CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 19: Multi-Agent RL

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

WILL PRESS 🛎

EVER

FOR

FOOD

• Quiz 8 due Wednesday

• Exercise 1–3, Quiz 4–7 grades to be published soon

evaluations

assignments

Course evaluations due this weekend

• Exercise 5 due next Monday

Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play

Roy Fox | CS 277 | Winter 2024 | Lecture 19: Multi-Agent RL

Double Oracle

Multi-agent systems

- Agent = actuator + sensor + self-interest (reward function) + optimizer
- Multi-agent system:
 - Distributed actuation
 - Distributed sensing / information hiding
 - Distinct interests (cooperative / competitive / indifferent / mix)
 - Distributed optimization
 - \Rightarrow distributed memory state \Rightarrow Theory of Mind

Centralized cooperative RL

- State transition = p(s' | s, a); policy profile = $\pi = (\pi^1, ..., \pi^n)$

• *n* agents = players; joint action = $a = (a^1, ..., a^n) \in \mathcal{A} = \mathcal{A}^1 \times \cdots \times \mathcal{A}^n$

Centralized cooperative RL

- *n* agents = players; joint action = a = (
- State transition = p(s' | s, a); policy profile = $\pi = (\pi^1, ..., \pi^n)$
- Cooperative RL = all agents share the same rewards (payoffs) $r^1 = \cdots = r^n$
- Assume each agent gets observation o^i with probability $p(o^i | s)$

$$\Rightarrow \text{ policy structure: } \pi(a \mid o) = \prod_{i} \pi^{i}(a^{i})$$

Can jointly optimize π under this independence structure

E.g. PG: $\nabla_{\theta} \mathscr{L}_{\theta} = \nabla_{\theta} \log \pi_{\theta} (a \mid o) R =$

$$(a^1, \dots, a^n) \in \mathscr{A} = \mathscr{A}^1 \times \dots \times \mathscr{A}^n$$

$$\sum_{i} \nabla_{\theta_i} \log \pi_{\theta_i}(a^i \mid o) R$$

Independent RL

- Return R (or $R_{>t}$) is shared by all agents, but has high variance
 - Can we use some TD learning? Q-learning, AC, etc. \Rightarrow need Q^{l}
- Independent RL = train each agent i in MDP induced by others -i

•
$$p(s'|s, a^i) = \mathbb{E}_{a^{-i}|o \sim \pi^{-i}}[p(s'|s, a)]$$

- Can train $Q^{i}(o^{i}, a^{i})$ from experience
- Problem: the MDP keeps changing with $\pi^{-i} \Rightarrow$ instability
 - May still work well in practice

$$e(o_t^i, a_t^i, r_t, o_{t+1}^i)$$

Centralized critic / decentralized actors

- Actor–Critic presents opportunity:
 - No critic in test time \Rightarrow critic may be unrealizable
- Multi-Agent Deep Deterministic Policy Gradient (MADDPG): $\int \mathbf{or} Q^i(o, a^i)$

 - Use critic to train actors $\pi^{i}(a^{i} | o^{i})$
- Stochastic actors: $\nabla_{\theta_i} \mathscr{L}_i = \nabla_{\theta_i} \log$

Deterministic actors: $\nabla_{\theta_i} \mathscr{L}_i = \nabla_{\theta_i} I$

• Train critic Q(o, a) for joint observation + action from experience (o_t, a_t, r_t, o_{t+1})

$$g \pi_{\theta_i}(a^i | o^i) Q(o, a)$$
 (like AC)

$$u_{\theta_i}(o^i) \nabla_{a^i} Q(o, a) \Big|_{a_i = \mu_{\theta_i}(o^i)}$$
 (like DDPG)

Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play

Roy Fox | CS 277 | Winter 2024 | Lecture 19: Multi-Agent RL

Double Oracle

Solution concept: Nash equilibrium

- Best response of player *i* to π^{-i} : b^{i}
- Nash equilibrium $\pi = \operatorname{each} \pi^{l}$ is best response to π^{-l}
 - \Rightarrow player *i* has no incentive to deviate
- Example 1: Prisoner's Dilemma

- Example 2: Matching Pennies mixed equilibrium
 - Generally, stochastic policies needed

$$(\pi^{-i}) = \underset{\pi^{i}}{\operatorname{arg max}} \mathbb{E}_{\pi^{i},\pi^{-i}}[R^{i}]$$

	Cooperate	Defect
Cooperate	-1 \ -1	- <mark>3 \ 0</mark>
Defect	<mark>0 \ -3</mark>	-2 \ -2

	Heads	Tails
Heads	1 \ -1	-1 \ 1
Tails	-1 \ 1	1 \ -1

Nash equilibrium: challenges

- Problem 1: is finding a Nash equilibrium all we need?
 - Example: Coordination Game

- Nash equilibrium is a pretty weak (but simple) solution concept
- Problem 2: how to find a Nash equilibrium?
 - Iteratively switch to each player's be
 - Counter-example: Rock-Paper-Scis
 - Best response can be deterministic; equilibrium may require stochastic

	action 1	action
action 1	1 \ 1	0 \ 0
action 2	0 \ 0	2\2

est response?		Rock	Paper	Scis
	Rock	0 \ 0	-1 \ 1	1 \
score	Paper	1 \ -1	0 \ 0	-1
53013	Scissors	-1 \ 1	1 \ -1	0 \

Two-player zero-sum games

- Zero-sum: $r^1 = -r^2 = r$
- Optimization problem: $\max_{\pi^1} \min_{\pi^2} \mathbb{E}_{\pi^1,\pi^2}[R]$
 - Under mild conditions: max-min = min-max (no duality gap)
 - All Nash equilibria have the same value
- Very hard optimization problem
 - Gradient-based algorithms usually try to avoid a saddle-point
 - Here we're seeking a saddle-point

