CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 14: Inverse RL

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

• Quiz 7 due next Wednesday

• Exercise 4 + Quiz 8 will be due Week 10

• Exercise 5 will be due Week 11

Today's lecture

Sparse rewards

MaxEnt IRL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL

GAIL

Relation between RL and IL

- What makes RL harder than IL?
 - IL: teacher policy $\pi_{\rho}(a \mid s)$ indicates a good action to take in s
 - RL: r(s, a) does not indicate a globally good action; $Q^*(s, a)$ does, but it's nonlocal
- But didn't we see an equivalence between RL and IL?
 - NLL loss in BC: $\nabla_{\theta} \mathbb{E}[\log \pi_{\theta}(a \mid s)]$
 - s and a sampled from teacher distribution
 - **PG loss**: $\nabla_{\theta} \mathbb{E}[\log \pi_{\theta}(a \mid s)R]$
 - s and a sampled from learner distribution

Informational quantities: refresher

Entropy:
$$\mathbb{H}[p(a)] = -\mathbb{E}_{a \sim p}[\log p(a)] = -\sum_{a} p(a)\log p(a)$$

- Conditional entropy: $\mathbb{H}[\pi | s] = -\mathbb{E}_{a \sim \pi}[\log \pi(a | s)]$

Expected relative entropy: $\mathbb{D}[\pi \| \pi']$

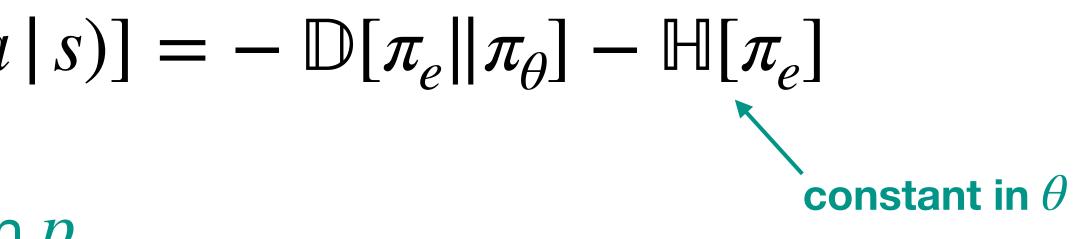
- Expected cross entropy (aka NLL): $-\mathbb{E}_{s,a\sim p_{\pi}}[\log \pi'(a \mid s)]$
 - $\mathbb{D}[\pi || \pi'] = \mathsf{NLL} \mathbb{H}[\pi]$

• Expected conditional entropy: $\mathbb{H}[\pi] = \mathbb{E}_{s \sim p_{\pi}}[\mathbb{H}[\pi|s]] = -\mathbb{E}_{s,a \sim p_{\pi}}[\log \pi(a|s)]$

$$= \mathbb{E}_{s,a \sim p_{\pi}} \left[\log \frac{\pi(a \mid s)}{\pi'(a \mid s)} \right]$$

IL as sparse-reward RL

- NLL BC: maximize $\mathbb{E}_{s,a \sim p_e}[\log \pi_{\theta}(a \mid s)] = -\mathbb{D}[\pi_e \mid \pi_{\theta}] \mathbb{H}[\pi_e]$
 - Experience from teacher distribution p_{ρ}
 - RL: experience from learner distribution p_{θ}
 - "Return" $R = 1_{\text{success}}$ for successful trajectory
 - RL: $r_t = r(s_t, a_t)$ in every step
- Sparse reward = most rewards are $0 \implies$ rare learning signal



• R = 1 on success = very sparse; but doesn't IL provide dense learning signal?

IL as dense-reward RL

• What if instead we minimize the other relative entropy?

$$\mathbb{D}[\pi_{\theta} \| \pi_{e}] = -\mathbb{E}_{s,a}$$

- Now r(s, a) does give global information on optimal action
- - Can we do the same in proper RL?

teacher labeling of learner states/actions $\lim_{\iota \sim p_{\theta}} [\log \pi_{e}(a \mid s)] - \mathbb{H}[\pi_{\theta}] \qquad \text{as in DAgger}$

• This is exactly the RL objective, with $r(s, a) = \log \pi_{\rho}(a \mid s)$ and entropy regularizer

• In fact, with deterministic teacher, $r(s, a) = -\infty$ for any suboptimal action

