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Logistics

assignments

• Quiz 8 due Wednesday


• Exercise 5 due next Monday


• Exercise 1–3, Quiz 4–7 grades to be published soon

evaluations • Course evaluations due this weekend
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Today's lecture

(Fictitious) Self Play

Double Oracle

Centralized vs. decentralized RL
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Multi-agent systems

• Agent = actuator + sensor + self-interest (reward function) + optimizer


• Multi-agent system:


‣ Distributed actuation


‣ Distributed sensing / information hiding


‣ Distinct interests (cooperative / competitive / indifferent / mix)


‣ Distributed optimization


‣ ⇒ distributed memory state ⇒ Theory of Mind
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Centralized cooperative RL
•  agents = players; joint action = 


• State transition = ; policy profile = 


• Cooperative RL = all agents share the same rewards (payoffs) 


• Assume each agent gets observation  distributed 


‣ ⇒ policy structure: 


‣ Can jointly optimize  with this independence structure


‣ E.g. PG: 

n a = (a1, …, an) ∈ 𝒜 = 𝒜1 × ⋯ × 𝒜n

p(s′ |s, a) π = (π1, …, πn)

r1 = ⋯ = rn

oi p(oi |s)

π(a |o) = ∏
i

πi(ai |oi)

π

∇θℒθ = ∇θlog πθ(a |o)R = ∑
i

∇θi
log πθi

(ai |o)R
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Centralized cooperative RL
•  agents = players; joint action = 


• State transition = ; policy profile = 


• Cooperative RL = all agents share the same rewards (payoffs) 


• Assume each agent gets observation  with probability 


‣ ⇒ policy structure: 


‣ Can jointly optimize  under this independence structure


‣ E.g. PG: 

n a = (a1, …, an) ∈ 𝒜 = 𝒜1 × ⋯ × 𝒜n

p(s′ |s, a) π = (π1, …, πn)

r1 = ⋯ = rn

oi p(oi |s)

π(a |o) = ∏
i

πi(ai |oi)

π

∇θℒθ = ∇θlog πθ(a |o)R = ∑
i

∇θi
log πθi

(ai |o)R

agent 's action  
can only depend on 

i ai

oi

action distributions are independent
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Independent RL
• Return  (or ) is shared by all agents, but has high variance


‣ Can we use some TD learning? Q-learning, AC, etc. ⇒ need 


• Independent RL = train each agent  in MDP induced by others 


‣ 


‣ Can train  from experience 


• Problem: the MDP keeps changing with  ⇒ instability


‣ May still work well in practice

R R≥t

Qi

i −i

p(s′ |s, ai) = 𝔼a−i|o∼π−i[p(s′ |s, a)]

Qi(oi, ai) (oi
t , ai

t , rt, oi
t+1)

π−i

all agents except i
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Centralized critic / decentralized actors
• Actor–Critic presents opportunity:


‣ No critic in test time ⇒ critic may be unrealizable


• Multi-Agent Deep Deterministic Policy Gradient (MADDPG):


‣ Train critic  for joint observation + action from experience 


‣ Use critic to train actors 


• Stochastic actors:  (like AC)


• Deterministic actors:  (like DDPG)

Q(o, a) (ot, at, rt, ot+1)

πi(ai |oi)

∇θi
ℒi = ∇θi

log πθi
(ai |oi)Q(o, a)

∇θi
ℒi = ∇θi

μθi
(oi)∇aiQ(o, a)

ai=μθi(o
i)

or Qi(o, ai)
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Solution concept: Nash equilibrium

• Best response of player  to : 


• Nash equilibrium  = each  is best response to 


‣ ⇒ player  has no incentive to deviate


• Example 1: Prisoner's Dilemma


• Example 2: Matching Pennies


‣ Generally, stochastic policies needed

i π−i bi(π−i) = arg max
πi

𝔼πi,π−i[Ri]

π πi π−i

i

Cooperate Defect

Cooperate -1 \ -1 -3 \ 0

Defect 0 \ -3 -2 \ -2

Heads Tails

Heads 1 \ -1 -1 \ 1

Tails -1 \ 1 1 \ -1

mixed equilibrium
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Nash equilibrium: challenges
• Problem 1: is finding a Nash equilibrium all we need?


‣ Example: Coordination Game


‣ Nash equilibrium is a pretty weak (but simple) solution concept


• Problem 2: how to find a Nash equilibrium?


‣ Iteratively switch to each player's best response?


‣ Counter-example: Rock–Paper–Scissors


- Best response can be deterministic; equilibrium may require stochastic

action 1 action 2

action 1 1 \ 1 0 \ 0

action 2 0 \ 0 2 \ 2

Rock Paper Scissors
Rock 0 \ 0 -1 \ 1 1 \ -1
Paper 1 \ -1 0 \ 0 -1 \ 1

Scissors -1 \ 1 1 \ -1 0 \ 0
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Two-player zero-sum games

• Zero-sum: 


• Optimization problem: 


‣ Under mild conditions: max-min = min-max (no duality gap)


‣ All Nash equilibria have the same value


• Very hard optimization problem


‣ Gradient-based algorithms usually try to avoid a saddle-point


‣ Here we're seeking a saddle-point

r1 = − r2 = r

max
π1

min
π2

𝔼π1,π2[R]
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Self Play
• Self Play (= independent RL) = train each agent in MDP induced by others


• Problem: no guarantees of convergence to Nash equilibrium


‣ E.g., not clear how to keep policies sufficiently stochastic


• But may work well in practice, particularly in games of skill
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Fictitious Play (FP)
• Self Play has the right idea: if  is better than  ⇒ update toward it


‣ But by how much?


