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Logistics

* |f you participated in class

* | appreciate It!

pagpaen

 Make sure | have your name

o Still time to participate in class / forum

 Don't forget course evaluations
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Today's lecture

Hierarchical planning

HRL methods
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Abstractions in learning

: : : features
 Abstraction = succinct representation inputwoutput
N

N

» Captures high-level features, ignores low-level N - -7

> (Can be programmed or learned

> Can improve sample efficiency, generalization, transfer
e |nput abstraction (in RL: state abstraction)
> Allow downstream processing to ignore irrelevant input variation

 Qutput abstraction (in RL: action abstraction)

> Allow upstream processing to ignore extraneous output details
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Abstractions In sequential decision making

e Spatial abstraction: each decision has state / action abstraction
> Easier to decide based on high-level state features (e.g. objects, not pixels)

> Easier to make big decisions first, fill in the detalls later

 [emporal abstraction: abstractions can be remembered .
> No need to identify objects from scratch in every frame { s { s
- High-level features can ignore fast-changing, short-term aspects "‘_""

> No need to make the big decisions again in every step

- Focus on long-term planning, shorten the effective horizon
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Options framework

e Option = “skill” = persistant action abstraction [ ] h [ ]
s\—> a
N

» High-level policy = select the active option h € # S o -

~ Low-level option = “fills in the details”, select action m;(a | s) every step

» When to switch the active option A7?

> |dea: option has some subgoal = postcondition it tries to satisfy
> Option can detect when the subgoal is reached (or failed to be reached)
- As part of deciding what action to take otherwise

> = the option terminates = the high-level policy selects new option
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Four-room example

one of the 8 options:

4 stochastic
HALLWAYS — primitive actions
up
. Fail 33%
Ieft—'— Mght of the time
/ 0 \\ Gl down
/NN
/ \\‘\ G, 8 multi-step options
/ o, (to each room's 2 hallways)
——
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Options framework: definition

» Option = tuple (I, 7, f;,)
> The option can only be called in its initiation set s € [,

~ It then takes actions according to policy m,(a | s)

termination action

\

» Equivalently, define policy over extended actionsetz, : § = A(AU { L })

~ After each step, the policy terminates with probability £, (s)

- Initiation set can be folded into option-selection meta-policy m; : § = A(K)

» Together, m;; and {7, } ;- 5 form the agent policy
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Planning with options

e (Given a set of options, Bellman equation for the meta-policy:

Vi(s) = maxr,(s) + E15~p, [ Va(s)]

he# / until it terminates
T—1 \
Option meta-reward: r(s) = k.., Z YA (S an i a) | S, = s,a7 = 1
>
At=0

rewards during option's run

» Option transition distribution: p,(s’| s) = _5~ph[1[sT=s']7T_t s, =s,ar= 1]
/"

variable amount of discounting

e Special case of base actions = option says: take one action and terminate

r s) =r1(s,a)  p,s’|s) =yp(s’]s, a)
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Planning: four-room example

Primitive
options

Hallway
options

O=H

Initial Values lteration #1 lteration #2

* Options allow fast value backup

e [ransfer to other tasks in same domain
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Memory structure of options agent

 Options are a pre-commitment, thus an uncontrolled part of the state
e Option terminate after variable time: Semi-Markov Decision Process (SMDP)

 Can be viewed as structured memory

> The option index Is committed to memory

- although it's not about past observations, it's about future actions Q Q
S —_— S

> Memory remains unchanged until option termination

> — memory Is interval-wise constant
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Planning within options

non-terminating ':1(ction a+ 1 _can terminate
? ?
O (s,a) =r(s,a) +vy _(s'\s,a)Np[V;E,erm (s)] V;tlerm (s) = max Q,(s, a)
a
0,(s. L) = Vyls) = max VjOMes) Vi eM(s) = max 0y(s. a)
a

new option:
take at least 1 action

» Problem: jointly finding V;; and { V), }, .4 is under-determined

« High-fitting: some 7, tries to solve entire task, never terminates

> I 7y, Is expressive enough, this is guaranteed to happen in many algorithms

o ow-fitting: options terminate immediately, emulating base actions

> Now meta-policy carries the entire burden
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Option-critic method

. For the critic, define V,,(s) = E S)Nﬂgh[Qh(S, a)], Vy(s) = Ey, S)Nﬂw[Vh(s)]

» Then for on-policy experience (s, h, a, r, s’) define the losses:
- Criticloss: Lo = (r+ (1 = (s))V,(s) + (") max Vj(s) = Qys, a))*”
» For actor behavior y: Vg L, = — Q)(s,a) Vg log my (a|s)
» For actor termination ﬁ¢h: V s Lp = (V,(s) = Vy(s)V ¢hﬁ¢h(s)
» For actor high level .. V, Ly = =V, (s)V,, 7 (h]s)

o Suffers badly from high- and low-fitting
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Subgoals

 Can we discover natural points to separate the high and low levels?

* |nsight: the high level defines the termination value for the low level

Qh(Sa J— ) — VH(S)
> Brings value back from a far future horizon to the low level's horizon
 \We can think of the terminal-state value function as a subgoal

> Defines in which states the option should try to terminate

> E.g. doorways in the four-room domain

 Can we discover good subgoals?
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Learning skill trees

— —
“-——’ ‘--——’

Algorithm Skill Tree

S « {goal}

repeat
(7, B) < option for subgoal Vg (s) =r - Ljses)
I « initiation set from which (7, 8) reaches subgoal
S—Su7t

until sg € S
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Spectral methods

 Consider a state clustering into “good” and “bad” states
* The clustering indicator Is a subgoal

* Let's use spectral clustering on the visitation graph

W ¢ = liyis reachable from s
D(s) = 2 = out-degree of s
1 1

» Normalized graph Laplacian L = D~ 2(D — W)D ™ 2 finds connectivity

| |
» Related to random walk D™ 2(I — L)D2 = D™'W = {Po(s’[ )} ¢

> Eigenvectors of least positive eigenvectors find nearly stationary state clusters
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Spectral subgoal discovery

LAPLACIAN BASIS FUNCTION 1 LAPLACIAN BASIS FUNCTION 2

0 0

- o o o ~N OO O A~ W nNnN = O

LAPLACIAN BASIS FUNCTION 4

o
N
=N
o |
o]
.
o

» Roll out random walk

> Find eigenvectors of graph Laplacian with small eigenvalues

> Learn options for these subgoals
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Feudal networks

Manager m soal
g &= Rd _.[ / Mrnn W - = Rd . TranSIt]()T]
t J S policy gradient

4

-------------------

[ f Mspace ] Worker
A

RS
> k=16 << d=256
x — §H zeR¢ kx|
: i : w SR action
Policy gradient
| a |- y g

m t

- I-i"'rn'n W - alxk
1 s ) UER

« Manager sets goals in learned latent space, every H steps

 \Worker uses the goals as hints for learning long-term valuable behavior
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Recap

e Abstractions: succinct representations; better data efficiency, generalization
* Hierarchical policy is foremost a memory structure
e Structure can be programmed, demonstrated, or discovered
 Subgoals can be represented by terminal-state value functions
 Many more hierarchical frameworks:
> HAMQ, MAXQ, HEXQ, HDQN, QRM, HVIL, ...
 Many more opportunities for structure in control

> Multi-task learning

» Structured exploration
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