
CS 277 (W24): Control and Reinforcement Learning
Exercise 5
Due date: Monday, March 18, 2024 (Pacific Time)
Roy Fox
https://royf.org/crs/CS277/W24

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise);
instead, briefly explain informally the reasoning behind your answers. In practice questions, include
a printout of your code as a page in your PDF, and a screenshot of TensorBoard learning curves
(episode_reward_mean, unless specified otherwise) as another page.

Part 1 Actor–Critic PG and Bounded RL (40 points)
Consider the following Actor–Critic Policy Gradient algorithm. It represents an actor 𝜋𝜃 and a critic
𝑉𝜙, as well as a slowly-updating target network 𝑉𝜙. Then with on-policy experience (𝑠, 𝑎, 𝑟, 𝑠′) it
uses a target 𝑦𝜙 (𝑟, 𝑠′) = 𝑟 + 𝛾𝑉𝜙 (𝑠′) to compute the Temporal-Difference (TD) critic loss

L𝜙 = 1
2 (𝑦𝜙 (𝑟, 𝑠

′) −𝑉𝜙 (𝑠))2. (1)

It also uses the critic’s advantage estimate

𝐴 = 𝑦𝜙 (𝑟, 𝑠′) −𝑉𝜙 (𝑠) (2)

to compute the Policy-Gradient actor loss

L𝜃 = −𝐴 log 𝜋𝜃 (𝑎 |𝑠). (3)

The algorithm then descends the total loss

LAC = L𝜙 + 𝜂L𝜃 , (4)

with 𝜂 a coefficient relating the two losses.

Question 1.1 (5 points) In (2), it would be more standard to use the non-target network for both
terms. Explain why that would be a valid choice, but the same is not true in (1). What is the relevant
difference between how these expressions are used?

Question 1.2 (5 points) Point out another difference (in addition to the one in the previous
question) between the above algorithm and the Actor–Critic PG algorithm we saw in class. Point
out one difference between the above algorithm and the Advantage Actor–Critic (A2C) algorithm
we saw in class.

https://royf.org/crs/CS277/W24
https://royf.org/crs/CS277/W24/CS277L5.pdf#page=19
https://royf.org/crs/CS277/W24/CS277L5.pdf#page=24

Question 1.3 (5 points) The SQL algorithm represents an action-value function 𝑄𝛽 (𝑠, 𝑎) that
induces the soft-greedy policy

𝜋𝛽 (𝑎 |𝑠) = 𝜋0(𝑎 |𝑠) exp 𝛽𝑄𝛽 (𝑠, 𝑎)
exp 𝛽𝑉 𝛽 (𝑠)

, (5)

with the log-normalizer

𝑉 𝛽 (𝑠) = 1
𝛽

logE(𝑎 |𝑠)∼𝜋0 [exp 𝛽𝑄𝛽 (𝑠, 𝑎)] . (6)

Rearranging (5), we get

𝑄𝛽 (𝑠, 𝑎) = 𝑉 𝛽 (𝑠) + 1
𝛽

log
𝜋𝛽 (𝑎 |𝑠)
𝜋0(𝑎 |𝑠)

. (7)

Consider implementing SQL with a value network 𝑄
𝛽

𝜃,𝜙
: 𝑆 → R𝐴 that has the structure in (7).

Namely, the network has two heads, 𝜋𝛽

𝜃
: 𝑆 → Δ(𝐴) and 𝑉

𝛽

𝜙
: 𝑆 → R, which are combined as in (7)

to compute 𝑄𝛽

𝜃,𝜙
. There is also a target network that keeps a slowly-updating copy 𝑉 𝛽

𝜙
of 𝑉 𝛽

𝜙
, and the

TD loss is now

LSQL = 1
2 (𝑦

𝛽

𝜙
(𝑟, 𝑠′) −𝑄

𝛽

𝜃,𝜙
(𝑠, 𝑎))2, (8)

with 𝑦
𝛽

𝜙
(𝑟, 𝑠′) = 𝑟 + 𝛾𝑉

𝛽

𝜙
(𝑠′).

What is the gradient of LSQL with respect to 𝜃? with respect to 𝜙?

Question 1.4 (10 points) Consider the SQL loss (8) in terms of 𝑉 𝛽

𝜙
(𝑠). Now consider the AC

critic loss (1) in terms of 𝑉𝜙 (𝑠), but with a different reward: instead of 𝑟 , we’ll use a pseudo-reward
𝑟 (𝑠, 𝑎). Write an expression for 𝑟 such the above two expressions are the same in terms of their
respective state-value networks, 𝑉 𝛽

𝜙
and 𝑉𝜙. Hint: 𝑟 is called a pseudo-reward because it’s not a

fixed function of 𝑠 and 𝑎, but may additionally depend on quantities that change during the run of
the algorithm.

Question 1.5 (10 points) Consider the 𝜃 gradient ∇𝜃 LSQL of the SQL loss (8). Now consider
the gradient ∇𝜃 L𝜃 of the AC actor loss (3), but with the pseudo-reward 𝑟 from the previous question.
Show that the expressions for these gradients are the same, up to a constant, in terms of their
respective policy networks, 𝜋𝛽

𝜃
and 𝜋𝜃 .

