CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 16: Structured Control

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

VILL PRESS FOR FOOD

Logistics

- If you participated in class
 - I appreciate it!
 - Get a ducky
 - Make sure I have your name
- Still time to participate in class / forum
- Don't forget course evaluations

participation

Today's lecture

Abstractions

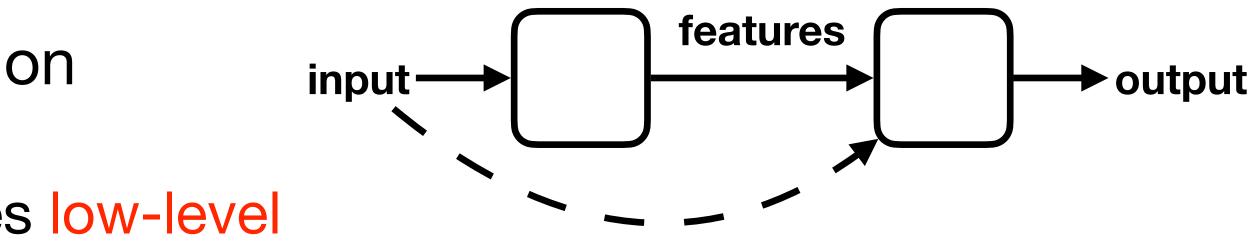
Hierarchical planning

Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

HRL methods

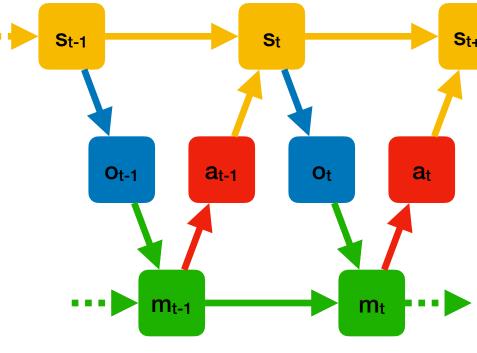
Abstractions in learning

- Abstraction = succinct representation
 - Captures high-level features, ignores low-level
 - Can be programmed or learned
 - Can improve sample efficiency, generalization, transfer
- Input abstraction (in RL: state abstraction)
 - Allow downstream processing to ignore irrelevant input variation
- Output abstraction (in RL: action abstraction)
 - Allow upstream processing to ignore extraneous output details



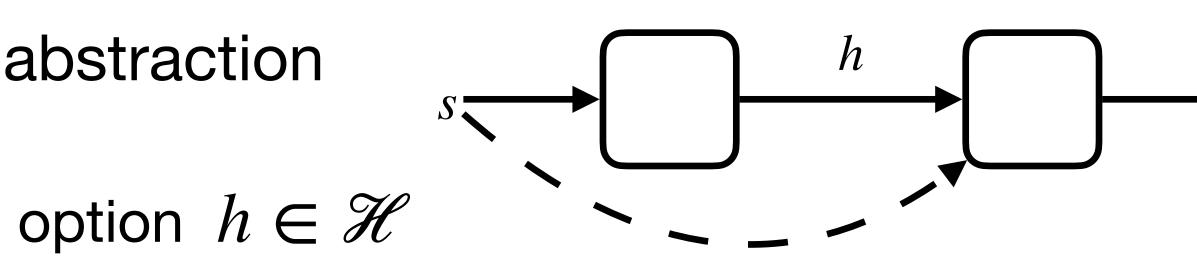
Abstractions in sequential decision making

- Spatial abstraction: each decision has state / action abstraction
 - Easier to decide based on high-level state features (e.g. objects, not pixels)
 - Easier to make big decisions first, fill in the details later
- Temporal abstraction: abstractions can be remembered
 - No need to identify objects from scratch in every frame
 - High-level features can ignore fast-changing, short-term aspects
 - No need to make the big decisions again in every step
 - Focus on long-term planning, shorten the effective horizon



