CS 277: Control and Reinforcement Learning **Winter 2024** Lecture 11: Exploration

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Exercise 3 due next Monday
- Quiz 6 published shortly, due next Monday
- Quiz schedule (hopefully) finalized
- After this week: advanced topics
 - Including some important algorithms
- Next Tuesday: guest lecture on RLHF

lectures

Today's lecture

Multi-Armed Bandits

Exploration in Deep RL

Roy Fox | CS 277 | Winter 2024 | Lecture 11: Exploration

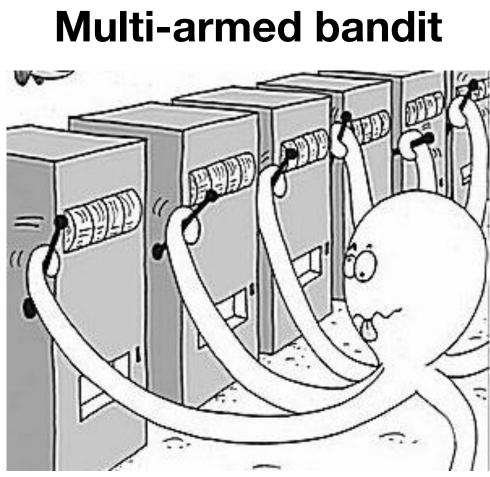
Sparse rewards

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_1, \ldots, a_k
 - Each time we take action a_i we see a noisy reward $r_t \sim p_i$
- Can we maximize the expected reward max $\mathbb{E}_{r \sim p_i}[r]$?
 - We can use the mean as an estimate
- Challenge: is the best mean so far the best action?
 - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{n(i)} \sum_{t \in \mathcal{T}_i} r_t$$

One-armed bandit



Exploration vs. exploitation

- Exploitation = choose actions that seems good (so far)
- Exploration = see if we're missing out on even better ones
- Naïve solution: learn r by trying every action enough times
 - Suppose we can't wait that long: we care about rewards while we learn
- Regret = how much worse our return is than an optimal action

 $\rho(I) =$

$$T\mu_{a^*} - \sum_{t=0}^{T-1} r_t$$

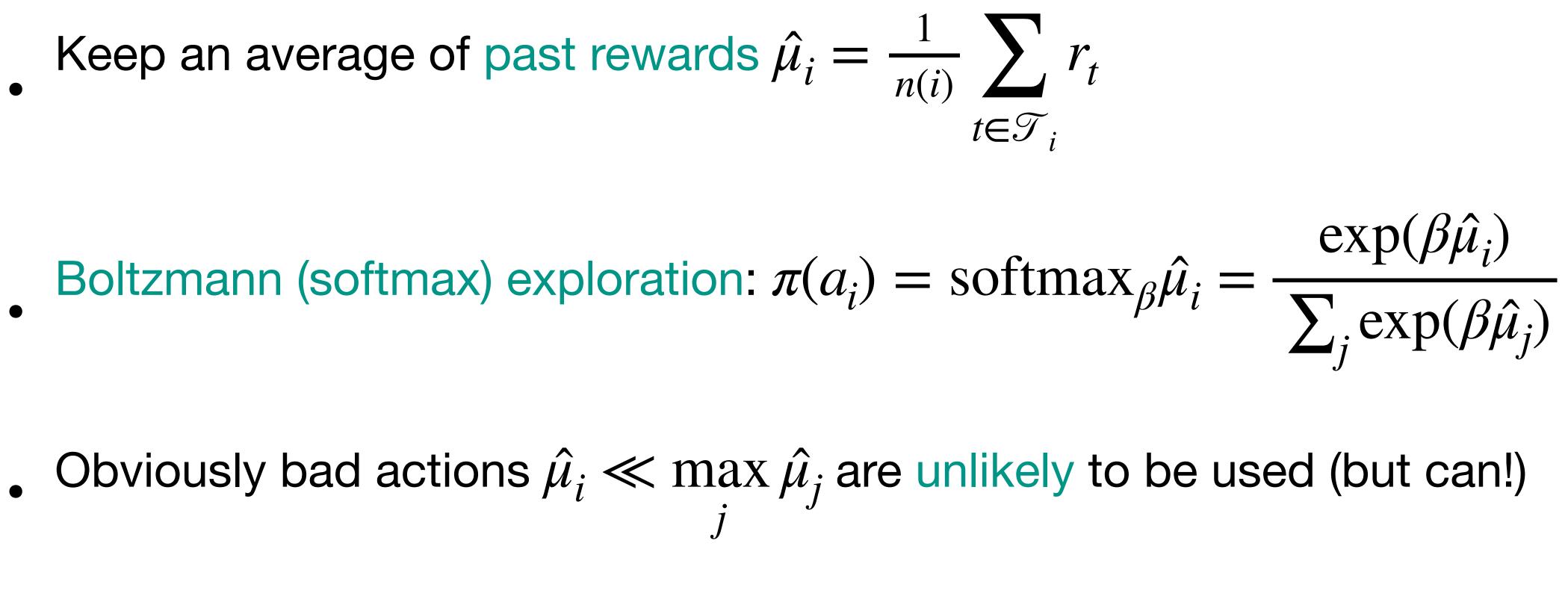
• Can we get the regret to grow sub-linearly with $T? \implies$ average goes to 0: $\frac{\rho(T)}{T} \rightarrow 0$

