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Logistics

assignments

• Quiz 7 due next Wednesday


• Exercise 4 + Quiz 8 will be due Week 10


• Exercise 5 will be due Week 11
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Relation between RL and IL
• What makes RL harder than IL?


‣ IL: teacher policy  indicates a good action to take in 


‣ RL:  does not indicate a globally good action;  does, but it's nonlocal


• But didn't we see an equivalence between RL and IL?


‣ NLL loss in BC: 


-  and  sampled from teacher distribution


‣ PG loss: 


-  and  sampled from learner distribution

πe(a |s) s

r(s, a) Q*(s, a)

∇θ𝔼[log πθ(a |s)]

s a

∇θ𝔼[log πθ(a |s)R]

s a
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Informational quantities: refresher

• Entropy: 


• Conditional entropy: 


• Expected conditional entropy: 


• Expected relative entropy: 


• Expected cross entropy (aka NLL): 


‣

ℍ[p(a)] = − 𝔼a∼p[log p(a)] = − ∑
a

p(a)log p(a)

ℍ[π |s] = − 𝔼a∼π[log π(a |s)]

ℍ[π] = 𝔼s∼pπ
[ℍ[π |s]] = − 𝔼s,a∼pπ

[log π(a |s)]

𝔻[π∥π′ ] = 𝔼s,a∼pπ [log
π(a |s)
π′ (a |s) ]

−𝔼s,a∼pπ
[log π′ (a |s)]

𝔻[π∥π′ ] = NLL − ℍ[π]
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IL as sparse-reward RL

• NLL BC: maximize 


‣ Experience from teacher distribution 


- RL: experience from learner distribution 


‣ “Return”  for successful trajectory


- RL:  in every step


• Sparse reward = most rewards are 0  rare learning signal


‣  on success = very sparse; but doesn't IL provide dense learning signal?

𝔼s,a∼pe
[log πθ(a |s)] = − 𝔻[πe∥πθ] − ℍ[πe]

pe

pθ

R = 1success

rt = r(st, at)

⟹

R = 1

constant in θ
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IL as dense-reward RL

• What if instead we minimize the other relative entropy?


 


‣ This is exactly the RL objective, with  and entropy regularizer


‣ Now  does give global information on optimal action


‣ In fact, with deterministic teacher,  for any suboptimal action


• The same return can be viewed as dense reward or sum of sparse rewards


‣ Can we do the same in proper RL?

𝔻[πθ∥πe] = − 𝔼s,a∼pθ
[log πe(a |s)] − ℍ[πθ]

r(s, a) = log πe(a |s)

r(s, a)

r(s, a) = − ∞

teacher labeling of learner states/actions 
as in DAgger
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Reward shaping

• Ideal reward:  for any suboptimal action  as hard to provide as 


‣ We need supervision signal that's sufficiently easy to program  generate more data


• Sparse reward functions may be easier than dense ones


‣ E.g., may be easy to identify good goal states, safety violations, etc.


• Reward shaping: art of adjusting the reward function for easier RL; some tips:


‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals


‣ Break down long sequences of coordinated actions  better exploration


- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ ⟹ π*

⟹

⟹
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Learning rewards from demonstrations
• RL: rewards  policy; IL: demonstrations  policy


• Inverse Reinforcement Learning (IRL): demonstrations  reward function


‣ Better understand agents (humans, animals, users, markets)


- Preference elicitation, teleology (the “what for” of actions), theory of mind, language


‣ First step toward Apprenticeship Learning: demos  rewards  policy


- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos


- Partly model-based (learn  but not ); may be easier to learn, generalize, transfer


- Teacher and learner can have different action spaces (e.g., human → robot)

→ →

→

→ →

r p
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Inverse Reinforcement Learning (IRL)
• Given a dataset of demonstration trajectories 


• Find teacher's reward function 


‣ Principle: demonstrated actions should achieve high expected return


• IRL is ill-defined


‣ How low is the reward for states and actions not in ?


‣ How is the reward distributed along the trajectory?


- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL


‣ Demonstrator can be fallible = take suboptimal actions; how much?

