
Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

CS 277: Control and
Reinforcement Learning

Winter 2024
Lecture 14: Inverse RL

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Logistics

assignments

• Quiz 7 due next Wednesday

• Exercise 4 + Quiz 8 will be due Week 10

• Exercise 5 will be due Week 11

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

IRL

MaxEnt IRL

GAIL

Sparse rewards

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Relation between RL and IL
• What makes RL harder than IL?

‣ IL: teacher policy indicates a good action to take in

‣ RL: does not indicate a globally good action; does, but it's nonlocal

• But didn't we see an equivalence between RL and IL?

‣ NLL loss in BC:

- and sampled from teacher distribution

‣ PG loss:

- and sampled from learner distribution

πe(a |s) s

r(s, a) Q*(s, a)

∇θ𝔼[log πθ(a |s)]

s a

∇θ𝔼[log πθ(a |s)R]

s a

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Informational quantities: refresher

• Entropy:

• Conditional entropy:

• Expected conditional entropy:

• Expected relative entropy:

• Expected cross entropy (aka NLL):

‣

ℍ[p(a)] = − 𝔼a∼p[log p(a)] = − ∑
a

p(a)log p(a)

ℍ[π |s] = − 𝔼a∼π[log π(a |s)]

ℍ[π] = 𝔼s∼pπ
[ℍ[π |s]] = − 𝔼s,a∼pπ

[log π(a |s)]

𝔻[π∥π′] = 𝔼s,a∼pπ [log
π(a |s)
π′ (a |s)]

−𝔼s,a∼pπ
[log π′ (a |s)]

𝔻[π∥π′] = NLL − ℍ[π]

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as sparse-reward RL

• NLL BC: maximize

‣ Experience from teacher distribution

- RL: experience from learner distribution

‣ “Return” for successful trajectory

- RL: in every step

• Sparse reward = most rewards are 0 rare learning signal

‣ on success = very sparse; but doesn't IL provide dense learning signal?

𝔼s,a∼pe
[log πθ(a |s)] = − 𝔻[πe∥πθ] − ℍ[πe]

pe

pθ

R = 1success

rt = r(st, at)

⟹

R = 1

constant in θ

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as dense-reward RL

• What if instead we minimize the other relative entropy?

‣ This is exactly the RL objective, with and entropy regularizer

‣ Now does give global information on optimal action

‣ In fact, with deterministic teacher, for any suboptimal action

• The same return can be viewed as dense reward or sum of sparse rewards

‣ Can we do the same in proper RL?

𝔻[πθ∥πe] = − 𝔼s,a∼pθ
[log πe(a |s)] − ℍ[πθ]

r(s, a) = log πe(a |s)

r(s, a)

r(s, a) = − ∞

teacher labeling of learner states/actions
as in DAgger

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Reward shaping

• Ideal reward: for any suboptimal action as hard to provide as

‣ We need supervision signal that's sufficiently easy to program generate more data

• Sparse reward functions may be easier than dense ones

‣ E.g., may be easy to identify good goal states, safety violations, etc.

• Reward shaping: art of adjusting the reward function for easier RL; some tips:

‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals

‣ Break down long sequences of coordinated actions better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ ⟹ π*

⟹

⟹

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

IRL

MaxEnt IRL

GAIL

Sparse rewards

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Learning rewards from demonstrations
• RL: rewards policy; IL: demonstrations policy

• Inverse Reinforcement Learning (IRL): demonstrations reward function

‣ Better understand agents (humans, animals, users, markets)

- Preference elicitation, teleology (the “what for” of actions), theory of mind, language

‣ First step toward Apprenticeship Learning: demos rewards policy

- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos

- Partly model-based (learn but not); may be easier to learn, generalize, transfer

- Teacher and learner can have different action spaces (e.g., human → robot)

→ →

→

→ →

r p

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Inverse Reinforcement Learning (IRL)
• Given a dataset of demonstration trajectories

• Find teacher's reward function

‣ Principle: demonstrated actions should achieve high expected return

• IRL is ill-defined

‣ How low is the reward for states and actions not in ?

‣ How is the reward distributed along the trajectory?

- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL

‣ Demonstrator can be fallible = take suboptimal actions; how much?

𝒟 = {ξi}

r : 𝒮 × 𝒜 → ℝ

𝒟

 expressive enoughr(s)

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

• Assume linear reward in given state features

‣ Value = , with

• Teacher optimality: expert value higher than any other policy's value

‣ Find that maximizes the gap ; but for which ?