<u>http://iosband.github.io/2015/07/28/Beat-the-bandit.html</u>

Simple exploration: ϵ -greedy

- With probability *E*:
 - Select action uniformly at random
- Otherwise (w.p. 1ϵ):
 - Select best (on average) action so far
- Problem 1: all non-greedy actions selected with same probability
- Problem 2: must have $\epsilon \to 0$, or we keep accumulating regret
 - But at what rate should ϵ vanish?

Boltzmann exploration



- Problem: still must have $\beta \to \infty$, or we keep accumulating regret
- Some evidence that β should increase linearly

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
 - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rewa
- Be optimistic by slowly-growing number of standard deviations: \bullet

 $a = \arg m$

- Upper confidence bound (UCB): likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown variance \implies let c grow
- But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T) = O(\log T)$, provably optimal

ard
$$\hat{\mu}_i$$
 of arm *i* quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{n(i)}\right)\right)$

$$\max_{i} \hat{\mu}_{i} + \sqrt{\frac{2\ln T}{n(i)}}$$

Thompson sampling

- Consider a model of the reward distribution $p_{\theta_i}(r \mid a_i)$
- Suppose we start with some prior $q(\theta)$
 - Taking action a_t , see reward $r_t \implies$ update posterior $q(\theta | \{(a_{< t}, r_{< t})\})$
- Thompson sampling:
 - Sample $\theta \sim q$ from the posterior

• Take the optimal action $a^* = \max_{r \sim p_{\theta i}} [r]$

- Update the belief (different methods for doing this)
- Repeat

Other online learning settings

- What is the reward for action a_i ?
 - MAB: random variable with distribution $p_i(r)$
 - Adversarial bandits: adversary selects r_i for every action
 - The adversary knows our algorithm! And past action selection! But not future actions
 - Learner must be stochastic (= unpredictable), but we can still have guarantees lacksquare
 - Dueling bandits: just 1 bit of feedback, is a_i better or a_i ?
- Contextual bandits: we also get instance $x \sim p$, make decision $\pi(a \mid x)$
 - Can we generalize to unseen instances?