𝒟 = {ξi}

r : 𝒮 × 𝒜 → ℝ

𝒟

 expressive enoughr(s)
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• Assume linear reward  in given state features 


‣ Value = , with 


• Teacher optimality: expert value  higher than any other policy's value 


‣ Find  that maximizes the gap  ; but for which ?


‣ Apprenticeship Learning: find  that maximizes  ; but for which ?


• Solve: 


‣ Approximate  with 

rθ(s) = θ⊺fs fs ∈ ℝd

Jπ
θ = ∑

t

γt𝔼st∼pπ
[θ⊺fst

] = 𝔼s∼pπ
[θ⊺fs] pπ(s) ∝ ∑

t

γt pπ(st)

Jπ*
θ Jπ

θ

θ Jπ*
θ − Jπ

θ π

π Jπ
θ θ

max
θ

min
π

{Jπ*
θ − Jπ

θ } = max
θ

min
π

{𝔼s∼p*[θ⊺fs] − 𝔼s∼pπ
[θ⊺fs]}

s ∼ p* s ∼ 𝒟

Feature matching
 

missing const: 
t ∼ Geom(1 − γ)

(1 − γ)
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• Solving 


• On convergence:  optimal for  (no gap), while no  increases the gap


‣ ⇒  for all  ⇒ 

max
θ

min
π

{𝔼s∼p*[θ⊺fs] − 𝔼s∼pπ
[θ⊺fs]}

π θ θ

𝔼s∼𝒟[θ⊺fs] ≈ 𝔼s∼pπ
[θ⊺fs] θ 𝔼s∼𝒟[ fs] ≈ 𝔼s∼pπ

[ fs]

<latexit sha1_base64="zTjo/YYXc1Mmx/MjerVZP2zSFkY="></latexit>

Algorithm Feature Matching
Initialize policy set ⇧ = {c0}
repeat

Solve Quadratic Program: max
[,k\k21

[

s.t. EB⇠D [\| 5B] � EB⇠?c [\| 5B] + [ 8c 2 ⇧
c  optimal policy for A\ (B) = \| 5B
Add c to ⇧

Feature matching

feature matching

 must be bounded, or solution at θ ∞
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Modeling bounded teachers

• An expert teacher maximizes the value 


‣ With trajectory-summed features 


• Assume teacher has unintentional / uninformed prior policy 


‣ Bounded rationality: cost to intentionally diverge  (with  uniform: )


‣ Total cost: 


• Bounded optimality: 

Jπ*
θ = ∑

t

γt𝔼st∼p*[θ⊺fst
] = 𝔼ξ∼p*[θ⊺fξ]

fξ = ∑
t

γt fst

π0

𝔻[π*∥π0] π0 ℍ[π*]

∑
t

𝔼(st,at)∼p* [log
π*(at |st)
π0(at |st) ] = 𝔼ξ∼p* [log p*(ξ)

p0(ξ) ] = 𝔻[p*(ξ)∥p0(ξ)]

max
π*

𝔼ξ∼p*[θ⊺fξ] − τ𝔻[p*∥p0]
for simplicity, assume τ = 1
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Bounded optimality: naïve solutionBounded optimality: naïve solution

• Bounded optimality: 


‣ Naïve solution: allow any distribution  over trajectories


‣ No need to be consistent with dynamics  ⇒  may be unachievable


• Add the constraint  with Lagrange multiplier 


• Differentiate by  and  to optimize


   

max
π*

𝔼ξ∼p*[θ⊺fξ] − 𝔻[p*∥p0]

p*

p(s′ |s, a) p*

∑
ξ

p*(ξ) = 1 λ

p*(ξ) = 0

θ⊺fξ − log p*(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ p*(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

p*
𝔼ξ∼p*[log p*(ξ) − log p0(ξ)]
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IRL with bounded teacherIRL with bounded teacher

• Assume that demonstrations are distributed 


‣ With partition function 


• Find  that minimizes NLL of demonstrations


 


‣ To compute gradient, we need , but how to compute ?

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ̄∼p0
[exp(θ⊺fξ̄)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[ fξ̄]

pθ Zθ
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Computing : backward recursionZθ

• Partition function: 


• Compute  recursively backward: like a value function, but + becomes ·


 


• How to get a policy from ?