Self Play

- Problem: no guarantees of convergence to Nash equilibrium
 - E.g., not clear how to keep policies sufficiently stochastic
- But may work well in practice, particularly in games of skill

• Self Play (= independent RL) = train each agent in MDP induced by others

Fictitious Play (FP)

- Self Play has the right idea: if $b^i(\pi^{-i})$ is better than $\pi^i \Rightarrow$ update toward it
 - But by how much?
- Fictitious Play
 - Add $b^i(\pi^{-i})$ to a population Π
 - $\pi^i \leftarrow \text{average of population}$
- π guaranteed to converge to Nash equilibrium

How to implement this with (Deep) RL?

	Rock	Paper	Scis
Pop. avg.	1	0	C
BR	0	1	C
Pop. avg.	0.5	0.5	C
BR	0	1	(
Pop. avg.	0.33	0.67	(
BR	0	0	_
Pop. avg.	0.25	0.5	0.2
BR	0	0	-
Pop. avg.	0.2	0.4	0.
BR	1	0	(
Pop. avg.	0.33	0.33	0.3
BR	1	0	(

Neural Fictitious Self Play (NFSP)

- Representation: "best-response" values Q^i + "average" policies π^i
 - Use DQN to train Q^i against π^{-i}
 - Roll out episodes using $(\epsilon$ -greedy $(Q^i), \pi^{-i}) \rightarrow$ replay buffer
 - Sample $(s_t^i, a_t^i, r_t^i, s_{t+1}^i)$ from replay buffer \rightarrow descend on square Bellman error
 - Use policy distillation (supervised learning) to average greedy(Qⁱ) into πⁱ
 when not exploring
 - Sample (s^i, a^i) from replay buffer \rightarrow descend on NLL loss $-\log \pi^i (a^i | s^i)$
- Unlike FP, Q^i isn't immediately best response \Rightarrow NFSP can be unstable

Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play

Roy Fox | CS 277 | Winter 2024 | Lecture 19: Multi-Agent RL

Double Oracle

Double Oracle (DO)

- Unweighted population average guaranteed asymptotic convergence
 - normal form
- Some policies are better than others (e.g. late vs. early in training) \Rightarrow weights? - Assume payoffs / utilities given by matrix U_{π^1,π^2} for all $\pi^1 \in \Pi^1$, $\pi^2 \in \Pi^2$
- Idea: weight by mixed Nash equilibrium on population
 - $\sigma \leftarrow$ find Nash equilibrium restricted to population policies Π^{ι}
 - Add best response to population: $\Pi^i \leftarrow \Pi^i \cup \{b^i(\sigma^{-i})\}$
- Guarantee: $\sigma \rightarrow$ Nash equilibrium; hopefully before all policies added

	R	Ρ	
Pop.NE	1	0	
BR	0	1	
Pop.NE	0	1	
BR	0	0	
Pop.NE	0.33	0.33	0.

PSRO

- Problem: computing and storing entire utility matrix is infeasible in RL
 - Policy-space size is exponential in belief-space size $|\mathcal{A}|^{|\mathcal{B}|}$
- Idea: Policy-Space Response Oracles (PSRO)
 - Match pairs of population policies \Rightarrow estimate $U_{\pi^1,\pi^2} = \mathbb{E}_{\pi^1,\pi^2}[R]$
 - Find meta-Nash equilibrium over population policies Π^{l}
 - \Rightarrow meta-policy σ^i = mixture over Π^i
 - Use Deep RL to train best response to σ^{-i} , add to Π^i
- Guarantee: $\sigma \rightarrow$ Nash equilibrium; hopefully before all (many!!) policies added

Extensive-form Double Oracle (XDO)

- Extensive form = tree of game histories
 - Information set (infostate) = states with same observable history
- Problem: in long game, mixing over few policies is very exploitable
 - Opponent can identify selected policy \Rightarrow it becomes deterministic, so exploitable
- Idea: mix over population policies again in every infostate
 - ► ⇔ extensive-form game restricted to actions by any population policy

Other methods

- Counterfactual Regret Minimization (CFR)
 - In each episode: $\pi(a \mid h) \propto \text{regret}$ of not always taking a in infostate h
- Problem: in RL, we can't really get best responses
 - Idea: policy improvement dynamics that are guaranteed to converge
 - E.g. Replicator Dynamics (RD)

General sum games: challenges

- Between zero-sum and cooperative: competitive + cooperative aspects
- May have multiple Nash equilibria \Rightarrow which is best? may be ill-defined
 - In one-shot game: which one will my opponent play? ill-defined
- >2 players (nothing special about 0-sum) \Rightarrow can have coalitions etc.
 - Mixed Nash equilibria exist, but very weak solution concept
 - No really great solution concept is known
- What to do? In practice, Self Play may work well
 - Can also use MADDPG: $\nabla_{\theta_i} \mathscr{L}_i = \nabla_{\theta_i} \log \pi_{\theta_i}(a^i | o^i) Q^i(o, a)$

one critic per player with shared o and a, but with r^{l}

Recap

- Cooperative / general-sum games
 - \Rightarrow Self Play (aka independent RL), MADDPG
- Two-player zero-sum games
 - Self Play, MADDPG
 - Fictitious Play (FP), NFSP
 - Double Oracle (DO), PSRO, XDO
 - CFR, DeepCFR
 - Replicator Dynamics (RD), Neural RD (NeuRD)
 - ► Etc.