» Then the learner imitates these demonstrations

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

IL = Learning from Demonstrations (LfD)

» Teacher provides demonstration trajectories & = {5(1), Cee 5(’")}

» Learner trains a policy 7z, to minimize a loss Z£'(0)

* For example, negative log-likelinood (NLL):

arg mgin Zy(5) = arg mein(—k)g Pe(S))

T—-1
= argmax | logp(so) +), 10g 7(a,|s)) + logp(sis |5 @)
=0
model-free
.~ =no need to know the environment dynamics p

T—1
= arg max Z log my(a, | s,)
0
=0

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Behavior Cloning (BC)

 Behavior Cloning:

. Break down trajectories {1, ..., £} into steps {(s'V, aél)), . (S}mll, a}mll)}

B observatlons

ﬁ my(a|s)

> [rain ;y . § — a using supervised learning
—_ max Zlo nals
training E2 grylals)

data (s,0)ED

D = {1, a")};,

acuons

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

» q my(a | s)

supervised
learning

e Benefits: —
training

data
> Simple, flexible — can use any learning algorithm

» Model-free — never need to know the environment
e Drawbacks:

> Only as good as the demonstrator

> Only good in demonstrated states — how do we evaluate?

- Validation loss (on held out data)? Task success rate in rollouts?

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

A policy is a (stochastic) function

environment

S 5141

usje|d

suoJnau
[suoinau 0l |

&
ouon 5 S
|oulay gx/

m(a,|s,)

[Bojarski et al., 2016]

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Stochastic policies

» Learned models are often deterministic functions f, : x — y

 Jo Implement a stochastic policy: output distribution parameters
 Examples:
> Discrete action space: categorical distribution
- my:s = {4}, my(als) = softmax A, o« exp 4,

» Continuous action space: Gaussian distribution

Ly s e (D) myals) = N, Z)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

A policy is a (stochastic) function

environment S, S 1

usje|d

suoJnau
[suoinau 0l |

ouon 5 S
|oulay gx/

m(a,|s,)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

A policy is a (stochastic) function

environment

n(a,|o,)
observation action

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

ALVINN

 Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)

30x32 Sensor
Input Retina

[Pomerleau, 1989]

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Inaccuracy in BC

. 2 ¥
e ~ . : .« f%
. - ‘ .
“,“ V) 5 - %
o7 v - - .
..' - I.»

C. 2" L
S * q 7o(als)
— supervised
training learning
data

» We could evaluate on held out teacher data, but really interested in using 7,
» If the policy approximates the teacher my(a,|s,) ~ n*(a,|s,)
~ The trajectory distribution will also approximate teacher behavior py(&) = p*(&)

. - no data herel
e But errors accumulate over time N L i A

> May reach states not seen in the training dataset

Image: Sergey Levine

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

The impact of inaccurate dynamics

51 S St41

* Errors in learning are unavoidable

 \What impact do they have on sequential behavior?

Bounded one-step error in a dynamical model 2 |p9(s’\ s) — p*(s’|s) | <e€

\)

Can lead to growing error over time Z | Po(s,) — p*(s,) | < et

>
S

» Not too bad by itself, but can drift outside training distribution &

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Today's lecture

Basic RL concepts

Behavior Cloning

Alleviating train—test mismatch

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Modeling other agents is hard

* |s there sufficient data”? Demonstrating puts a burden on the teacher
* Are demonstrations correct”? Humans are fallible, some supervision is hard

 Are demonstrations consistent? Some tasks can be done in multiple ways

* |s the state partially observable? o, — S,

: ?
- Are the learner and teacher observations the same? 0, = 0*

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Inconsistent demonstrations: multiple goals

 What if the task is to reach one of multiple goals??
> Different episodes can successfully reach different goals

> We need to train one policy to reach multiple goals

* |f we know the goal, condition on it
> Goal-conditioned policy: my(a, | s;, &)

» More generally: task-conditioned policy my(a,| s, 7)

» (Goal = desired final state; but how to represent other kinds of tasks?

=

g =

Image: puzzlesandriddles.com

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Goal-conditioned Behavior Cloning

» Can we train a goal-conditioned policy zy(a, | s,, g) from demonstrations?

