UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2024

| ecture 14: Inverse RL

v

Roy Fox 2

. WILL PRESs &
Department of Computer Science LEVER |
School of Information and Computer Sciences FoR

. FooD
University of California, Irvine — .
SN =

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Logistics

e Quiz 7 due next Wednesday

_ e Exercise 4 + Quiz 8 will be due Week 10

e Exercise 5 will be due Week 11

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

MaxEnt IRL

GAIL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Relation between RL and IL
e What makes RL harder than |L?

» IL: teacher policy z,(a | s) indicates a good action to take in s

» RL: r(s, a) does not indicate a globally good action; O*(s, a) does, but it's nonlocal

 But didn't we see an equivalence between RL and IL?

» NLL loss in BC: VyE[log my(a|s)]

- s and a sampled from teacher distribution

» PG loss: VyE[log my(a|s)R]

- s and a sampled from learner distribution

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Informational quantities: refresher

entropy: Hip(a)] = — E,, [log p(a)] = —) p(a)log p(a)

» Conditional entropy: H[z|s] = = E___ [log n(a | s)]

e EXpected conditional entropy: H[xz] = —SNpﬂ[H[nls]] = — —S,aNpﬂ[log n(als)]

ma|s)]

w'(als)

Expected relative entropy: D[z||z] = E, ., [log

» Expected cross entropy (aka NLL): —[E S,aNpﬂ[log 7'(als)]

» D[x||z'] = NLL — H[x]

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as sparse-reward RL

» NLL BC: maximize k., [log my(a | s)] = — Dlz,|| 7] — Hlz,]

N

constantin 0

> EXxperience from teacher distribution p,

- RL: experience from learner distribution p,
> “Return” R = g ,ccess fOr successful trajectory
- RL: 7, = r(s,, a,) in every step
e Sparse reward = most rewards are 0 = rare learning signal

» R =1 on success = very sparse; but doesn't IL provide dense learning signal?

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as dense-reward RL

 What if instead we minimize the other relative entropy?

teacher labeling of learner states/actions

M 7yl 7,] = —

= o llog z.(a])] = Himy)

as in DAgger

~ This is exactly the RL objective, with r(s,a) = log z,(a | s) and entropy regularizer

» Now r(s, a) does give global information on optimal action

> |n fact, with deterministic teacher, r(s, a) = — oo for any suboptimal action

 The same return can be viewed as dense reward or sum of sparse rewards

> Can we do the same in proper RL?

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Reward shaping

e |deal reward: r(s,a) = — oo for any suboptimal action = as hard to provide as 7*

> We need supervision signal that's sufficiently easy to program — generate more data
o Sparse reward functions may be easier than dense ones

> E.g., may be easy to identify good goal states, safety violations, etc.
 Reward shaping: art of adjusting the reward function for easier RL; some tips:

> Reward “bottleneck states™; subgoals that are likely to lead to bigger goals

» Break down long sequences of coordinated actions = better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

Sparse rewards

MaxEnt IRL

GAIL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Learning rewards from demonstrations

e RL: — policy; IL: demonstrations — policy

e Inverse Reinforcement Learning (IRL): demonstrations —
» Better understand agents (humans, animals, users, markets)
- Preference elicitation, teleology (the “what for” of actions), theory of mind, language
> First step toward Apprenticeship Learning: demos — — policy

- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos

- Partly model-based (learn r but not p); may be easier to learn, generalize, transfer

- Teacher and learner can have different action spaces (e.g., human — robot)

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Inverse Reinforcement Learning (IRL)

» Given a dataset of demonstration trajectories ¥ = {&;]

r(s) expressive enough

 Find teacher's /
> Principle: demonstrated actions should achieve high expected return

e |RL is ill-defined

» How low is the reward for states and actions not in £?

> How is the reward distributed along the trajectory?

- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL

> Demonstrator can be fallible = take suboptimal actions; how much?