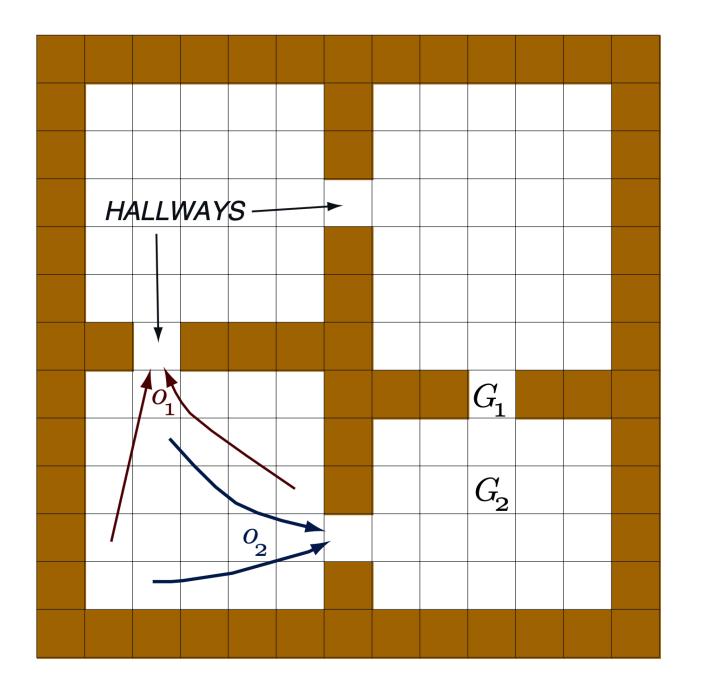
Options framework

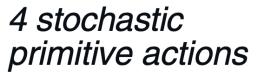
- Option = "skill" = persistant action abstraction
 - High-level policy = select the active option $h \in \mathcal{H}$
 - Low-level option = "fills in the details", select action $\pi_h(a \mid s)$ every step
- When to switch the active option h?
 - Idea: option has some subgoal = postcondition it tries to satisfy
 - Option can detect when the subgoal is reached (or failed to be reached)
 - As part of deciding what action to take otherwise
 - \rightarrow the option terminates \rightarrow the high-level policy selects new option

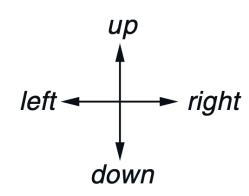


Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

Four-room example



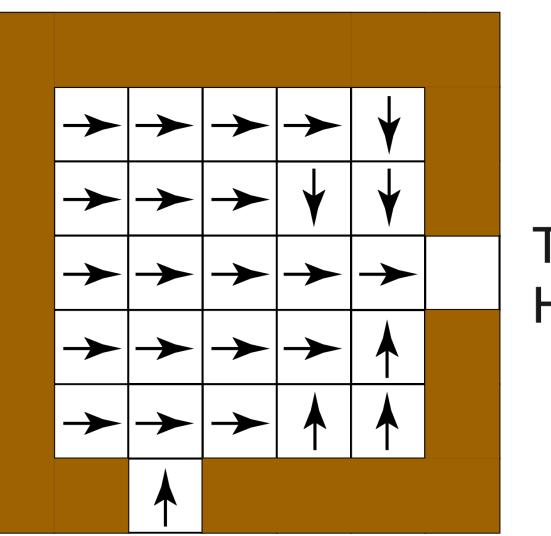




8 multi-step options (to each room's 2 hallways)

one of the 8 options:

Fail 33% of the time



Target Hallway

Options framework: definition

- Option = tuple $\langle I_h, \pi_h, \beta_h \rangle$
 - The option can only be called in its initiation set $s \in I_h$
 - It then takes actions according to policy $\pi_h(a \mid s)$
 - termination action
- After each step, the policy terminates with probability $\beta_h(s)$ • Equivalently, define policy over extended action set $\pi_h : S \to \Delta(A \cup \{ \perp \})$
- Initiation set can be folded into option-selection meta-policy $\pi_H : S \to \Delta(\mathscr{H})$
- Together, π_H and $\{\pi_h\}_{h\in\mathscr{H}}$ form the agent policy

Today's lecture

Abstractions

Hierarchical planning

Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

HRL methods

Planning with options

• Given a set of options, Bellman equation for the meta-policy:

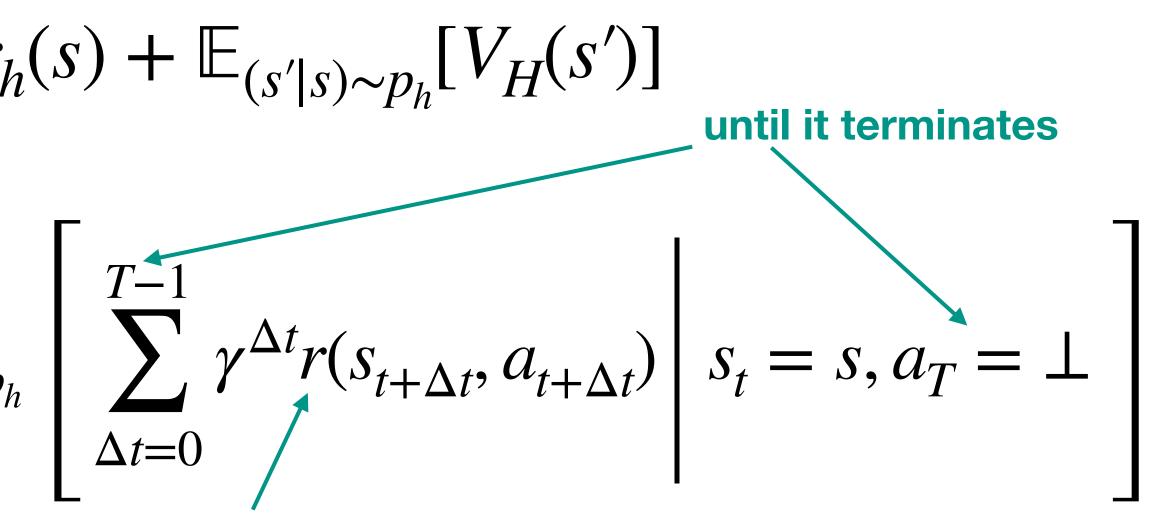
$$V_H(s) = \max_{h \in \mathscr{H}} r_h(s)$$

Option meta-reward:
$$r_h(s) = \mathbb{E}_{\xi \sim p_h}$$

rewards during option's run

• Option transition distribution: $p_h(s')$

$$r_a(s) = r(s, a)$$



$$s) = \mathbb{E}_{\xi \sim p_h} [1_{[s_T = s']} \gamma^{T-t} | s_t = s, a_T = \bot]$$

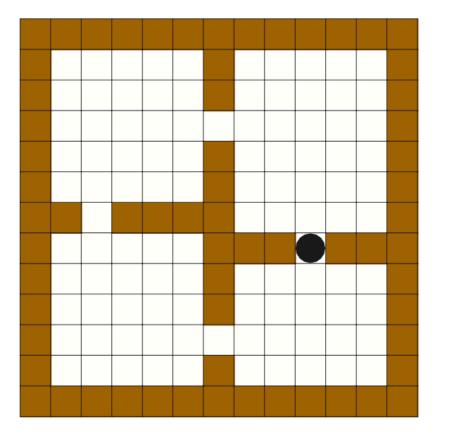
variable amount of discounting

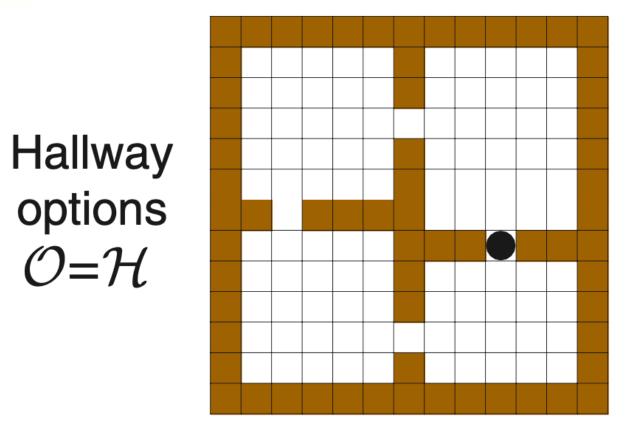
Special case of base actions = option says: take one action and terminate