> Assume goal = state that the agent should reach

e How can we know the goal in demonstrations & = Sos Ay 15 A1y oo ?
» Manual labeling? & = {(cf(i),g(i))}i

 Hindsight: take each s, as the goal of the trajectory leading to it

SO, ao, °c o oo Sl-_l, al-_l, Sl- — g

» Supervised learning of n(a | s, g) from data points ((s,, g = s,),a,) fort' > ¢

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Inconsistency due to multimodal behavior

» (Goal-conditioning assumes known goals

> More generally, known behavior modifiers

e Usually, the behavior mode is unknown

» Need multimodal policy m(a | s)

- Mixture models (e.g. GMM)

- Latent-variable models (e.g. normalizing flows)

> Need to be consistent along a trajectory

- Condition the policy on memory of past actions ﬂ(dt \ A ag)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Modeling partially observable behavior

 Partial observations are not Markov
~ Generally, this means p(o,,|0,,a,) # p(0;,1]| 0« a-,)
» Reactive policy zy(a, | 0,) may not be optimal
- May need my(a,|o.,), or even my(a,| o,, a_,); but how?
» Canuse RNNs f, : (h,_y,a,_{,0,) — h, or other memory models

 But memory state is latent in demonstrations

> Modeling memory is hard — prior structure may help; more on this later

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Modeling memory

environment S:_q S, S 1

\ /)
-) a0 -0

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Modeling memory

environment

e A common architecture:

> A recurrent model m, = f,(m,_,,a,_;,0,); and an action model my(a, | m,)

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Today's lecture

Basic RL concepts

Behavior Cloning

Better behavior modeling

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Alleviating train—-test mismatch

ML promises generalization when training distribution = test distribution
> But this is challenging in IL: errors accumulate
> We can quickly get to error states that we haven't seen fixed

» Train—test distribution mismatch = covariate shift ' no data here!

* |deas:
> Augment the training dataset to expand the distribution
> Update train distribution — test distribution

> Intervene during demonstrations to expand the distribution

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Imitation Learning can work

Video: NVIDIA

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

How did they do it?

Recorded
steering

wheel angle | Adjust for shift

Desired steering command

and rotation

Left camera }j
| | Random shift
Center camera | > :
) and rotation

' Right camera %

Network
computed
steering
command
CNN
A
Back propagation | Error

weight adjustment

augmented data to better cover test distribution

>

[Bojarski et al., 2016]

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

DAgger: Dataset Aggregation

e Can we collect demonstration data from the test distribution?

> We don't know p,(&) until we're done training €

> But we get closer and closer during training

Algorithm DAgger

Collect dataset D of teacher demonstrations & ~ p*
repeat

Train mg on D

Execute mg to get & ~ pg

Ask teacher to label (a;|s;) ~ n° but how? challenging...

Aggregate { (s, a;)}; into D

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

DAgger demo

2

- .
[t turns automatigally to"avoratrées

based on what its &me&s’ees
S 8

-y,

Video: Stephane Ross

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

DART: Disturbances Augmenting Robot Training

] 1. o~ A
\ \/ 5

®

Off-Policy On-Policy DART

» Off-policy vs. on-policy learner
> On-policy = data comes from the learner's current policy

» Off-policy = data comes from another policy (another agent or past learner)
e |n off-policy IL (e.g. BC) learner may go off the teacher's support
* |[n on-policy IL (e.g. DAgger) learner initially goes off, until corrected

 DART: Increase the data support by injecting noise during demonstrations

> Force teacher into slight-error states, to see how they are fixed

[Laskey et al., 2017]

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

DART

 Noise = perturbation of actions g(d | a)

>

New effective dynamics: p(s’| s, a) = Z glala)p(s’|s,a)
G

~ For example, in continuous actions:d =a+¢€; €~ A4(0,2)

Train Estimator Collect Demonstrations

N
m()mng1 J(0,0%|&,)

Algorithm DART

repeat
Collect dataset D of teacher demonstrations & ~ p~
Train g on D
Update noise g such that py 1s better supported by p~

/ _’ﬂ-QR

gn ~ p(ﬂe*w "/)n)

Image: Michael Laskey

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Grasping task

Behavior Cloning DART

[Laskey et al., 2017]

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

Recap

o |mitation Learning = Learning from Demonstrations

~ Learn policy m(a | s) from teacher demonstrations

 Behavior Cloning: supervised learning

> Minimize loss, e.g. NLL, on training set of trajectories

e Accurate imitation is crucial

> Improve imitation through goal-conditioning, multimodal policies, memory, etc.

e Errors accumulate and cause train—test distribution mismatch

> Can be alleviated through augmentation, on-policy data collection, noise injection

Roy Fox | CS 277 | Winter 2024 | Lecture 2: Imitation Learning