• The same return can be viewed as dense reward or sum of sparse rewards

Reward shaping

- Ideal reward: $r(s, a) = -\infty$ for any suboptimal action \implies as hard to provide as π^*
 - We need supervision signal that's sufficiently easy to program \implies generate more data
- Sparse reward functions may be easier than dense ones
 - E.g., may be easy to identify good goal states, safety violations, etc.
- Reward shaping: art of adjusting the reward function for easier RL; some tips:
 - Reward "bottleneck states": subgoals that are likely to lead to bigger goals
 - Break down long sequences of coordinated actions \implies better exploration
 - E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

Sparse rewards

MaxEnt IRL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL

GAIL

Learning rewards from demonstrations

- RL: rewards \rightarrow policy; IL: demonstrations \rightarrow policy
- Inverse Reinforcement Learning (IRL): demonstrations → reward function
 - Better understand agents (humans, animals, users, markets)
 - Preference elicitation, teleology (the "what for" of actions), theory of mind, language
 - First step toward Apprenticeship Learning: demos \rightarrow rewards \rightarrow policy
 - Infer the teacher's goals and learn to achieve them; overcome suboptimal demos
 - Partly model-based (learn r but not p); may be easier to learn, generalize, transfer
 - Teacher and learner can have different action spaces (e.g., human \rightarrow robot)

Inverse Reinforcement Learning (IRL)

- r(s) expressive enough
- Given a dataset of demonstration trajectories $\mathcal{D} = \{\xi_i\}$ • Find teacher's reward function $r : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
 - Principle: demonstrated actions should achieve high expected return
- IRL is ill-defined
 - How low is the reward for states and actions not in \mathscr{D} ?
 - How is the reward distributed along the trajectory?
 - Sparse rewards = identify "subgoal" states; dense = score each step, as hard as IL
 - Demonstrator can be fallible = take suboptimal actions; how much?

Feature matching

• /

Assume linear reward
$$r_{\theta}(s) = \theta^{\mathsf{T}} f_s$$
 in given state features $f_s \in \mathbb{R}^d$
Value = $J_{\theta}^{\pi} = \sum_{t} \gamma^t \mathbb{E}_{s_t \sim p_{\pi}}[\theta^{\mathsf{T}} f_{s_t}] = \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s]$, with $p_{\pi}(s) \propto \sum_{t} \gamma^t p_{\pi}(s_t)$
missing const: (1)

- Teacher optimality: expert value $J^{\pi^*}_{A}$ higher than any other policy's value J^{π}_{A}
 - Find θ that maximizes the gap $J_{\theta}^{\pi^*} J_{\theta}$
 - Apprenticeship Learning: find π that maximizes J^{π}_{θ} ; but for which θ ?

• Solve:
$$\max_{\theta} \min_{\pi} \{ J_{\theta}^{\pi^*} - J_{\theta}^{\pi} \} = \max_{\theta} \min_{\pi} \{ \mathbb{E}_{s \sim p^*}[\theta^{\mathsf{T}} f_s] - \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s] \}$$

• Approximate $s \sim p^*$ with $s \sim \mathscr{D}$

$$V^{\pi}_{ heta}$$
 ; but for which π ?

Feature matching

- Solving max min{ $\mathbb{E}_{s \sim p^*}[\theta^{\mathsf{T}} f_s] \mathbb{E}_s$ θ **Algorithm** Feature Matching Initialize policy set $\Pi = \{\pi_0\}$ repeat Solve Quadratic Program: $\max_{\eta} \eta$ $\pi \leftarrow \text{optimal policy for } r_{\theta}(s) = \theta^{\intercal} f_s$ Add π to Π
- - $\Rightarrow \mathbb{E}_{s \sim \mathcal{D}}[\theta^{\mathsf{T}} f_{s}] \approx \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_{s}] \text{ for all } \theta \Rightarrow \mathbb{E}_{s \sim \mathcal{D}}[f_{s}] \approx \mathbb{E}_{s \sim p_{\pi}}[f_{s}]$

$$s \sim p_{\pi} [\theta^{\mathsf{T}} f_{\mathsf{S}}]$$

 θ must be bounded, or solution at ∞ $\eta, \|\theta\|_2 \leq 1$ s.t. $\mathbb{E}_{s \sim \mathcal{D}}[\theta^{\mathsf{T}} f_s] \geq \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s] + \eta \quad \forall \pi \in \Pi$

On convergence: π optimal for θ (no gap), while no θ increases the gap feature matching