• Fictitious Play


‣ Add  to a population 


‣ average of population


•  guaranteed to converge to Nash equilibrium


• How to implement this with (Deep) RL?

bi(π−i) πi

bi(π−i) Π

πi ←

π

Rock Paper Scissors
Pop. avg. 1 0 0

BR 0 1 0
Pop. avg. 0.5 0.5 0

BR 0 1 0
Pop. avg. 0.33 0.67 0

BR 0 0 1
Pop. avg. 0.25 0.5 0.25

BR 0 0 1
Pop. avg. 0.2 0.4 0.4

BR 1 0 0
Pop. avg. 0.33 0.33 0.33

BR 1 0 0

⋮
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Neural Fictitious Self Play (NFSP)

• Representation: “best-response” values  + “average” policies 


‣ Use DQN to train  against 


- Roll out episodes using   replay buffer


- Sample  from replay buffer  descend on square Bellman error


‣ Use policy distillation (supervised learning) to average  into 


- Sample  from replay buffer  descend on NLL loss 


• Unlike FP,  isn't immediately best response ⇒ NFSP can be unstable

Qi πi

Qi π−i

(ϵ-greedy(Qi), π−i) →

(si
t , ai

t , ri
t , si

t+1) →

greedy(Qi) πi

(si, ai) → −log πi(ai |si)

Qi

when not exploring
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Double Oracle (DO)

• Unweighted population average guaranteed asymptotic convergence


‣ Some policies are better than others (e.g. late vs. early in training) ⇒ weights?


• Assume payoffs / utilities given by matrix  for all , 


• Idea: weight by mixed Nash equilibrium on population


‣ find Nash equilibrium restricted to population policies 


‣ Add best response to population: 


• Guarantee:   Nash equilibrium; hopefully before all policies added

Uπ1,π2 π1 ∈ Π1 π2 ∈ Π2

σ ← Πi

Πi ← Πi ∪ {bi(σ−i)}

σ →

R P S
Pop.NE 1 0 0

BR 0 1 0
Pop.NE 0 1 0

BR 0 0 1
Pop.NE 0.33 0.33 0.33

normal form
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PSRO
• Problem: computing and storing entire utility matrix is infeasible in RL


‣ Policy-space size is exponential in belief-space size 


• Idea: Policy-Space Response Oracles (PSRO)


‣ Match pairs of population policies ⇒ estimate 


‣ Find meta-Nash equilibrium over population policies 


‣ ⇒ meta-policy  = mixture over 


‣ Use Deep RL to train best response to , add to 


• Guarantee:   Nash equilibrium; hopefully before all (many!!) policies added

|𝒜 ||ℬ|

Uπ1,π2 = 𝔼π1,π2[R]

Πi

σi Πi

σ−i Πi

σ →
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Extensive-form Double Oracle (XDO)
• Extensive form = tree of game histories


‣ Information set (infostate) = states with same observable history


• Problem: in long game, mixing over few policies is very exploitable


‣ Opponent can identify selected policy ⇒ it becomes deterministic, so exploitable


• Idea: mix over population policies again in every infostate


‣ ⇔ extensive-form game restricted to actions by any population policy
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Other methods
• Counterfactual Regret Minimization (CFR)


‣ In each episode: regret of not always taking  in infostate 


• Problem: in RL, we can't really get best responses


‣ Idea: policy improvement dynamics that are guaranteed to converge


‣ E.g. Replicator Dynamics (RD)


π(a |h) ∝ a h

Self Play Replicator Dynamics
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General sum games: challenges
• Between zero-sum and cooperative: competitive + cooperative aspects


• May have multiple Nash equilibria ⇒ which is best? may be ill-defined


‣ In one-shot game: which one will my opponent play? ill-defined


• >2 players (nothing special about 0-sum) ⇒ can have coalitions etc.


‣ Mixed Nash equilibria exist, but very weak solution concept


‣ No really great solution concept is known


• What to do? In practice, Self Play may work well


‣ Can also use MADDPG: ∇θi
ℒi = ∇θi

log πθi
(ai |oi)Qi(o, a)

one critic per player 
with shared  and , but with o a ri
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Recap
• Cooperative / general-sum games


‣ ⇒ Self Play (aka independent RL), MADDPG


• Two-player zero-sum games


‣ Self Play, MADDPG


‣ Fictitious Play (FP), NFSP


‣ Double Oracle (DO), PSRO, XDO


‣ CFR, DeepCFR


‣ Replicator Dynamics (RD), Neural RD (NeuRD)


‣ Etc.