$$p_a(s'|s) = \gamma p(s'|s,a)$$

Planning: four-room example

Primitive options $\mathcal{O}=\mathcal{A}$



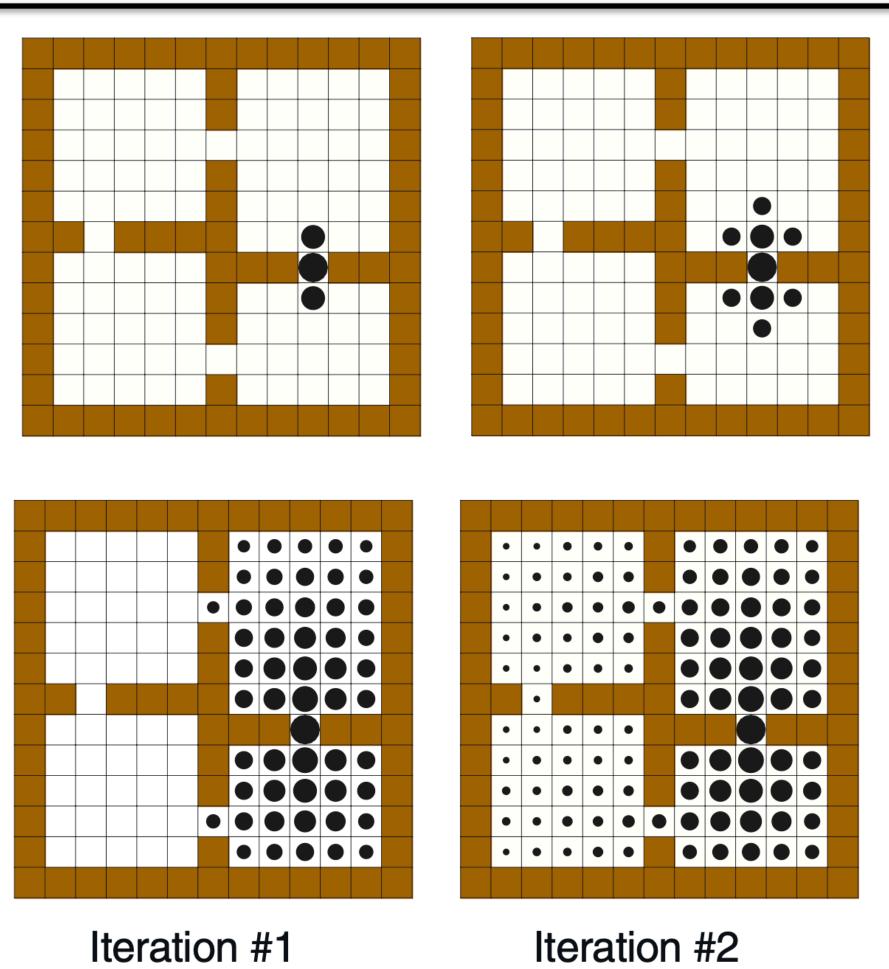


Initial Values

Options allow fast value backup

 $\mathcal{O}=\mathcal{H}$

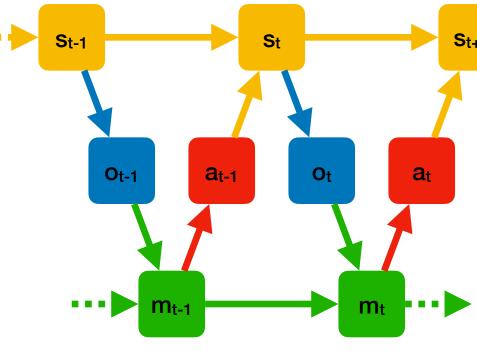
Transfer to other tasks in same domain



Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

Memory structure of options agent

- Options are a pre-commitment, thus an uncontrolled part of the state
- Option terminate after variable time: Semi-Markov Decision Process (SMDP)
- Can be viewed as structured memory
 - The option index is committed to memory
 - although it's not about past observations, it's about future actions
 - Memory remains unchanged until option termination
 - ► → memory is interval-wise constant