‣ Apprenticeship Learning: find that maximizes ; but for which ?

• Solve:

‣ Approximate with

rθ(s) = θ⊺fs fs ∈ ℝd

Jπ
θ = ∑

t

γt𝔼st∼pπ
[θ⊺fst

] = 𝔼s∼pπ
[θ⊺fs] pπ(s) ∝ ∑

t

γt pπ(st)

Jπ*
θ Jπ

θ

θ Jπ*
θ − Jπ

θ π

π Jπ
θ θ

max
θ

min
π

{Jπ*
θ − Jπ

θ } = max
θ

min
π

{𝔼s∼p*[θ⊺fs] − 𝔼s∼pπ
[θ⊺fs]}

s ∼ p* s ∼ 𝒟

Feature matching

missing const:
t ∼ Geom(1 − γ)

(1 − γ)

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

• Solving

• On convergence: optimal for (no gap), while no increases the gap

‣ ⇒ for all ⇒

max
θ

min
π

{𝔼s∼p*[θ⊺fs] − 𝔼s∼pπ
[θ⊺fs]}

π θ θ

𝔼s∼𝒟[θ⊺fs] ≈ 𝔼s∼pπ
[θ⊺fs] θ 𝔼s∼𝒟[fs] ≈ 𝔼s∼pπ

[fs]

<latexit sha1_base64="zTjo/YYXc1Mmx/MjerVZP2zSFkY=">AAADcHicdZLNbtNAEMddh49ivlK4IHFgIDkUiKIkAiohIRUBVTkgpbRpK2VTa2NPnBVrr9mdtA2un4Kn4QpPwWvwBKwTq6SNmNN4dv6//+ysh6kUhlqt3ytu5crVa9dXb3g3b92+c7e6dm/fqIkOsBcoqfThkBuUIsEeCZJ4mGrk8VDiwfDLu+L84Bi1ESrZo2mKg5hHiRiJgJMt+Wtugw0xEkkWi0SkPMK8HwyyVnPjJSM8pRMR0jj3yh4uI6UFjeO8vz3wWMDTApJtIaeJRvjEKRiLJFruF4Gt7RInzD4mggSX4htCqqQIpmCQoM66At4Ay4Clwm8By+tW8RlTi/YASu2ukscIOxMeajt+AF2tIs3j11YeCpNKPjU0lchifupnDIk3gJ0xGtuMnfkdYBKhnUNxYvHnWPbVEsE0qWlBH/zMADMiBouhccBl9j7P+zDHHDGREGpbhZFvYAAsQljQpL6d///dz2feMDdkI6W5lMWNwTaCXcHiVPVZPUIydVB20bGllBuzQqhrf26ybp4WmysN9wqnRczbMIQCVQdSszUXi+0lJKTHMAkvvdGFSvl9/md4nl+ttZqtWcBy0i6TmlNG16827M3SCWWhsniPaUzwJFBxzC24mPmfWZYX+PZl2HKy32m2XzVf7HRqm1ul0arz0HnirDttZ8PZdLadrtNzAve7+8P96f5y/1QeVB5VHs9b3ZVSc9+5EJVnfwFoshOK</latexit>

Algorithm Feature Matching
Initialize policy set ⇧ = {c0}
repeat

Solve Quadratic Program: max
[,k\k21

[

s.t. EB⇠D [\| 5B] � EB⇠?c [\| 5B] + [8c 2 ⇧
c optimal policy for A\ (B) = \| 5B
Add c to ⇧

Feature matching

feature matching

 must be bounded, or solution at θ ∞

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

IRL

MaxEnt IRL

GAIL

Sparse rewards

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Modeling bounded teachers

• An expert teacher maximizes the value

‣ With trajectory-summed features

• Assume teacher has unintentional / uninformed prior policy

‣ Bounded rationality: cost to intentionally diverge (with uniform:)

‣ Total cost:

• Bounded optimality:

Jπ*
θ = ∑

t

γt𝔼st∼p*[θ⊺fst
] = 𝔼ξ∼p*[θ⊺fξ]

fξ = ∑
t

γt fst

π0

𝔻[π*∥π0] π0 ℍ[π*]

∑
t

𝔼(st,at)∼p* [log
π*(at |st)
π0(at |st)] = 𝔼ξ∼p* [log p*(ξ)

p0(ξ)] = 𝔻[p*(ξ)∥p0(ξ)]

max
π*

𝔼ξ∼p*[θ⊺fξ] − τ𝔻[p*∥p0]
for simplicity, assume τ = 1

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Bounded optimality: naïve solutionBounded optimality: naïve solution

