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In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly
explain informally the reasoning behind your answers.

Part 1 Relation between BC and PG (15 points)
Question 1.1 (5 points) Suppose that we want to imitate an unknown expert 𝜋∗, but we only have
access to a dataset D of demonstrations provided by a known non-expert policy 𝜋0. Suppose that the
exploration policy 𝜋0 supports the actions of 𝜋∗; i.e., 𝜋0(𝑎 |𝑠) > 0 for any (𝑠, 𝑎) with 𝜋∗(𝑎 |𝑠) > 0.
Suppose that a teacher provides importance weights 𝜌(𝜉) = 𝑝𝜋∗ (𝜉)

𝑝𝜋0 (𝜉)
for each 𝜉 ∈ D.

We would like to use Behavior Cloning (BC) with a Negative Log-Likelihood (NLL) loss to train a
policy 𝜋𝜃 (𝑎 |𝑠) on data 𝜉 ∼ D to imitate the expert 𝜋∗. What is the loss LBC

𝜃
(𝜉) on which we should

descend?

Question 1.2 (5 points) Compare the answer to the previous question to the REINFORCE
algorithm. How are these algorithms similar? How are they different?

Question 1.3 (5 points) Suppose that, instead of the importance weights 𝜌(𝜉), the teacher labels
each trajectory 𝜉 with its return 𝑅(𝜉). Let 𝐽𝜃 = E𝜉∼𝑝𝜃

[𝑅(𝜉)] be the RL objective for policy 𝜋𝜃 .
Write a loss LPG

𝜃
(𝜉) whose gradient with respect to 𝜃, on data 𝜉 ∼ D, is an unbiased estimate of

∇𝜃 𝐽𝜃 . Note that only 𝜋𝜃 , 𝜋0, 𝜉, and 𝑅(𝜉) are available.

Part 2 Advantage estimators (35 points)
You are playing an infinite sequence of Rock–Paper–Scissors rounds. After each round, you get a
reward of 1, 0, or -1, respectively if you win, tie, or lose. Your opponent is a simple bot: it always
tries to beat your previous action (e.g. to play Paper if you previously played Rock) with probability
40%, but selects the other two actions with probability 30% each; initially, it plays as if you’ve just
played Paper, i.e. its most likely action is Scissors. Knowing this, you play optimally: Rock, then
Scissors, then Paper, and repeat.

Question 2.1 (5 points) What are the states of this system?

Question 2.2 (5 points) For each state 𝑠 and action 𝑎, what is the distribution of the reward 𝑟

when taking action 𝑎 in state 𝑠? What is its expectation and variance?
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Question 2.3 (5 points) With discount factor 𝛾 = 0.95, what is the value 𝑉∗(𝑠) of the optimal
policy in each state 𝑠?

Question 2.4 (5 points) What is the advantage 𝐴∗(𝑠, 𝑎) = 𝑄∗(𝑠, 𝑎) −𝑉∗(𝑠) of the optimal policy
in each state 𝑠 and action 𝑎?

Question 2.5 (5 points) Suppose that you estimate (perhaps incorrectly) that your expected
future discounted return is 𝑉 (𝑠) = 1 for each state 𝑠 (there is no variance in this estimate). You use
that estimate in a Monte-Carlo advantage estimator

𝐴MC(𝑠0, 𝑎0) =
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 −𝑉 (𝑠0),

with on-policy experience 𝜉 = 𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, . . .. Recall that the bias is defined as the
difference between the expected estimate and the true advantage. What are the bias and variance of
this estimator?

Question 2.6 (5 points) Consider the 𝑛-step advantage estimator

𝐴𝑛 (𝑠0, 𝑎0) =
𝑛−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡 + 𝛾𝑛𝑉 (𝑠𝑛) −𝑉 (𝑠0),

with 𝑛 ≥ 1, and again with on-policy experience. What are the bias and variance of this estimator,
as a function of 𝑛?

Question 2.7 (5 points) Consider the GAE(𝜆) advantage estimator

𝐴𝜆 (𝑠0, 𝑎0) = (1 − 𝜆)
∞∑︁
𝑛=1

𝜆𝑛−1𝐴𝑛 (𝑠0, 𝑎0) =
∞∑︁
𝑡=0

(𝜆𝛾)𝑡𝐴1(𝑠𝑡 , 𝑎𝑡),

with 𝜆 ∈ [0, 1] and on-policy experience. What are the bias and variance of this estimator, as a
function of 𝜆?