Today's lecture

Sparse rewards

MaxEnt IRL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL

GAIL

Modeling bounded teachers

An expert teacher maximizes the value

With trajectory-summed features $f_{\xi} =$

- Assume teacher has unintentional / uninformed prior policy π_0

Total cost:
$$\sum_{t} \mathbb{E}_{(s_{t},a_{t})\sim p^{*}} \left[\log \frac{\pi^{*}(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \right] = \mathbb{E}_{\xi\sim p^{*}} \left[\log \frac{p^{*}(\xi)}{p_{0}(\xi)} \right] = \mathbb{D}[p^{*}(\xi) || p_{0}(\xi)]$$
for simplicity, assume $\tau = 1$
Bounded optimality:
$$\max_{\xi\sim p^{*}} \left[\theta^{\mathsf{T}} f_{\xi} \right] - \tau \mathbb{D}[p^{*} || p_{0}]$$

 π^*

$$\text{Lie } J_{\theta}^{\pi^*} = \sum_{t} \gamma^t \mathbb{E}_{s_t \sim p^*} [\theta^{\mathsf{T}} f_{s_t}] = \mathbb{E}_{\xi \sim p^*} [\theta^{\mathsf{T}} f_{\xi}]$$
$$= \sum_{t} \gamma^t f_{s_t}$$

• Bounded rationality: cost to intentionally diverge $\mathbb{D}[\pi^* \| \pi_0]$ (with π_0 uniform: $\mathbb{H}[\pi^*]$)

Bounded optimality: naïve solution

• Bounded optimality: $\max_{\xi \sim p^*} \mathbb{E}_{\xi \sim p^*}[\theta^{\mathsf{T}} f_{\xi}] - \mathbb{D}[p^* || p_0]$

- Naïve solution: allow any distribution p^* over trajectories

Add the constraint
$$\sum_{\xi} p^*(\xi) = 1$$
 w

• Differentiate by $p^*(\xi)$ and = 0 to optimize

 $\theta^{T} f_{\xi} - \log p^{*}(\xi) + \log p_{0}(\xi) - 1$

 $\mathbb{E}_{\xi \sim p^*}[\log p^*(\xi) - \log p_0(\xi)]$

• No need to be consistent with dynamics $p(s' | s, a) \Rightarrow p^*$ may be unachievable

vith Lagrange multiplier λ

$$+ \lambda = 0 \Longrightarrow p^*(\xi) = \frac{p_0(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})}{\sum_{\xi} p_0(\bar{\xi}) \exp(\theta^{\mathsf{T}} f_{\bar{\xi}})}$$

IRL with bounded teacher

- Assume that demonstrations are displayed as a second se
 - With partition function $Z_{\theta} = \mathbb{E}_{\overline{\xi} \sim p_0}[\exp(\theta^{T} f_{\overline{\xi}})]$
- Find θ that minimizes NLL of demonstrations

$$\nabla_{\theta} \log p_{\theta}(\xi) = \nabla_{\theta}(\theta^{\mathsf{T}} f_{\xi} - \log Z_{\theta}) = f_{\xi} - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$
$$= f_{\xi} - \frac{1}{Z_{\theta}} \mathbb{E}_{\bar{\xi} \sim p_{0}}[\exp(\theta^{\mathsf{T}} f_{\bar{\xi}}) f_{\bar{\xi}}] = f_{\xi} - \mathbb{E}_{\bar{\xi} \sim p_{\theta}}[f_{\bar{\xi}}]$$

• To compute gradient, we need p_{θ} , but how to compute Z_{θ} ?

stributed
$$p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_0(\xi) \exp(\theta^{T} f_{\xi})$$

Computing Z_{θ} : backward recursion

- Partition function: $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{T} f_{\xi})]$
- Compute Z_{θ} recursively backward: like a value function, but + becomes \cdot

 $Z_{\theta}(s_t, a_t) = \mathbb{E}_{p_0}[\exp(\theta^{\mathsf{T}} f_{\xi \ge t}) | s_t, a_t]$ $Z_{\theta}(s_t) = \mathbb{E}_{p_0}[\exp(\theta^{\mathsf{T}} f_{\xi \ge t}) | s_t]$ part of the normalizer involving trajectories following (S_t, a_t) • How to get a policy from Z_{ρ} ?