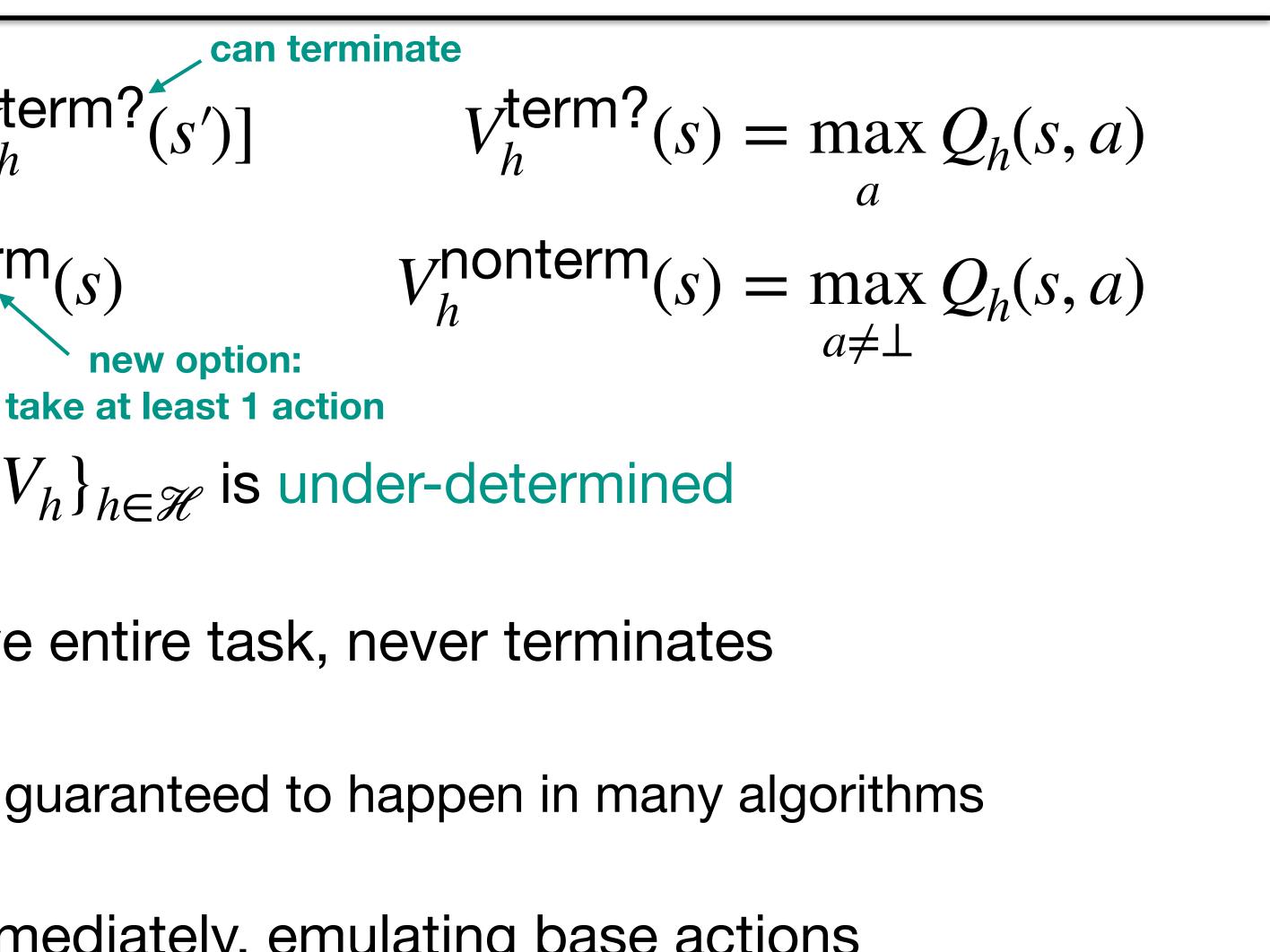
Planning within options

non-terminating action $a \neq \bot$

$$Q_h(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V_h^{\mathsf{te}}]$$

$$Q_h(s, \perp) = V_H(s) = \max_h V_h^{\text{nonterm}}$$

- Problem: jointly finding V_H and $\{V_h\}_{h\in\mathscr{H}}$ is under-determined
- High-fitting: some π_h tries to solve entire task, never terminates
 - If π_h is expressive enough, this is guaranteed to happen in many algorithms
- Low-fitting: options terminate immediately, emulating base actions
 - Now meta-policy carries the entire burden



Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

Today's lecture

Abstractions

Hierarchical planning

Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

HRL methods

Option-critic method

- For the critic, define $V_h(s) = \mathbb{E}_{(a|s)}$
- Then for on-policy experience (s, h, a, r, s') define the losses:
 - Critic loss: $L_Q = (r + \gamma((1 \beta_h(s'))V_h(s') + \beta_h(s')\max_{k'}V_{h'}(s')) Q_h(s, a))^2$
 - For actor behavior π_{θ_h} : $\nabla_{\theta_h} L_{\pi} = -Q$
 - For actor termination $\beta_{\phi_{h}}$: $\nabla_{\phi_{h}}L_{\beta} =$
 - For actor high level π_{ψ} : $\nabla_{\psi}L_H = -$
- Suffers badly from high- and low-fitting

$$\mathcal{L}_{\pi_{\theta_h}}[Q_h(s,a)], V_H(s) = \mathbb{E}_{(h|s) \sim \pi_{\psi}}[V_h(s)]$$

$$Q_h(s,a) \nabla_{\theta_h} \log \pi_{\theta_h}(a \mid s)$$

$$(V_h(s) - V_H(s)) \nabla_{\phi_h} \beta_{\phi_h}(s)$$

$$V_h(s) \nabla_{\psi} \pi_{\psi}(h \mid s)$$

Roy Fox | CS 277 | Winter 2024 | Lecture 16: Structured Control

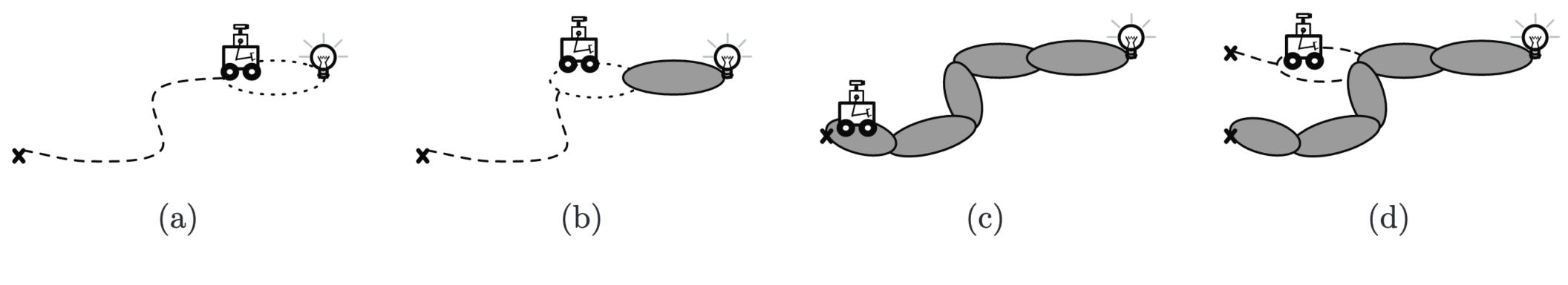
Subgoals

- Can we discover natural points to separate the high and low levels?
- Insight: the high level defines the termination value for the low level

$$Q_h(s, \perp) = V_H(s)$$

- Brings value back from a far future horizon to the low level's horizon
- We can think of the terminal-state value function as a subgoal
 - Defines in which states the option should try to terminate
 - E.g. doorways in the four-room domain
- Can we discover good subgoals?