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Feature matching

» Assume linear reward ry(s) = 0'f; in given state features f, € |

_ t
~ Value =J, = 2}/
z

d

/

= [0T,] = E, [0TF], with p,(s) o) 7'p(s)

t ~ Geom(1 — y)
missing const: (1 —)

o [eacher optimality: expert value Jg* higher than any other policy's value Jg

» Find 6 that maximizes the gap Jg* — J3 ; but for which 77?

» Apprenticeship Learning: find & that maximizes J7 ; but for which 6?

. Solve: max min{Jg* — J7} = maxmin{E,_,.[07f;] -

0 T

0 T

> Approximate s ~ p* with s ~ &

= 1071

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Feature matching

. Solving max min{
v, T

= [0Tf] —

Algorithm Feature Matching

= 1071

Initialize policy set I = {mg}

repeat

6 must be bounded, or solution at oo

Solve Quadratic Program: max n__—

S.t. |

G~ 107 fs] 2 I

Add 7 to I1

17.]|0][2<1

10T f;]+n Vmell
m < optimal policy for rg(s) = 07 f

« On convergence: r optimal for @ (no gap), while no @ increases the gap

>» = _SN@[HTfY] ~

S~Pxr

[0] for all 6 =

—5~D) [fs] ~

feature matching

—
=g, L]

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

Sparse rewards

GAIL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Modeling bounded teachers

_ An expert teacher maximizes the value J; = Z y'E, e[0T] = Eeo:[07f:]

[

With trajectory-summed features fgg = Z y' s,

>

[

« Assume teacher has unintentional / uninformed prior policy 7,

> Bounded rationality: cost to intentionally diverge D[z || 7] (with 7, uniform: H[z*])

7*(a.|s,)]

p*(S)
g Total cost: Z _(Staat)Np* ll()g mo(a | s;)]
[

= ., [log 22| = DIp*@)lIpy(&)]

for simplicity, assume 7 = |

/
. Bounded optimality: max -éNp*[HTfé] — D[p*||po]

7Z->I<

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Bounded optimality: naive solution

. Bounded optimality: nj{ax e[0Tfc] — DIp*||py]
>I<p>l<

"ng*[logP*(f) — log py(S)]
> Nalive solution: allow any distribution p* over trajectories

>~ No need to be consistent with dynamics p(s’| s, a) = p* may be unachievable

_ Add the constraint Zp*(cf) =] with Lagrange multiplier A
5

» Differentiate by p*(&) and = 0 to optimize

po()exp(6'f;)

OTF. — loo n*(E) + 1 —1+A=0=p*C) = ———F——
Je — log p*(5) + log py(S) Prs) 2 Po©)exp (017

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

|IRL with bounded teacher

. Assume that demonstrations are distributed py(&) = Zi po(f)eXp(HT]%)
0

> With partition function Z, = ngo[eXp(Qng)]

e Find @ that minimizes NLL of demonstrations

Vglog py(S) = Vy(0'f: — log Zy) =f5—Zi9 \0YZ

= fe= 7 Beup [expO2)f] = f: — Bz, [£

>~ To compute gradient, we need p,, but how to compute Z,?

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Computing Z,: backward recursion

o Partition function: Z; = —5Np0[exp(6”]%)]

« Compute Ze recursively backward: like a value function, but + becomes -

Zo(S;, a;) = "po[eXP(H ngzt) | 5., a,] = exp(0 Tfst) — (s, +1\St,at)Np[Z9(St+1)]
ZH(SZ‘) — _po[eXP(QT]%Zt) ‘ St] — _(at‘st)NﬂO[Ze(Stﬂ at)]

part of the normalizer involving
trajectories following (s, a,)

« How to get a policy from Z,?

everything up to s, cancels out

Marginalize: m,(a,| s,) Py s, a) ‘/Po(fzr‘sv a)exp(0-fes,) - Z(s,) (a \s)Ze@t, a,)
: — — = 7T
> J A p 9(5 ‘ St) Zo(Sp, ap) - po(Sxs |)exp(0-fz»,) Ol Zy(s))
consistent 7 may not even exist
/

