
CS 277 (W24): Control and Reinforcement Learning
Exercise 4
Due date: Monday, March 11, 2024 (Pacific Time)
Roy Fox
https://royf.org/crs/CS277/W24

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise);
instead, briefly explain informally the reasoning behind your answers. In practice questions, include
a printout of your code as a page in your PDF, and a screenshot of TensorBoard learning curves
(episode_reward_mean, unless specified otherwise) as another page.

Part 1 Model-based error accumulation (25 points + 5 bonus)
Consider a model-based reinforcement learning algorithm that estimates a model 𝑝 of the true
dynamics 𝑝, and then uses it for planning. In all parts of this question, we assume that we can plan
optimally in the estimated model, with the true non-negative reward function.

Question 1.1 (10 points + 5 bonus) Suppose that the estimated model is guaranteed, for some
𝜖 > 0, to be an 𝜖-approximation, i.e. have

∥𝑝(𝑠′|𝑠, 𝑎) − 𝑝(𝑠′|𝑠, 𝑎)∥1 ≤ 𝜖,

for all 𝑠 and 𝑎, and that the initial distribution 𝑝(𝑠0) is known exactly. Show that, for any policy 𝜋

E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋
[𝑟 (𝑠𝑡 , 𝑎𝑡)] − E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[𝑟 (𝑠𝑡 , 𝑎𝑡)] ≤ 𝜖𝑡𝑟max.

Hint: show by induction that, for any 𝑡 ≥ 0 and state 𝑠, ∥𝑝𝜋 (𝑠𝑡 = 𝑠) − 𝑝𝜋 (𝑠𝑡 = 𝑠)∥1 ≤ 𝜖𝑡.
Bonus: show the tighter bound

E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋
[𝑟 (𝑠𝑡 , 𝑎𝑡)] − E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[𝑟 (𝑠𝑡 , 𝑎𝑡)] ≤ 1
2𝜖𝑡𝑟max.

Question 1.2 (5 points) Conclude that planning with 𝑝 is near-optimal: if 𝜋 is optimal for 𝑝
and 𝜋̂ is optimal for 𝑝, for discount factor 𝛾, then

E𝜉∼𝑝𝜋
[𝑅(𝜉)] − E𝜉∼𝑝 𝜋̂

[𝑅(𝜉)] ≤ 2 𝛾

(1−𝛾)2 𝜖𝑟max.

Or, given the bonus question above, halve the term on the right-hand side.
Hint: recall that

∑
𝑡 𝛾

𝑡𝑡 =
𝛾

(1−𝛾)2 .

Question 1.3 (10 points) Now suppose instead that the state space is R𝑛, and that both the true
dynamics 𝑓 : R𝑛 → R𝑛 and the model 𝑓 : R𝑛 → R𝑛 are deterministic, with a known initial state 𝑠0.
Determinism implies that there exists an optimal open-loop policy, i.e. a sequence of actions.

https://royf.org/crs/CS277/W24

Suppose that the true dynamics, the model, and the reward function are all Lipschitz. That is, there
exists a real constant 𝐿 such that, for all states 𝑠 and 𝑠 and action 𝑎

∥ 𝑓 (𝑠, 𝑎) − 𝑓 (𝑠, 𝑎)∥2 ≤ 𝐿∥𝑠 − 𝑠∥2,

and similarly for 𝑓 and for 𝑟 , i.e. |𝑟 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) | ≤ 𝐿∥𝑠 − 𝑠∥2. Suppose further that the estimated
model is guaranteed, for some 𝜖 > 0, to be an 𝜖-approximation, i.e have

∥ 𝑓 (𝑠, 𝑎) − 𝑓 (𝑠, 𝑎)∥2 ≤ 𝜖,

for all 𝑠 and 𝑎.
Fix an action sequence ®𝑎 = 𝑎0, 𝑎1, Denote the resulting state sequence when rolling out ®𝑎 in 𝑓

by 𝑠0, 𝑠1, . . ., and in 𝑓 by 𝑠0, 𝑠1, . . . (note that 𝑠0 = 𝑠0). Show by induction that, for any 𝑡 ≥ 0

|𝑟 (𝑠𝑡 , 𝑎𝑡) − 𝑟 (𝑠𝑡 , 𝑎𝑡) | ≤
𝐿𝑡 − 1
𝐿 − 1

𝐿𝜖,

assuming 𝐿 ≠ 1.