• Bounded optimality:

‣ Naïve solution: allow any distribution over trajectories

‣ No need to be consistent with dynamics ⇒ may be unachievable

• Add the constraint with Lagrange multiplier

• Differentiate by and to optimize

max
π*

𝔼ξ∼p*[θ⊺fξ] − 𝔻[p*∥p0]

p*

p(s′ |s, a) p*

∑
ξ

p*(ξ) = 1 λ

p*(ξ) = 0

θ⊺fξ − log p*(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ p*(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

p*
𝔼ξ∼p*[log p*(ξ) − log p0(ξ)]

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL with bounded teacherIRL with bounded teacher

• Assume that demonstrations are distributed

‣ With partition function

• Find that minimizes NLL of demonstrations

‣ To compute gradient, we need , but how to compute ?

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ̄∼p0
[exp(θ⊺fξ̄)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[fξ̄]

pθ Zθ

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Computing : backward recursionZθ

• Partition function:

• Compute recursively backward: like a value function, but + becomes ·

• How to get a policy from ?

‣ Marginalize:

‣ This is not globally consistent , ignores the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼(st+1|st,at)∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼(at|st)∼π0
[Zθ(st, at)]

Zθ

πθ(at |st) =
pθ(ξ |st, at)

pθ(ξ |st)
=

p0(ξ≥t |st, at)exp(θ⊥fξ≥t) ⋅ Zθ(st)

Zθ(st, at) ⋅ p0(ξ≥t |st)exp(θ⊥fξ≥t)
= π0(at |st)

Zθ(st, at)
Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ) pθ(ξ)

consistent may not even existπ

part of the normalizer involving
trajectories following (st, at)

everything up to cancels outst

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

MaxEnt IRL

• For each sample :

‣ Compute recursively backward

‣ Compute recursively forward

‣ Take a gradient step to improve :

• At the optimum: feature matching

‣ MaxEnt IRL approximates s.t.

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[fξ̄]

𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

Limitations:

• Requires dynamics

• Assumes

• Assumes

p

pθ = pπθ

𝒟 = p*

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Today's lecture

IRL

MaxEnt IRL

GAIL

Sparse rewards

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IRL: downstream tasks

• One IRL motivation: learn reward function for downstream tasks

 ...such as RL

• IL = RL ○ IRL (composition of RL on IRL)

• Our algorithms already learn as part of learning for

‣ Let's directly optimize IRL for the overall IL task = learn good

π θ r : s ↦ θ⊺fs

π

inverse
reinforcement

learning

reinforcement
learningdemonstrations reward

function policy

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

IL as RL ○ IRL

• Entropy-regularized RL:

• MaxEnt IRL:

• For any , our objective with respect to is:

‣ This form of function is called the convex conjugate of

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼pe

[r(s)] − max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ* : ℝ𝒮 → ℝ ψ

regularization over
reward function space

∈ ℝ𝒮

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Reward-function regularizers

• Without regularizer: solution only exists when

‣ learner achieves teacher's state distribution: perfect solution, but hard to find

• Hard linearity constraint:

‣ max-entropy feature matching (MaxEnt IRL)

‣ Great when the reward function really is linear in , otherwise no guarantees

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ = 0 ⟹ pe = pπ

⟹

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

⟹

fs

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Generative Adversarial Networks (GANs)
• Train generative model to generate states / observations

‣ Can we focus the training on failure modes?

• Also train discriminator to score instances

‣ Kind of like a critic: are generated instances good?

• predicts the probability

‣ Trained with cross-entropy loss:

• The generator tries to fool the discriminator:

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + pe(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼pe

[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Teacher-based reward-function regularizer
• Consider the regularizer

• It's convex conjugate is:

‣ GAN: generator imitating teacher ; discriminator

ψGA(r) = 𝔼s∼pe
[r(s) − log(1 − exp(−r(s)))]

ψ*GA(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

= max
r∈ℝ𝒮

[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s)]

= 𝔼s∼pπ
[log D(s)] + 𝔼s∼pe

[log(1 − D(s))]

⟹ pπ pe D(s) = exp(−r(s))

D(s)

−log D(s)

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Generative Adversarial Imitation Learning (GAIL)