Question 1.6 (5 points) Under the equivalence in the previous two questions, what quantity in
the above AC PG algorithm plays a role equivalent to that of 𝛽 in SQL?

Part 2 Option–Critic (60 points)
Question 2.1 (10 points) Download the following implementation of the Option–Critic algorithm:
https://github.com/alversafa/option-critic-arch. Readoption_critic.ipynb, and
make the following changes:

https://github.com/alversafa/option-critic-arch

1. In parts 3 and 4, add color bars (see matplotlib.pyplot.colorbar) to the heat maps.

2. In part 4, plot the following three histograms:

(a) For each option ℎ (on the x-axis), the number of times option ℎ was called in an episode.
(b) For each option ℎ (on the x-axis), the average number of actions option ℎ took each time

it was called before it terminated.
(c) For each option ℎ (on the x-axis), the total number of actions it took in an episode

(summed over all times it was called).

In each of these histograms, plot the average and SEM error bars over 10 episodes.

Run the code, and attach the resulting plots.

Question 2.2 (5 points) Does the agent seem to be high-fitting (i.e. a single option solves much
of the entire task)? Does it seem to be low-fitting (i.e. options terminate very quickly, such that the
meta-policy solves much of the entire task)? Explain which results make you think so and why.

Question 2.3 (10 points) One way to reduce high-fitting is to make the options simpler. In the
next question, you’ll implement options that try to move towards a single position 𝜇ℎ = [𝑥ℎ, 𝑦ℎ] in
2D space. Specifically, the action policy for option ℎ, parametrized by 𝜇ℎ, is:

𝜋𝜇ℎ (𝑎 |𝑠) ∝ exp(−𝑑 (𝑠′, 𝜇ℎ)), (9)

where 𝑠′ is the state that would have followed 𝑠 when action 𝑎 is taken if there were no walls, and
𝑑 (𝑠1, 𝑠2) = 1

2 ∥𝑠1 − 𝑠2∥2
2. Recall that the option policy gradient in the Option–Critic algorithm is

∇𝜇ℎ Lℎ (𝑠, 𝑎) = −𝑄ℎ (𝑠, 𝑎) ∇𝜇ℎ log 𝜋𝜇ℎ (𝑎 |𝑠).
Write an expression for the loss gradient when the policy is given by (9).

Question 2.4 (25 points) In this question, you’ll implement the option class in (9). Read the
implementation of the current option policy class utils.SoftmaxPolicy. It parametrizes the
policy with parameters 𝜃𝑠,𝑎 such that the softmax policy is

𝜋𝜃 (𝑎 |𝑠) ∝ exp 𝜏−1𝜃𝑠,𝑎, (10)

where 𝜏 is a temperature hyperparameter. The class originally has the following methods:

• The method Q_U just returns the parameters, and is poorly named so don’t get confused — it’s
not returning 𝑄 values at all.

• The method pmf takes the parameters and applies softmax to get 𝜋𝜃 (𝑎 |𝑠) for all actions 𝑎

in a given state 𝑠. Computing softmax can be numerically unstable if parameters become
very large or very small, so notice how this function uses logsumexp to compute this in a
numerically stable way.

• The method sample then samples an action for a given state.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html

• The method update takes an option policy gradient step over the parameters. Its argument
Q_U is the same as what we called 𝑄ℎ, and is provided to this method by the critic. Note that,
in the original parametrization, L𝜃 (𝑠, 𝑎) for a given state 𝑠 and action 𝑎 depends only on 𝜃𝑠,𝑎
for that action and 𝜃𝑠,�̃� for other actions. The gradient therefore only touches those parameters,
and for them:

∇𝜃𝑠,�̃� L𝜃 (𝑠, 𝑎) = −𝑄ℎ (𝑠, 𝑎) ∇𝜃𝑠,�̄� log
∑̄︁
𝑎

exp 𝜏−1𝜃𝑠,�̄� = −𝜏−1𝜋(�̃� |𝑠)𝑄ℎ (𝑠, 𝑎),

and similarly

∇𝜃𝑠,𝑎 L𝜃 (𝑠, 𝑎) = 𝜏−1(1 − 𝜋(𝑎 |𝑠))𝑄ℎ (𝑠, 𝑎).

Note how the current code implements this update.

Based on this, implement the new option class, with the new parametrization (9). The code for the
Option–Critic algorithm will only use the methods sample and update of your class, but you can
use or add any other methods that you find helpful. Some things to note:

• You can initialize the option policy parameters 𝜇ℎ however you want.

• The state argument is an integer. To get the (𝑥, 𝑦) position in the grid world, you can
use env.tocell (see here: https://github.com/alversafa/option-critic-arch/
blob/master/fourrooms.py#L42). Taking the env object as argument when constructing
the policy object may therefore help.

• The action argument is also an integer. To get the direction in the grid world, you can use
env.directions.

• The state that follows env.tocell(state) when taking action env.directions(action)
is their sum (if it’s not a wall, but for the purpose of the policy ignore walls).

• Remember to descend, rather than ascend, on the loss.

Replace the option_policies with your implementation.

Question 2.5 (10 points) Run your code. Compare the results with different numbers of options.
Compare the results with the original code.

https://royf.org/crs/CS277/W24/CS277L16.pdf#page=13
https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42
https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42

	Actor–Critic PG and Bounded RL (40 points)
	Option–Critic (60 points)