Learning skill trees



Algorithm Skill Tree $S \leftarrow \{\text{goal}\}$ repeat $(\pi, \beta) \leftarrow$ option for subgoal $V_H(s) = r \cdot \mathbb{1}_{[s \in S]}$ $I \leftarrow$ initiation set from which (π, β) reaches subgoal $S \leftarrow S \cup I$ until $s_0 \in S$

Spectral methods

- Consider a state clustering into "good" and "bad" states
- The clustering indicator is a subgoal
- Let's use spectral clustering on the visitation graph

$$W_{s,s'} = 1_{[s' \text{ is}]}$$
$$D(s) = \sum_{s'} W$$

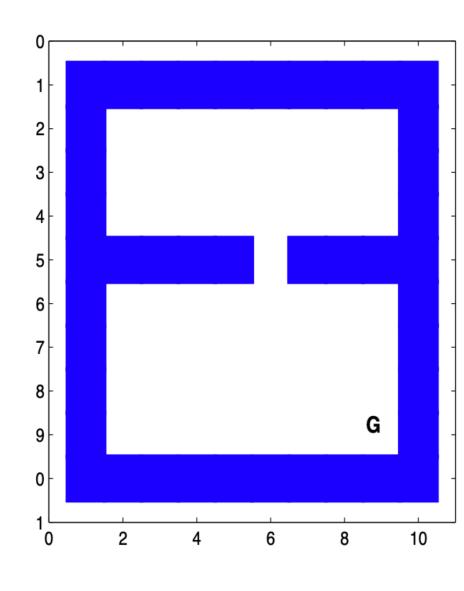
- Normalized graph Laplacian $L = D^{-2}(D)$
 - Related to random walk $D^{-\frac{1}{2}}(I-L)D^{\frac{1}{2}} =$
 - Eigenvectors of least positive eigenvectors find nearly stationary state clusters

- reachable from *s*]
- $v_{s,s'}$ = out-degree of s

$$(D - W)D^{-\frac{1}{2}}$$
 finds connectivity

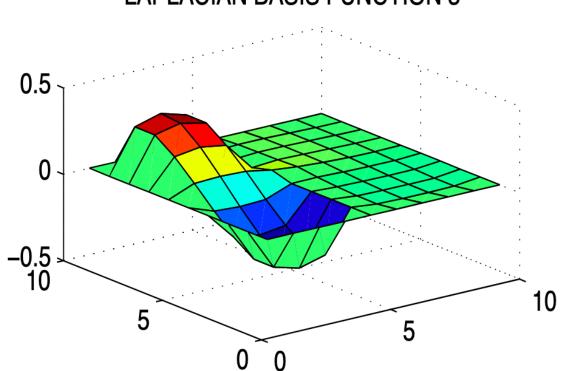
$$= D^{-1}W = \{p_0(s'|s)\}_{s,s'}$$

Spectral subgoal discovery



- Roll out random walk
- Find eigenvectors of graph Laplacian with small eigenvalues
- Learn options for these subgoals