Part 2 Finite-state controllers (25 points)
A finite-state controller (FSC) 𝜋 is a finite-state machine with: (1) a finite set M of memory states;
(2) a memory state update distribution 𝜋(𝑚𝑡 |𝑚𝑡−1, 𝑜𝑡), giving the probability of updating from
internal state 𝑚𝑡−1, upon observing 𝑜𝑡 , to 𝑚𝑡 ; and (3) an action distribution 𝜋(𝑎𝑡 |𝑚𝑡).

Question 2.1 (10 points) Given a POMDP with dynamics 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) and observation model
𝑝(𝑜𝑡 |𝑠𝑡), and an FSC 𝜋, write down a forward recursion for computing the joint distribution of 𝑚𝑡−1
and 𝑠𝑡 . That is, show how to compute 𝑝𝜋 (𝑚𝑡 , 𝑠𝑡+1) using 𝑝, 𝜋, and 𝑝𝜋 (𝑚𝑡−1, 𝑠𝑡).

Question 2.2 (5 points) Given the joint distribution of 𝑝𝜋 (𝑚𝑡−1, 𝑠𝑡), show how to compute the
Bayesian predictive belief 𝑏′ = 𝑝𝜋 (𝑠𝑡 |𝑚𝑡−1).

Question 2.3 (10 points) Given also a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡), write down a backward recursion
for evaluating 𝑉𝜋 (𝑠𝑡 , 𝑚𝑡). That is, show how to compute 𝑉𝜋 (𝑠𝑡 , 𝑚𝑡) using 𝑝, 𝜋, 𝑟 , and 𝑉𝜋 (𝑠𝑡+1, 𝑚𝑡+1).

Part 3 RNN policies (50 points)
Question 3.1 (15 points) In the Acrobot environment (https://gymnasium.farama.org/
environments/classic_control/acrobot), the observation is:

[cos 𝜃1, sin 𝜃1, cos 𝜃2, sin 𝜃2, angular velocity of 𝜃1, angular velocity of 𝜃2]

where 𝜃1 and 𝜃2 are angles of the first and second joints. In the Pong environment (https:
//gymnasium.farama.org/environments/atari/pong), the observation is the image that the
Atari console would render to the screen (usually 84 × 84 grayscale pixels, after cropping, rescaling,
and gray-scaling) . Alternatively, Atari environments are often “wrapped” to provide in every step
the 4 most recent images, i.e. an observation shaped 4 × 84 × 84 (this is called frame-stacking).
In which of these 3 environments (Acrobot, Pong, and frame-stacked Pong) would you expect an
agent to benefit the most and the least from having memory, compared with a memoryless policy?

https://gymnasium.farama.org/environments/classic_control/acrobot
https://gymnasium.farama.org/environments/classic_control/acrobot
https://gymnasium.farama.org/environments/atari/pong
https://gymnasium.farama.org/environments/atari/pong

Question 3.2 (35 points) Test your hypothesis. Use any algorithm implemented in RLlib
(https://docs.ray.io/en/latest/rllib/rllib-algorithms.html) with a memoryless
policy, and with an RNN policy (by setting use_lstm to True). Report your findings.
For example, pong-ppo.yaml in https://royf.org/crs/CS277/W24/CS277E4.zip uses the
PPO algorithm for the Pong environment with frame stacking. To train with this configuration you
can use:

rllib train file pong-ppo.yaml

Please note that you should install atari with

pip install gymnasium[atari]==0.28.1

to work with RLlib.

https://docs.ray.io/en/latest/rllib/rllib-algorithms.html
https://royf.org/crs/CS277/W24/CS277E4.zip

	Model-based error accumulation (25 points + 5 bonus)
	Finite-state controllers (25 points)
	RNN policies (50 points)