• We've already seen one entropy-regularized PG algorithm: TRPO

‣ More next time

Input: demonstration dataset DT „ pT
repeat

DL – roll out ⇡✓

take discriminator gradient ascent step

Es„DLrr� logD�psqs ` Es„DT rr� logp1 ´ D�psqqs

take entropy-regularized policy gradient step with reward rpsq “ ´ logD�psq

<latexit sha1_base64="iR3FqYi/MwjxwDoGl1+2vSIfHi4=">AAANd3ictVZbc9tEFFbLrRgbWnjkgTMk8cikztgdGGbKZKaQGMpM2wlt3HaSdTSytHZ2KkvKatMkCP0z/givvMIf4I2zu7LuTlIuerF19pzv+85ldzUNPRaJweC3Gzffevudd9+79X7rg3bnw49u3/n4eRSccoeOncAL+MupHVGP+XQsmPDoy5BTezH16Ivpqx25/uI15REL/H1xEdLJwp77bMYcW6DJutMebxB6Erc2QouIYypsk5yzHnS3gcy47Qzjg9SeQGiN9SKh56EJ2nxE9mFmoRnQTlobS3eFMLJiuUIitpDRyeHK0ElrI2m1Uilkzm13iUO8YA51cQWXOl5fR2VaerCdr1TTKrFlITKXroyKydTmMo0kaYweFTwuz7SI1Ku8T4oKmyBTvsNqXLFuB1YcWeIu2Jb4BpYCu8SlM3qiUUO2Upvs05yCkNp+gSWOEtbgjuvSUYJGViw2h0kxSGtGooNsORc0SedEYvwHMrVCjJLE2qLolyCNRSmPG3qmk5RhyIlRvY6b4pO4Ij8p4oXZDPmYUKjzSR3L7Ur9/sVOaRiVIt3l83LVPrtiJN+AqJge2Yl3tb80TerZ13CVXwlvYZ9nuh8e5v4TgiAC/hc+6QaE+UD2mN73UUogsw4TC9cxnJsRNgk2UZiJll550iJ2H8j38dPkCGU9QxgR6Pc6HddkuXMj6X5OiW2q6TSvLxRnCxFQoclLonk1g6MvzIxdhuSoatcUxe+g+ARWuxPHDQTwZmLNdZ16oWP1HZUMSrZMwnZRQjUMJSgHOmd+7OC9GiHTALq6Wtul/RipgwzznIkL9CBP4gBX+RmLaCIxfTdDyElmVUbs15P4h2+TJKW+pMX6WjNh2FeHQ18ae7Uj4XHwmo5OHtGZAF3BnOG6bSvO3Bs0b3lp/qP57eufzWWOEracZXoOXTLMxTrspg3LMeqzdb3KrOJUJ+Zutouac1PZDPu7KolJ0zWBKyXdiH7MJKos3+HgLgwn9fXGiBK6ial51OY+5epuzm+0AnFSfMEkQmtfWutnLRIUMyx8j6ysQnhF/qVD/CpoFZhuS9ubB5yJ4wVzkhZ5JmxBY/Jd/KMfnor7Cbh0EfiR4OoDF1xb4B4UsK6uAezvUts6xj5+SkNqixZACpN6PZLfGCJaBx54HgSnMjy7IzAw8xf2KwouixzOFsy3RcBB3qmM+gLsyJE/kaAhqIwBn+KUaCqZp76HVY1VytkIVAdL51APkRVeBslqASRVlaiFB+FFn9P5qWdz9jN1IQw85lzkkpXWMywtcHpmcxfW02OvX9YlazfyXV29GF/kWVdqi3V7bbA1UA/U/wzTP2tG+uwRHHZsX+wGOnhYda3/eX5va/jl1lc/3Vt7MEphbhmfGp8bpjE0vjYeGA+NPWNsOO1f27+3/2j/2f6r81mn2zG1680bacwnRunpDP8GHkFZDQ==</latexit>

Roy Fox | CS 277 | Winter 2024 | Lecture 14: Inverse RL

Recap
• To understand behavior: infer the intentions of observed agents

• If teacher is optimal for a reward function

‣ The reward function should make an optimizer imitate the teacher

‣ State (or state–action) distribution of learner should match the teacher

• In this view, Inverse Reinforcement Learning (IRL) is a game:

‣ Reward is optimized to show how much the teacher is better than the learner

‣ Learner optimizes for the reward

‣ Reward is like a discriminator (high = probably teacher); learner like a generator