Part 3 Model-Free Reinforcement Learning algorithms (50
points)

Question 3.1 Policy Gradient (10 points) Download the code at https://royf.org/crs/
CS277/W24/CS277E2.zip.
In the function update in reinforce.py, write PyTorch code that computes the Policy Gradient
loss. Hint: arithmetic operators work for PyTorch tensors, and PyTorch has build-in functions for
NumPy-like operators, e.g. mean.
In the function compute_returns_V1 in reinforce.py, write NumPy code that computes the
return of the entire trajectory. The return will be the sum of rewards along the trajectory. You can
discount the sum however you’d like, or not at all. Note that we need returns to be a 1-D NumPy

https://royf.org/crs/CS277/W24/CS277E2.zip
https://royf.org/crs/CS277/W24/CS277E2.zip
https://pytorch.org/docs/stable/generated/torch.mean.html


array of the same size as the rewards, i.e. the length of the trajectory. Create an array with the same
return repeated in each element.
Train the REINFORCE agent with:

python run.py --env CartPole-v1\
--training-steps 100000\
--version 1

This will create a directory containing the agent’s checkpoints. Then, evaluate the agent with:

python run.py --eval\
--env CartPole-v1\
--checkpoint <checkpoint_directory>

Append a printout of your code as a page in your PDF.

Question 3.2 Policy Gradient with Future Return (10 points) We can reduce the variance of
the gradient estimator by not taking into account past rewards. Complete compute_returns_V2 in
reinforce.py to sum (with or without discounting, but be consistent with what you did before)
only future rewards in each step. Hint: the function numpy.cumsum can come in handy, but be
careful how you use it.
Train the agent again, but with the new returns:

python run.py --env CartPole-v1\
--training-steps 100000\
--version 2

Evaluate the agent and append a printout of your code as a page in your PDF.

Question 3.3 Policy Gradient with Normalized Future Return (10 points) We can stabi-
lize training by normalizing the returns in each episode. Complete compute_returns_V3 in
reinforce.py to normalize the returns obtained in the previous question. Then train the agent
again and evaluate as before.

python run.py --env CartPole-v1\
--training-steps 100000\
--version 3

Append a printout of your code as a page in your PDF.

Question 3.4 DQN (5 points) Run dqn.py using the following command and view the results.
You might first need to pip install swig gymnasium[box2d] stable_baselines3.

python dqn.py --env LunarLander-v2\
--training-steps 1000000

Evaluate the agent with:



python dqn.py --env LunarLander-v2\
--eval

If you are running on your local machine, you can pass ––human to visually render the rollouts
to see how the trained agent performs in the simulator. You can also download the trained agent
checkpoint and evaluate locally.
replay_data.dones (plural of ‘done‘) is a vector of booleans that, for each time step, indicates
whether the next state (reached at the end of the step) terminated the episode.
Explain the role of dones in line 39.

Question 3.5 Double DQN (10 points) As we will see in a later class, the Q-learning target
tends to overestimate the Q value. Several methods have been proposed to mitigate this, including
Double Q-learning and it’s function-approximation counterpart, Double DQN.
Complete the function train such that, if self.double_dqn is True, the loss will be the Double
DQN loss:

L𝜃 (𝑠, 𝑎, 𝑟, 𝑠′) = (𝑟 + 𝛾𝑄𝜃 (𝑠′, argmax
𝑎′

𝑄𝜃 (𝑠′, 𝑎′)) −𝑄𝜃 (𝑠, 𝑎))2,

where 𝜃 are the parameters of the target network.
Train the agent with:

python dqn.py --env LunarLander-v2\
--training-steps 1000000\
--double-dqn

and evaluate as in the previous question.
Append a printout of your code as a page in your PDF.

Question 3.6 Visualize results (5 points) We can use TensorBoard to visualize the training
results of stable_baselines3.
Run a TensorBoard web server:

tensorboard --logdir <the result parent logdir from the DQN results>

Take note of the URL in which TensorBoard is now serving (likely http://localhost:6006/).
Open a browser at that URL. Take some time to make yourself familiar with the TensorBoard
interface.
You should be able to see all the stable_baseline3 runs on the bottom left, with a color legend. If
you happened to execute more runs than the ones detailed in previous questions, uncheck all the
other runs.
Find the plot tagged rollout/ep_rew_mean. You can find it manually, or use the “Filter tags” box
at the top. Enlarge the plot using the left of 3 buttons at the bottom.
On the left you’ll find some useful options. Uncheck “Ignore outliers in chart scaling” and note the
effect on the plot. Check “Show data download links”, download the plot, and append it to your
PDF.

http://localhost:6006/


Question 3.7 Extra fun For extra fun, repeat the above experiments with other (discrete
action space) environments from OpenAI Gym (https://gym.openai.com/envs), such as
Acrobot-v1, LunarLander-v2, Pong-v4, and Breakout-v4. There’s no extra credit, because
getting good results will likely take more --steps and time than I should ask you to run.

https://gym.openai.com/envs
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