CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 17: Offline RL

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

- Exercise 4 due next Monday
- Quiz 8 due next Wednesday
- Exercise 5 will be due Week 11

evaluations

assignments

Course evaluations due next weekend

Today's lecture

The offline setting

Offline policy evaluation

Roy Fox | CS 277 | Winter 2024 | Lecture 17: Offline RL

Offline RL

The Bitter Lesson

small data

- Particularly prevalent in RL
 - Lifelong / continual learning
- We tried hard to be data efficient
 - MBRL, Bounded RL, structure
- "The Bitter Lesson" [Sutton, 2019]
 - In the end, data+compute win

- Web-scale data has huge impact
 - Vision, language, speech, ...
- Why not control?
 - Sparse rewards? Exploration? sure
 - But mostly: big diverse state space
 - More than in language? likely, yes

Why we need on-policy data

on-policy

off-policy

Policy-based methods tend to be on-policy

$$\nabla_{\theta} J_{\theta} = \mathbb{E}_{s,a \sim p_{\pi}} [R_{s,a} \nabla_{\theta} \log \pi_{\theta}(a \mid s)]$$

- Estimating the gradient by sampling a different distribution is biased
- Value-based methods tend to be off-policy

$$L_{\theta}(s,a) = (r + \gamma \max_{a'} Q_{\bar{\theta}}(s',a') - Q_{\theta}(s,a))^2$$

offline

• Optimally, $L \equiv 0$; but if L is low on train distribution, it may still be high in test

How off-policy can we go?

- Roughly, on-policy loss on off-policy data is incorrect per point
 - We need to collect experience from current policy \Rightarrow usually small data
 - We can go a tiny bit off-policy, e.g. when parallelizing policy updates
- Off-policy loss on off-policy data is incorrect in expectation
 - We can go significantly off-policy for a long while
 - But in the end, we still need to mitigate the train-test distribution mismatch
 - E.g. by converging toward on-policy experience

off-policy

What goes wrong without deployment?

- In Offline RL, we get a big experience data but perhaps can't collect more
 - Must operate under severe train-test mismatch $\pi_D \iff \pi_{\theta}$
 - Better: RL with limited number of deployments
 - Worse: we may not even know π_D ; even worse: we may not even see the actions
- The problem is not just that Q may be wrong out-of-distribution (OOD)
 - $\,{\scriptstyle \bullet}\,$ Policy optimization seeks those states where Q happens to be overestimated
 - Without deployment, we never find out!

 $\mathbb{E}_{Q}[\max_{a} Q(s, a)] \ge \max_{a} \mathbb{E}_{Q}[Q(s, a)]$ winner's curse

What can we do?

- Imitation Learning
 - Missing out on reward signal
- Policy evaluation
 - More advanced, aggressive Importance Sampling techniques
- Policy optimization
 - Constrain π_{θ} to be close to π_D
 - Constrain the action space to the support of the data
 - Penalize Q_{θ} outside the support of the data

Today's lecture

The offline setting

Offline policy evaluation

Roy Fox | CS 277 | Winter 2024 | Lecture 17: Offline RL

Offline RL

Offline policy evaluation

- We can evaluate off-policy: Q(s, a)
- We could also estimate with IS: $\mathbb{L}_{\xi_{\sim}}$

Can we be robust to either?

$$\rightarrow r + \gamma \max_{a'} Q(s', a')$$

• This is "robust" to not knowing π_D , but sensitive to errors in Q (can be bad OOD)

$$\sum_{p_{\pi}} [R(\xi)] = \mathbb{E}_{\xi \sim D} [\rho_D^{\pi}(\xi) R(\xi)]$$

This is "robust" to Q errors but sensitive to weight errors $\rho_D^{\pi}(\xi) = \prod_{t=1}^{T} \frac{\pi(a_t | s_t)}{\pi_D(a_t | s_t)}$

Doubly robust offline RL

• Estimate $V^{\pi}(s) = \mathbb{E}_{a|s \sim \pi}[Q^{\pi}(s, a)]$, guess π_D , and sample $(s, a, r, s') \sim D$

$$\hat{V}(s) \to V^{\pi}(s) + \rho_D^{\pi}(a \mid s)(r + \gamma \hat{V}(s') - Q^{\pi}(s, a))$$

- If V^{π} and Q^{π} are correct then $Q^{\pi}(s)$
 - The only consistent solution is $\hat{V} = V^{\pi}$
- If π_D is correct: $\mathbb{E}_{a,s' \sim \pi_D,p}[\text{RHS}] = \sqrt{\pi}(s)$
 - Which is TD policy evaluation of π

$$,a) = r(s,a) + \gamma \mathbb{E}_{s'|s,a\sim p} V^{\pi}(s')$$

$$s) + \mathbb{E}_{a \sim \pi}[r(s, a) + \gamma \mathbb{E}_{s' \sim p}[\hat{V}(s')] - \not Q^{\pi}(s, a)]$$

Estimator is consistent in either case, but very high variance (have ways to improve)

GenDICE

- $\rho_D^{\pi}(\xi)$ has high variance, can we do better?

How to find
$$\rho_D^{\pi}(s, a) = \frac{p_{\pi}(s, a)}{p_D(s, a)}$$
?