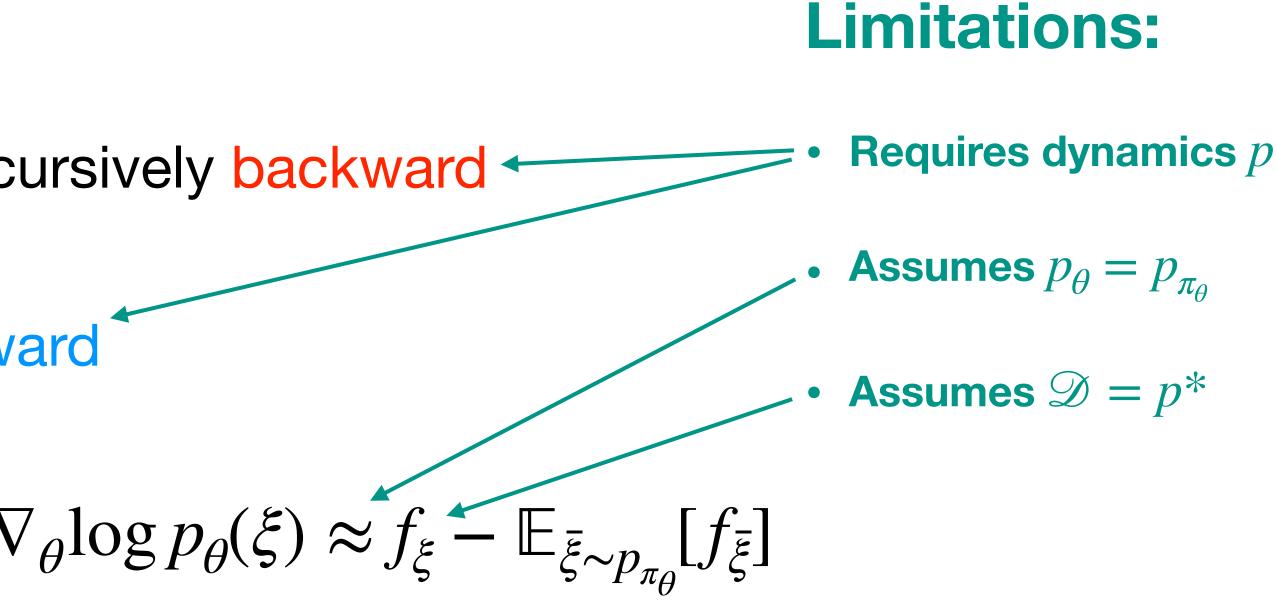
Marginalize:
$$\pi_{\theta}(a_t \mid s_t) = \frac{p_{\theta}(\xi \mid s_t, a_t)}{p_{\theta}(\xi \mid s_t)} = \frac{p_{\theta}(\xi \mid s_t, a_t)}{P_{\theta}(\xi \mid s_t)} = \frac{p_{\theta}(\xi \mid s_t, a_t)}{Z_{\theta}(s_t, a_t) \cdot p_0(\xi_{\geq t} \mid s_t) \exp(\theta^{\perp}f_{\xi \geq t})} = \pi_0(a_t \mid s_t) \frac{Z_{\theta}(s_t, a_t)}{Z_{\theta}(s_t)}$$

$$a_t] = \exp(\theta^{\mathsf{T}} f_{s_t}) \mathbb{E}_{(s_{t+1}|s_t,a_t) \sim p}[Z_{\theta}(s_{t+1})]$$
$$= \mathbb{E}_{(a_t|s_t) \sim \pi_0}[Z_{\theta}(s_t,a_t)]$$

consistent π may not even exist • This π_{θ} is not globally consistent $p_{\theta}(\xi) \neq p_{\pi_{\theta}}(\xi)$, $p_{\theta}(\xi)$ ignores the dynamics

MaxEnt IRL

- For each sample $\xi \sim \mathcal{D}$:
 - Compute $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$ recursively backward •
 - Compute $\mathbb{E}_{\bar{\xi} \sim p_{\pi o}}[f_{\bar{\xi}}]$ recursively forward
 - ► Take a gradient step to improve θ : $\nabla_{\theta} \log p_{\theta}(\xi) \approx f_{\xi} \mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$
- At the optimum: feature matching $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi o}}[f_{\xi}]$
 - ▶ MaxEnt IRL approximates $\max_{z} \mathbb{H}[\pi_{\theta}]$ s.t. $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$ θ