Today's lecture

Multi-Armed Bandits

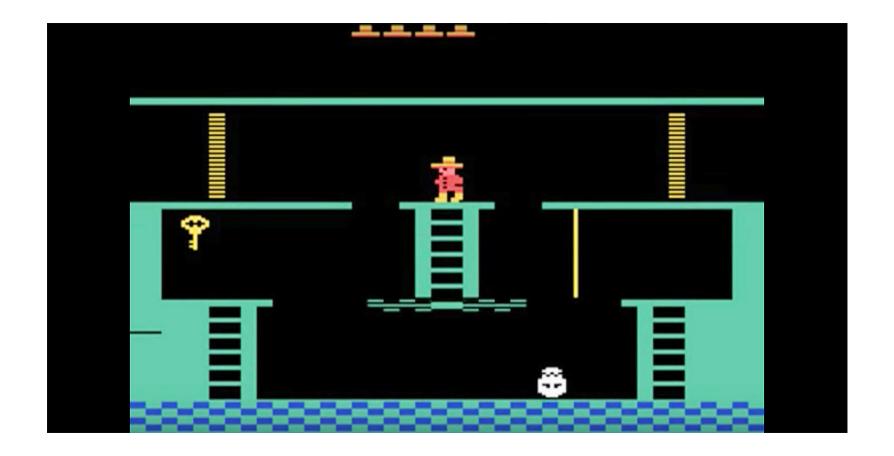
Exploration in Deep RL

Roy Fox | CS 277 | Winter 2024 | Lecture 11: Exploration

Sparse rewards

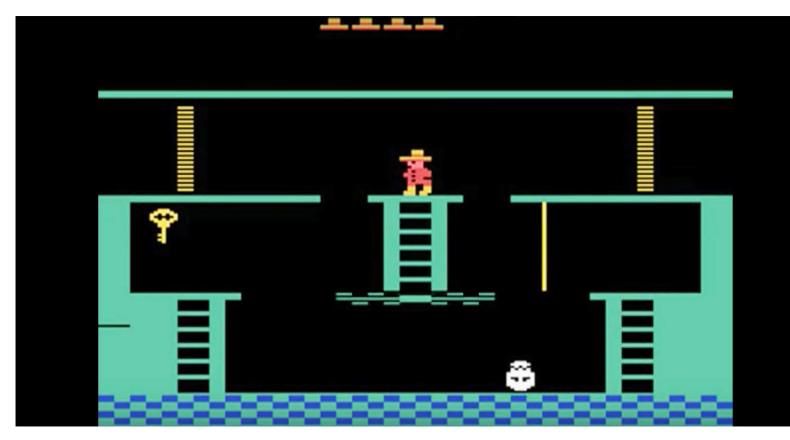
Learning with sparse rewards

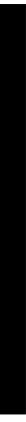
- Montezuma's Revenge
 - Key = 100 points
 - Door = 500 points
 - Skull = 0 points
 - Is it good? Bad? Affects something off-screen? Opens up an easter egg?
 - Humans have a head start with transfer from known objects
- Exploration before learning:
 - Random walk until you get some points could take a while!



RL exploration is more complicated...

- Need to consider states and dynamics
- Need coordinated behavior to get anywhere
 - E.g., cross a bridge to get the game started...
 - Random exploration will kill us with high probability
 - Structured exploration: noise over time has joint distribution, temporal structure
- How to define regret?
 - With respect to constant action? We can outperform it
 - With respect to optimal policy? May be too hard to learn \implies linear regret
 - Most approaches are heuristic, no regret guarantees; often train-time rewards don't matter





Count-based exploration

• Generalizing UCB exploration a =

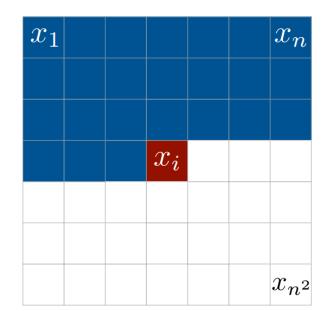
- Count visitations to each state n(s) (or state-action n(s, a))
- Optimism under uncertainty: add exploration bonus to scarcely-visited states
 - $\tilde{r} = r$
 - r_e should be monotonic decreasing in n(s)
 - Need to tune its weight

$$\arg\max_{i}\hat{\mu}_{i} + \sqrt{\frac{2\ln T}{n(i)}} \text{ from MAB to RL}$$

$$+ r_{e}(n(s))$$

Density model for count-based exploration

- How to represent "counts" in large state spaces?
 - We may never see the same state twice
 - If a state is very similar to ones we've seen often, is it new?
- Train a density model $p_{\phi}(s)$ over past experience
- Unlike generative models, we care about getting the density correctly
 - But we don't care about the quality of samples
- Density models for images:
 - CTS, PixelRNN, PixelCNN, etc.



Pseudo-counts

• How to infer pseudo-counts from a density

• After another visit:

- To recover the pseudo-count:
 - $p_{\phi'} \leftarrow \text{mock-update}$ the density model with another visit of s
 - Compute

$$\hat{N} = \frac{1 - p_{\phi'}(s)}{p_{\phi'}(s) - p_{\phi}(s)} p_{\phi}(s) \qquad \hat{n}(s) = \hat{N}p_{\phi}(s)$$

$$p_{\phi}(s) = \frac{n(s)}{N}$$

$$p_{\phi}(s) = \frac{n(s) + 1}{N + 1}$$

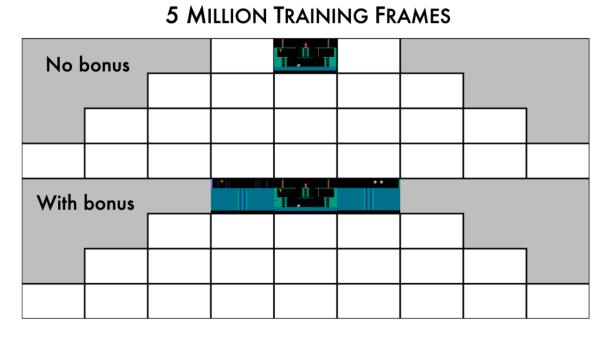
Exploration bonus

- What's a good exploration bonus?
- In bandits: Upper Confidence Bound (UCB)