• A different IS: $J_{\theta} = \mathbb{E}_{s,a \sim p_{\pi}}[r(s,a)] = \mathbb{E}_{s,a \sim D}[\rho_{D}^{\pi}(s,a)r(s,a)]$ • Idea: solve consistency recursion $p_{\pi}(s',a') \qquad p(t=0) \qquad p(t+1) \qquad p_{\pi}(s,a) \qquad p_{\pi}(s,a) \qquad p_{\pi}(s,a) \qquad p_{\pi}(s,a) \qquad p_{\pi}(s,a) \qquad p_{\pi}(s',a') \qquad p_{\pi}(s',a') = (1-\gamma)p_{0}(s')\pi(a' \mid s') + \gamma \sum p_{D}(s,a)\rho(s,a)p(s' \mid s,a)\pi(a' \mid s')$

 S, \mathcal{A}

Complicated to solve, can be degenerate, but has decent statistical properties

Today's lecture

The offline setting

Offline policy evaluation

Roy Fox | CS 277 | Winter 2024 | Lecture 17: Offline RL

Offline RL

Policy constraining

• π shouldn't be far from π_{D} , there's no data there \Rightarrow constrain $\mathbb{D}[\pi || \pi_{D}]$

Bounded RL: max $\mathbb{E}_{s,a \sim p_{\pi}}[r(s,a)] - \tau \mathbb{D}[\pi \| \pi_D]$

- We can use any Bounded RL algorithm, e.g. SAC
 - SAC is off-policy = unbiased per-batch objective, biased expectation
 - \Rightarrow the critic can overestimate the value of π
 - Requires π_D

Implicit policy constraining (e.g. AWR)

Imagine that we know the bounded-optimal policy

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{s,a \sim p_{\pi}}[r(s,a)] - \prod_{\pi} \mathbb{E}_{s,a \sim p_{\pi}}[r(s,a)] - \prod_{\pi}$$

$$\mathbb{E}_{s,a\sim D,\pi^*}[\log \pi(a\,|\,s)] = \mathbb{E}$$

• with
$$A_{\beta}(s,a) = Q_{\beta}(s,a) - V_{\beta}(s) = Q_{\beta}(s,a) - \frac{1}{\beta} \log \mathbb{E}_{a|s \sim \pi_D}[\exp(\beta Q_{\beta}(s,a))]$$

Essentially, supervised learning with NLL

- $\tau \mathbb{D}[\pi \| \pi_D] \propto \pi_D(a \, | \, s) \exp(\beta Q_\beta(s, a))$

 $\pi_{s}]] = \arg \max_{\pi} \mathbb{E}_{s,a \sim D,\pi^{*}}[\log \pi(a \mid s)]$ orrected by π^*

• This is "Imitation Learning" of the implicit π^* , a.k.a. distillation (BC of known policy) no need to know π_D

 $\mathsf{E}_{s,a\sim D}[\exp(\beta A_{\beta}(s,a))\log \pi(a \mid s)]$

, weighted by
$$\exp(\beta A_{\beta}(s, a))$$

Implicit Q-Learning (IQL)

- Bounded RL constrains π to be close to π_D
 - If $\pi_D(a \mid s)$ is small but we sampled it enough, still hard to diverge to large $\pi(a \mid s)$
- Instead, allow π to diverge freely over well-supported actions \bullet

• Expectile:
$$\ell^{\tau}(u) = \frac{1}{2}u^2 + (\tau - \frac{1}{2})$$

$$V \to \arg\min_{V} \mathbb{E}_{s,a\sim D}[\ell^{\tau}(Q$$

 \mathcal{A}

▶ As $\tau \to 1$, V(s) will match max Q(s, a) for rarer and rarer greedy actions in D

Conservative Q-Learning (CQL)

- Perhaps we can tackle the problem more directly
 - If the issue is that Q can be overestimated OOD, let's penalize it OOD

$$L_{\theta}(s, a, r, s' \sim D) = (r + \gamma \mathbb{E}_{a'|s' \sim \pi}[Q_{\bar{\theta}}(s', a')] - Q_{\theta}(s, a))^2 + \lambda \mathbb{E}_{\tilde{a}|s \sim \pi}[Q_{\theta}(s, \tilde{a})]$$

- For large enough λ , L_{θ} is minimized for conservative $Q_{\theta} \leq Q^{\pi}$
- But this also underestimates Q in-distribution
 - Subtract a loss term $\lambda Q_{\theta}(s, a)$ to not penalize in-distribution
 - Now $V_{\theta} = \mathbb{E}[Q_{\theta}]$ is conservative, but Q_{θ} may not be

Recap

- It'd be nice to use web-scale data, but it's offline
 - Maybe even with an unknown policy / actions
 - But there may be no better way to get RL foundation models
- Optimize under uncertainty \Rightarrow tend to overestimate (winner's curse)
- In Online RL (On/Off-Policy), we overcome this by collecting more data
- In Offline RL, we overcome this through
 - without further assumptions / prior knowledge
 - ► Aggressive Importance Sampling ⇒ can be high variance Constraining our solution to the support of the data \Rightarrow can't improve much