Today's lecture

Sparse rewards

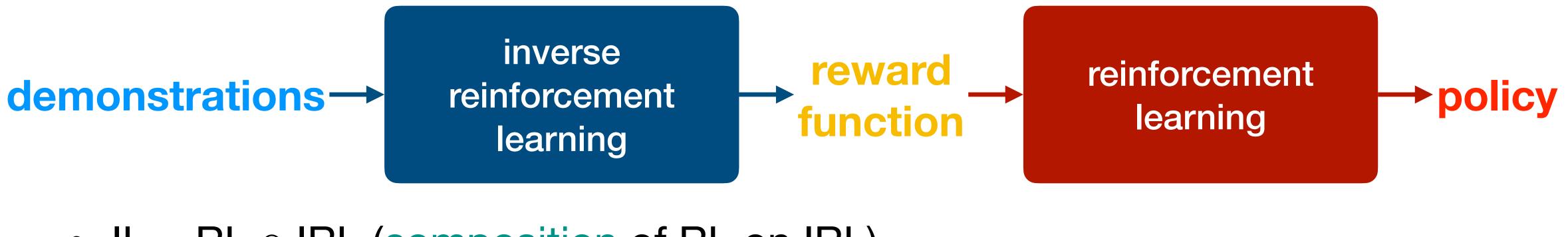
MaxEnt IRL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL

IRL: downstream tasks

One IRL motivation: learn reward function for downstream tasks



- $IL = RL \circ IRL$ (composition of RL on IRL)
- Our algorithms already learn π as part of learning θ for $r: s \mapsto \theta^{T} f_{s}$
 - Let's directly optimize IRL for the overall IL task = learn good π

IL as RL o IRL

- Entropy-regularized RL: $\max_{\pi \in \Pi} \{ \mathbb{E}_{s \sim \mu}$
- MaxEnt IRL: $\max_{r \in \mathbb{R}^{\mathcal{S}}} \{ \mathbb{E}_{s \sim p_e}[r(s)] m_{\pi \in \mathcal{R}^{\mathcal{S}}} \}$
- For any π , our objective

bjective with respect to *r* is:

$$\underset{e \in \mathbb{R}^{\mathscr{S}}}{\overset{e \in \mathbb{R}^{\mathscr{S}}}{\longleftarrow}} (p_e - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathscr{S}}} \left\{ \overbrace{(p_e - p_{\pi})}^{\circ} \cdot r - \psi(r) \right\}$$

• This form of function $\psi^* : \mathbb{R}^{\mathscr{S}} \to \mathbb{R}$ is called the convex conjugate of ψ

$$\max_{x \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \}$$

$$\operatorname{regularization over reward function spectrum}_{reward function spectrum}_{reward function}$$

$$\int_{x \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \} \} - \psi(r)$$

Reward-function regularizers

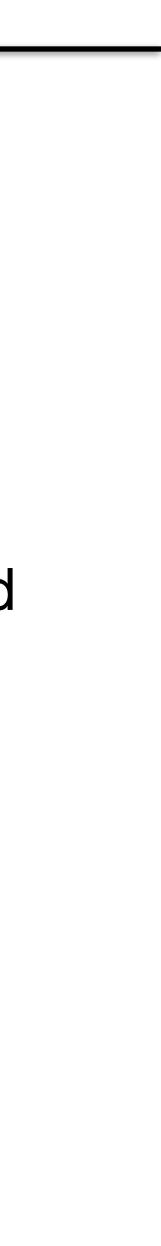
$$\psi^*(p_e - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ (p_e - p_{\pi}) \cdot r - \psi(r) \right\}$$

- Without regularizer: $\psi = 0 \implies$ solution only exists when $p_e = p_{\pi}$
- Hard linearity constraint: $\psi(r) = \begin{cases} 0 & \text{if } r(s) = \theta^{\mathsf{T}} f \\ \infty & \text{otherwise} \end{cases}$
 - \rightarrow max-entropy feature matching (MaxEnt IRL)

 \implies learner achieves teacher's state distribution: perfect solution, but hard to find

$$0 \quad \text{if } r(s) = \theta^{\mathsf{T}} f_s$$

• Great when the reward function really is linear in f_s , otherwise no guarantees



Generative Adversarial Networks (GANs)