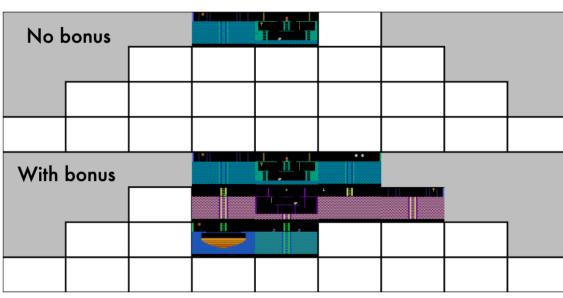
$$r_e(n(s)) = \sqrt{\frac{2\ln N}{n(s)}}$$

• In RL, often:

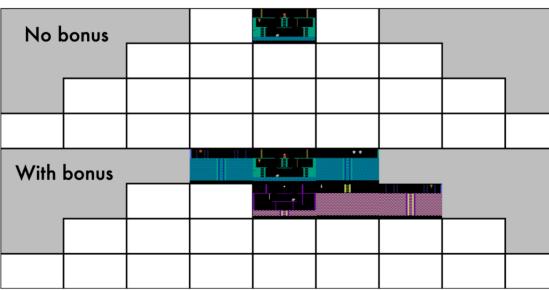
$$r_e(n(s)) = \sqrt{\frac{1}{n(s)}}$$



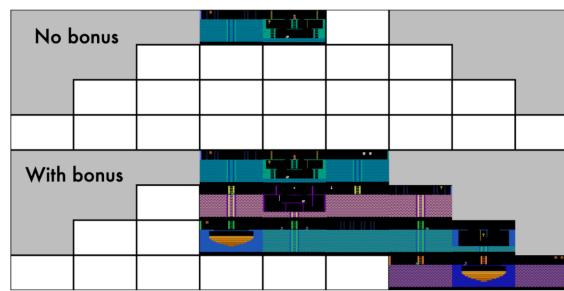
20 MILLION TRAINING FRAMES



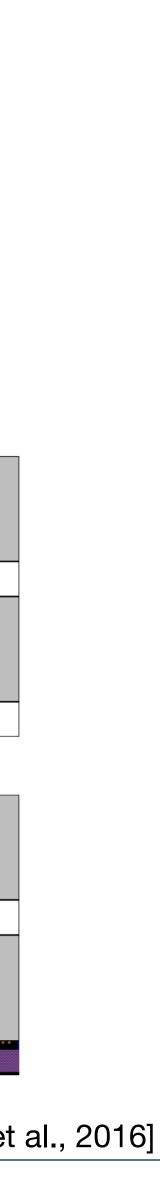
10 MILLION TRAINING FRAMES



50 MILLION TRAINING FRAMES



[Bellemare et al., 2016]



Thompson sampling for RL

- Keep a distribution over models $p_{\theta}(\phi)$
- What's our "model"? Idea 1: MDP; Idea 2: Q-function

- Thompson sampling over Q-functions:
 - Sample $Q \sim p_{\theta}$
 - , Roll out an episode with the greedy policy $\pi(s) = \arg \max Q(s, a)$
 - Update $p_{ heta}$ to be more likely for Q' that gives low empirical Bellman error
 - Repeat

Optimal exploration: simple settings

- Multi-Armed Bandits (MAB): single state, one-step horizon
 - Exploration-exploitation tradeoff very well understood
- Contextual bandits: random state, one-step horizon
 - Also has good theory (Online Learning)
- Tabular RL
 - Some good heuristics, recent theoretical guarantees
- Deep RL
 - Only few exploratory ideas and heuristics

- Online learning = getting good rewards while learning
 - In contrast: learn however, but deploy good policy
- Online learning requires trading off exploration-exploitation
 - Don't overfit to too little data
 - Don't be late to use what you've learned
- Optimism under uncertainty: exploration bonus for novelty \bullet
- Thompson sampling: coordinated exploration actions
- Same principles hold in RL