LAPLACIAN BASIS FUNCTION 1 0.4 0.2 0 10 0 0 LAPLACIAN BASIS FUNCTION 3



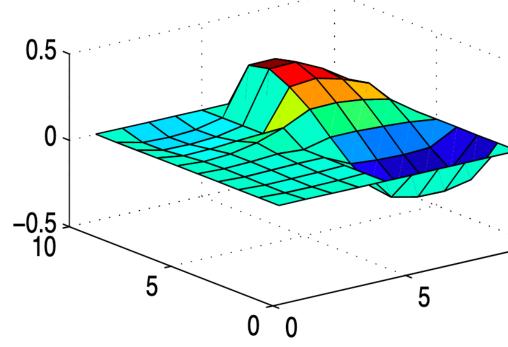
LAPLACIAN BASIS FUNCTION 4

0 0

LAPLACIAN BASIS FUNCTION 2

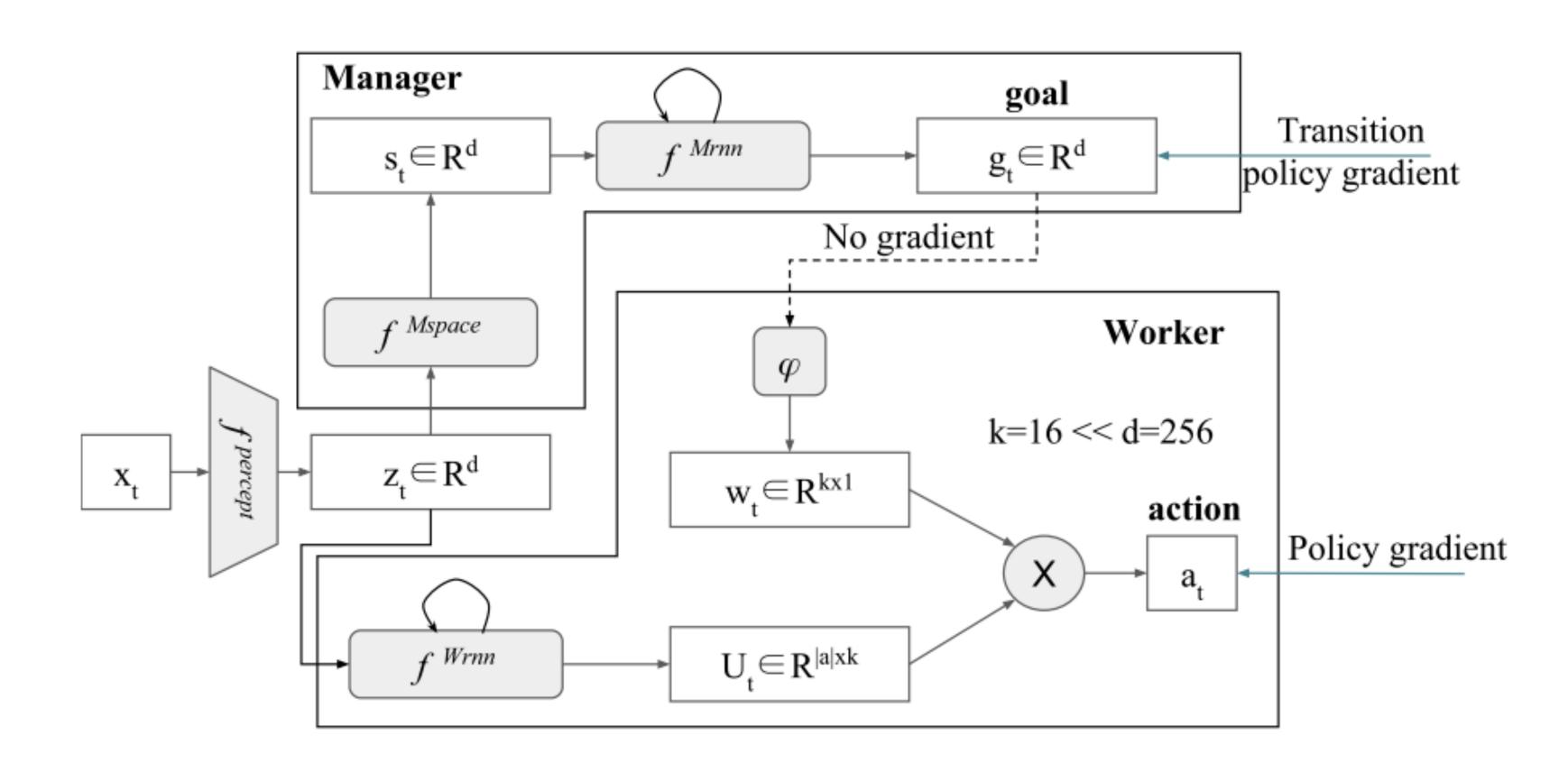
0.5

-0.5 10



5

Feudal networks



- Manager sets goals in learned latent space, every H steps \bullet
- Worker uses the goals as hints for learning long-term valuable behavior

Recap

- Abstractions: succinct representations; better data efficiency, generalization
- Hierarchical policy is foremost a memory structure
- Structure can be programmed, demonstrated, or discovered
- Subgoals can be represented by terminal-state value functions
- Many more hierarchical frameworks:
 - ► HAMQ, MAXQ, HEXQ, HDQN, QRM, HVIL, ...
- Many more opportunities for structure in control
 - Multi-task learning
 - Structured exploration