- Train generative model $p_{\theta}(s)$ to generate states / observations
 - Can we focus the training on failure modes?
- Also train discriminator $D_{\phi}(s) \in [0,1]$ to score instances
 - Kind of like a critic: are generated instances good?
- $D_{\phi}(s)$ predicts the probability p(s gen)
 - , Trained with cross-entropy loss: $\max_{\phi} \left\{ \mathbb{E}_{s \sim p_{\theta}}[\log D_{\phi}(s)] + \mathbb{E}_{s \sim p_{e}}[\log(1 D_{\phi}(s))] \right\}$
- The generator tries to fool the discriminator: $\min_{s \sim p_{\theta}} [\log D_{\phi}(s)]$



herated by learner
$$|s) = \frac{p_{\theta}(s)}{p_{\theta}(s) + p_{e}(s)}$$

θ

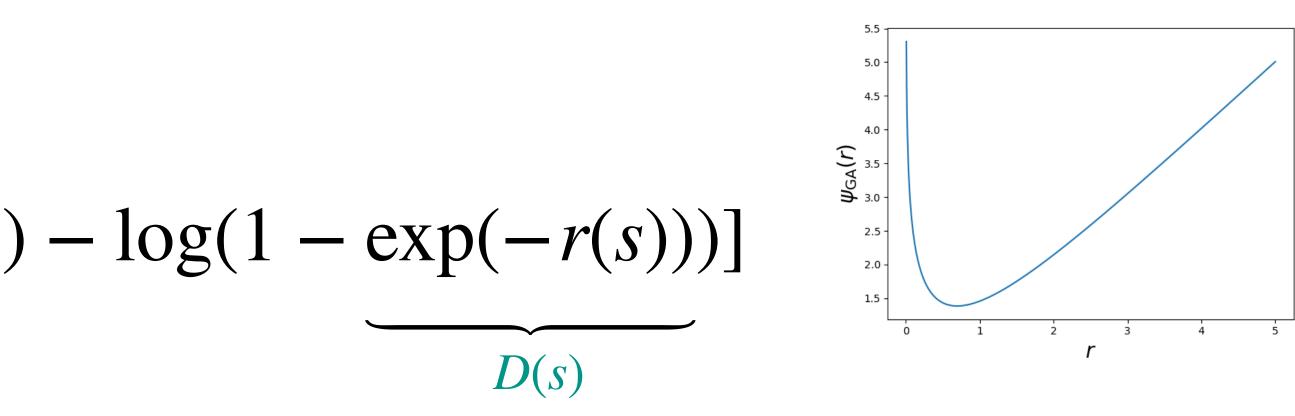
Teacher-based reward-function regularizer

Consider the regularizer

$$\psi_{\mathrm{GA}}(r) = \mathbb{E}_{s \sim p_e}[r(s)]$$

• It's convex conjugate is:

$$\begin{split} \psi_{\text{GA}}^*(p_e - p_\pi) &= \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ (p_e - p_\pi) \cdot r - \psi(r) \right\} \\ &= \max_{r \in \mathbb{R}^{\mathcal{S}}} [r(s) - r(s) + \log(1 - D(s))] - \mathbb{E}_{s \sim p_\pi} [\widetilde{r(s)}] \\ &= \mathbb{E}_{s \sim p_\pi} [\log D(s)] + \mathbb{E}_{s \sim p_e} [\log(1 - D(s))] \end{split}$$



• \implies GAN: generator p_{π} imitating teacher p_{ρ} ; discriminator $D(s) = \exp(-r(s))$

Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset $\mathcal{D}_T \sim p_T$ repeat

 $\mathcal{D}_L \leftarrow \text{roll out } \pi_\theta$ take discriminator gradient ascent step

$$\mathbb{E}_{s \sim \mathcal{D}_L} \left[\nabla_{\phi} \log D_{\phi}(s) \right] + \mathbb{E}_{s \sim \mathcal{D}_T} \left[\nabla_{\phi} \log (1 - D_{\phi}(s)) \right]$$

We've already seen one entropy-regularized PG algorithm: TRPO

More next time

take entropy-regularized policy gradient step with reward $r(s) = -\log D_{\phi}(s)$

Recap

- To understand behavior: infer the intentions of observed agents
- If teacher is optimal for a reward function
 - The reward function should make an optimizer imitate the teacher
 - State (or state-action) distribution of learner should match the teacher
- In this view, Inverse Reinforcement Learning (IRL) is a game:

 - Learner optimizes for the reward

Reward is optimized to show how much the teacher is better than the learner

Reward is like a discriminator (high = probably teacher); learner like a generator