Today's lecture

Multi-Armed Bandits

Exploration in Deep RL

Roy Fox | CS 277 | Winter 2024 | Lecture 11: Exploration

Sparse rewards

Relation between RL and IL

- What makes RL harder than IL?
 - IL: teacher policy $\pi_{\rho}(a \mid s)$ indicates a good action to take in s
 - RL: r(s, a) does not indicate a globally good action; $Q^*(s, a)$ does, but it's nonlocal
- But didn't we see an equivalence between RL and IL?
 - NLL loss in BC: $\nabla_{\theta} \mathbb{E}[\log \pi_{\theta}(a \mid s)]$
 - s and a sampled from teacher distribution
 - **PG loss**: $\nabla_{\theta} \mathbb{E}[\log \pi_{\theta}(a \mid s)R]$
 - s and a sampled from learner distribution

Informational quantities: refresher

Entropy:
$$\mathbb{H}[p(a)] = -\mathbb{E}_{a \sim p}[\log p(a)] = -\sum_{a} p(a)\log p(a)$$

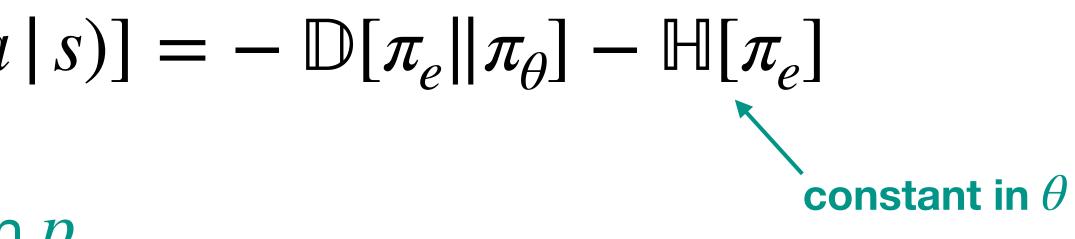
- Conditional entropy: $\mathbb{H}[\pi | s] = -\mathbb{E}_{a \sim \pi}[\log \pi(a | s)]$
- Expected relative entropy: $\mathbb{D}[\pi \| \pi'] = \mathbb{E}_{s, a \sim p_{\pi}} \left| \log \frac{\pi(a \mid s)}{\pi'(a \mid s)} \right|$
- Expected cross entropy (aka NLL): -
 - $\mathbb{D}[\pi || \pi'] = \mathrm{NLL} \mathbb{H}[\pi]$

• Expected conditional entropy: $\mathbb{H}[\pi] = \mathbb{E}_{s \sim p_{\pi}}[\mathbb{H}[\pi|s]] = -\mathbb{E}_{s,a \sim p_{\pi}}[\log \pi(a|s)]$

$$-\mathbb{E}_{s,a\sim p_{\pi}}[\log \pi'(a \mid s)]$$

IL as sparse-reward RL

- NLL BC: maximize $\mathbb{E}_{s,a \sim p_e}[\log \pi_{\theta}(a \mid s)] = -\mathbb{D}[\pi_e \mid \pi_{\theta}] \mathbb{H}[\pi_e]$
 - Experience from teacher distribution p_{ρ}
 - RL: experience from learner distribution p_{θ}
 - "Return" $R = 1_{\text{success}}$ for successful trajectory
 - RL: $r_t = r(s_t, a_t)$ in every step
- Sparse reward = most rewards are $0 \implies$ rare learning signal



• R = 1 on success = very sparse; but doesn't IL provide dense learning signal?

IL as dense-reward RL

• What if instead we minimize the other relative entropy?

$$\mathbb{D}[\pi_{\theta} \| \pi_{e}] = -\mathbb{E}_{s,a}$$

- Now r(s, a) does give global information on optimal action
- - Can we do the same in proper RL?

teacher labeling of learner states/actions $\lim_{\iota \sim p_{\theta}} [\log \pi_{e}(a \mid s)] - \mathbb{H}[\pi_{\theta}] \qquad \text{as in DAgger}$

• This is exactly the RL objective, with $r(s, a) = \log \pi_{\rho}(a \mid s)$ and entropy regularizer

• In fact, with deterministic teacher, $r(s, a) = -\infty$ for any suboptimal action

• The same return can be viewed as dense reward or sum of sparse rewards

Reward shaping

- Ideal reward: $r(s, a) = -\infty$ for any suboptimal action \implies as hard to provide as π^*
 - We need supervision signal that's sufficiently easy to program \implies generate more data
- Sparse reward functions may be easier than dense ones
 - E.g., may be easy to identify good goal states, safety violations, etc.
- Reward shaping: art of adjusting the reward function for easier RL; some tips:
 - Reward "bottleneck states": subgoals that are likely to lead to bigger goals
 - Break down long sequences of coordinated actions => better exploration
 - E.g. reward beacons on long narrow paths, for exploration to stumble upon