» This 1, is not globally consistent py(&) # pﬂe(f), pPo(&) ignores the dynamics

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

MaxEnt IRL

e For each sample & ~ : Limitations:

» Compute Z, = k., [exp(0'f)] recursively backward « * Requires dynamics p
/ | Assumes p@ — pﬂ@
» Compute [z =| recursively forward
p prn’(g[fé:] y / e Assumes QZ — p>I<

- Take a gradient step to improve 0: Vylogpy(c) = f- — E EN%[Jél

. At the optimum: feature matching E._g[f:] = ‘5,\,]%[]%]

., MaxEnt IRL approximates max H[xz,| s.t. -5,\,@[]‘5] = k.., [fcf]
0 70

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

Sparse rewards

MaxEnt IRL

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

|IRL: downstream tasks

e One IRL motivation: learn reward function for downstream tasks

...such as RL

Inverse

demonstrations— B {11l
learning

reinforcement

policy

learning

 |[L=RL o IRL (composition of RL on IRL)
» Our algorithms already learn 7 as part of learning @ for r : s — 0'f,

> Let's directly optimize IRL for the overall IL task = learn good &

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as RL o IRL

. Entropy-regularized RL: max { _SNpﬂ[l”(S)] + H[ﬂ]} regularization over

rell reward function space

. MaxEnt IRL: max = [1(5)] — max {Eyp [T + H[7] } |} — w(r)

 For any m, our objective with respect to r is:
c R°

w*(p, — p,) = max {(p, —pp) T — w(r)}

reR°®

&

> This form of function y* : R° — R is called the convex conjugate of y

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Reward-function regularizers

w*(p, — p,) = max {(p, —p,) - r—y(r)}

reR°®

» Without regularizer: w =) = solution only exists when p, = p_

» — |learner achieves teacher's state distribution: perfect solution, but hard to find

0 ifr(s) =0,

. Hard linearity constraint: y/(r) =
co otherwise

» —> max-entropy feature matching (MaxkEnt IRL)

~ Great when the reward function really is linear in J,, otherwise no guarantees

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Generative Adversarial Networks (GANS)

» Train generative model py(s) to generate states / observations

> Can we focus the training on failure modes?

» Also train discriminator Dy(s) € [0,1] to score instances

> Kind of like a critic: are generated instances good?

Po(S)

. Dy(s) predicts the probability p(s generated by learner | s) = () + p.(s)

_Trained with cross-entropy loss: max {

ax Ay llog Dy(s)] + E, . [log(] — D, (s)1}

. The generator tries to fool the discriminator: min E SNpe[log D¢(S)]
(0

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Teacher-based reward-function regularizer

e (Consider the regularizer
wea(r) = Ey, [r(s) = log(1 — exp(=r(s))] /

000000

é@)
e |t's convex conjugate is:
e (Do =) = max {(p, = p,) - 7 = (1)
reR —log D(s)
= max|r(s) — r(s) + log(1 — D(s))] — E., [7(s) |]

reR°®

=, [log D(s)] + E, _, [log(1 — D(s))]

» — GAN: generator p_imitating teacher p; discriminator D(s) = exp(—r(s))

oy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset Dy ~ pr
repeat

D; < roll out my

take discriminator gradient ascent step

Esp, | Velog Dy(s)| + Eswp, [V log(l — Dy(s))]

take entropy-regularized policy gradient step with reward r(s) = —log D4(s)

* We've already seen one entropy-regularized PG algorithm: TRPO

> More next time

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Recap

* To understand behavior: infer the intentions of observed agents

e |f teacher is optimal for a reward function
> The reward function should make an optimizer imitate the teacher
> State (or state—action) distribution of learner should match the teacher
* |n this view, Inverse Reinforcement Learning (IRL) iIs a game:
» Reward is optimized to show how much the teacher is better than the learner

» Learner optimizes for the reward

> Reward is like a discriminator (high = probably teacher); learner like a generator

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