‣ Marginalize: 


‣ This  is not globally consistent ,  ignores the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼(st+1|st,at)∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼(at|st)∼π0
[Zθ(st, at)]

Zθ

πθ(at |st) =
pθ(ξ |st, at)

pθ(ξ |st)
=

p0(ξ≥t |st, at)exp(θ⊥fξ≥t) ⋅ Zθ(st)

Zθ(st, at) ⋅ p0(ξ≥t |st)exp(θ⊥fξ≥t)
= π0(at |st)

Zθ(st, at)
Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ) pθ(ξ)

consistent  may not even existπ

part of the normalizer involving 
trajectories following (st, at)

everything up to  cancels outst
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MaxEnt IRL

• For each sample :


‣ Compute  recursively backward


‣ Compute  recursively forward


‣ Take a gradient step to improve : 


• At the optimum: feature matching 


‣ MaxEnt IRL approximates    s.t. 

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[ fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[ fξ̄]

𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

Limitations: 

• Requires dynamics  

• Assumes  

• Assumes 

p

pθ = pπθ

𝒟 = p*
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IRL: downstream tasks

• One IRL motivation: learn reward function for downstream tasks


                                                                                 ...such as RL


• IL = RL ○ IRL (composition of RL on IRL)


• Our algorithms already learn  as part of learning  for 


‣ Let's directly optimize IRL for the overall IL task = learn good 

π θ r : s ↦ θ⊺fs

π

inverse 
reinforcement 

learning

reinforcement 
learningdemonstrations reward 

function policy
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IL as RL ○ IRL

• Entropy-regularized RL: 


• MaxEnt IRL: 


• For any , our objective with respect to  is:


 


‣ This form of function  is called the convex conjugate of 

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼pe

[r(s)] − max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ* : ℝ𝒮 → ℝ ψ

regularization over 
reward function space

∈ ℝ𝒮
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Reward-function regularizers

 


• Without regularizer:   solution only exists when 


‣  learner achieves teacher's state distribution: perfect solution, but hard to find


• Hard linearity constraint: 


‣  max-entropy feature matching (MaxEnt IRL)


‣ Great when the reward function really is linear in , otherwise no guarantees

ψ*(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

ψ = 0 ⟹ pe = pπ

⟹

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

⟹

fs
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Generative Adversarial Networks (GANs)
• Train generative model  to generate states / observations


‣ Can we focus the training on failure modes?


• Also train discriminator  to score instances


‣ Kind of like a critic: are generated instances good?


•  predicts the probability 


‣ Trained with cross-entropy loss: 


• The generator tries to fool the discriminator: 

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + pe(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼pe

[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]
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Teacher-based reward-function regularizer
• Consider the regularizer


 


• It's convex conjugate is:


 


‣  GAN: generator  imitating teacher ; discriminator 

ψGA(r) = 𝔼s∼pe
[r(s) − log(1 − exp(−r(s)))]

ψ*GA(pe − pπ) = max
r∈ℝ𝒮 {(pe − pπ) ⋅ r − ψ(r)}

= max
r∈ℝ𝒮

[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s) ]

= 𝔼s∼pπ
[log D(s)] + 𝔼s∼pe

[log(1 − D(s))]

⟹ pπ pe D(s) = exp(−r(s))

D(s)

−log D(s)
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Generative Adversarial Imitation Learning (GAIL)

• We've already seen one entropy-regularized PG algorithm: TRPO


‣ More next time

Input: demonstration dataset DT „ pT
repeat

DL – roll out ⇡✓

take discriminator gradient ascent step

Es„DLrr� logD�psqs ` Es„DT rr� logp1 ´ D�psqqs

take entropy-regularized policy gradient step with reward rpsq “ ´ logD�psq

<latexit sha1_base64="iR3FqYi/MwjxwDoGl1+2vSIfHi4="></latexit>
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Recap
• To understand behavior: infer the intentions of observed agents


• If teacher is optimal for a reward function


‣ The reward function should make an optimizer imitate the teacher


‣ State (or state–action) distribution of learner should match the teacher


• In this view, Inverse Reinforcement Learning (IRL) is a game:


‣ Reward is optimized to show how much the teacher is better than the learner


‣ Learner optimizes for the reward


‣ Reward is like a discriminator (high = probably teacher); learner like a generator


