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Logistics

• Assignment 2 due this Fridayassignments



Roy Fox | CS 277 | Winter 2021 | Lecture 8: Stochastic Optimal Control

Today's lecture

Hamiltonian

LQR with process noise

Linear–Quadratic Estimator

Linear–Quadratic–Gaussian control
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Optimal control: properties
• Linear control policy: 


‣ Feedback gain: 


• Quadratic value (cost-to-go) function 


‣ Cost Hessian  is the same for all 


• Ricatti equation for  can be solved recursively backward


 


‣ Without knowing any actual states or controls (!) = at system design time


• Woodbury matrix identity shows 

ut = Ltxt Lt ∈ ℝm×n

Lt = − (R + B⊺St+1B)−1B⊺St+1A

𝒥t(xt)* = 1
2 x⊺

t Stxt

St = ∇2
xt

𝒥*t xt

St

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

St = Q + A⊺(S†
t+1 + BR−1B⊺)†A ⪰ 0
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Infinite horizon

• Average cost: 


• For each finite  we solve with Bellman recursion, affected by end 


• In the limit, the solution must converge to time-independent


‣ Discrete-time algebraic Ricatti equation (DARE):


 

𝒥 = lim
T→∞

1
T

T−1

∑
t=0

c(xt, ut)

T 𝒥T = 0

S = Q + A⊺(S − SB(R + B⊺SB)−1B⊺S)A
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Non-homogeneous case

• More generally, LQR can have lower-order terms


‣ 


‣ 


• More flexible modeling, e.g. tracking a target trajectory 


• Solved essentially the same way


‣ Cost-to-go  will also have lower-order terms

xt+1 = ft(xt, ut) = Atxt + Btut + ct

ct(xt, ut) = 1
2 x⊺

t Qtxt+
1
2 u⊺

t Rtut + u⊺
t Ntxt + q⊺

t xt + r⊺
t ut + st

1
2 (xt − x̃t)⊺Q(xt − x̃t)

𝒥
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Co-state

• Consider the cost-to-go 


• To study its landscape over state space, consider its gradient


 


‣ Co-state  = direction of steepest increase in cost-to-go


‣ Linear backward recursion, initialization: 


‣  = Jacobian of the dynamics

𝒥t(xt, u) = c(xt, ut) + 𝒥t+1( f(xt, ut), u)

νt = ∇xt
𝒥t = ∇xt

ct + ∇xt+1
𝒥t+1 ∇xt

ft = ∇xt
ct + νt+1 ∇xt

ft

νt ∈ ℝn

νT = 0

∇xt
ft
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Lagrangian

• Constrained optimization: 


‣ Equivalent to Lagrangian (with Lagrange multiplier ): 


• Our optimization problem: 


‣ Lagrangian: 


‣ At the optimum:  = the co-state


• Lagrange multipliers often have their own meaning

max
u

g(u) s.t. h(u) = 0

λ max
u

min
λ

g(u) + λh(u)

min
u

𝒥 s.t. xt+1 = f(xt, ut)

ℒ =
T−1

∑
t=0

c(xt, ut) + νt+1( f(xt, ut) − xt+1)

∇xt
ℒ = 0 ⟹ νt = ∇xt

ct + νt+1 ∇xt
ft
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Hamiltonian
• Hamiltonian = first-order approximation of cost-to-go


 


• At the optimum, defines all , , and  in one equation:


 


• Can solve these  equations in  variables


‣ Generally, nonlinear with many local optima

ℋt = c(xt, ut) + νt+1 f(xt, ut)

x u ν

∇xt
ℋt = ∇xt

ct + νt+1 ∇xt
ft = νt

∇νt+1
ℋt = f(xt, ut) = xt+1

∇ut
ℋt = ∇ut

(ℒ + νt+1xt+1) = 0

(2n + m)T (2n + m)T
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Hamiltonian in LQR

• In LQR, the Hamiltonian is quadratic


 


• This suggest forward–backward recursions for , , and :


 


• These correspond to the previous approach with 

ℋt = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + νt+1(Axt + But)

x u ν

xt+1 = ∇νt+1
ℋt = Axt + But

νt = ∇xt
ℋt = νt+1A + x⊺

t Q

∇ut
ℋt = Rut + B⊺ν⊺

t+1 = 0

ν⊺
t = Stxt ut = Ltxt
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Recap

• LQR = simplest dynamics: linear; simplest cost: quadratic


• Can characterize stability, reachability, stabilizability in terms of 


• Can use Ricatti equation to find cost-to-go Hessian


• Alternatively: Hamiltonian gives state forward / co-state backward recursions

(A, B)
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Hamiltonian

LQR with process noise

Linear–Quadratic Estimator

Linear–Quadratic–Gaussian control
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• Simplest stochastic dynamics — Gaussian: 


 


‣ Markov property: all  are i.i.d for all 


• Why is there process noise?


‣ Part of the state we don't model; maximum entropy if we only assume  is not large


• In continuous time = Langevin equation;  = external force

p(xt+1 |xt, ut) = 𝒩(xt+1; Axt + But, Σω)

xt+1 = Axt + But + ωt ωt ∼ 𝒩(0,Σω) Σω ∈ ℝn×n

ωt t

ωt

But

Stochastic control
xt+1xtxt−1

ut−1 ut

A A

B B

ωt−1 ωt
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Stochastic optimal control

• Minimize expected cost-to-go 


 


• Bellman equation:


 


• Now the cost-to-go is quadratic, but with free term:


 

𝒥t(xt, u≥t) =
T−1

∑
t′￼=t

𝔼[c(xt′￼
, ut′￼

) |xt, u≥t]

= 𝔼 [ 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + 𝒥t+1(xt+1, u≥t+1) |xt, u≥t]

𝒥*t (xt) = min
ut

𝔼xt+1|xt,ut∼𝒩(Axt+But,Σω) [ 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + 𝒥*t+1(xt+1)]

𝒥*t (xt) = 1
2 x⊺

t Stxt + 𝒥*t (0)
 is no longer absorbingxt = 0
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Solving the Bellman recursion
• Good to know — expectation of quadratic under Gaussian: 


 


• Linear control:  with same feedback gain: 


• Same Ricatti equation for cost-to-go Hessian: 


• Cost-to-go: 


‣ Infinite horizon case: 

𝔼x∼𝒩(μx,Σx)[x
⊺Sx] = μ⊺

x Sμx + tr(SΣx)

𝒥*t (xt) = min
ut

𝔼xt+1|xt,ut∼𝒩(Axt+But,Σω) [ 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + 1
2 x⊺

t+1St+1xt+1 + 𝒥*t+1(0)]
= min

ut
( 1

2 x⊺
t Qxt+

1
2 u⊺

t Rut + 1
2 (Axt + But)⊺St+1(Axt + But)+

1
2 tr(St+1Σω) + 𝒥*t+1(0))

u*t = Ltxt Lt = − (R + B⊺St+1B)−1B⊺St+1A

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

𝒥*t (xt) = 1
2 x⊺

t Stxt +
T

∑
t′￼=t+1

1
2 tr(St′￼

Σω)

lim
T→∞

1
T 𝒥*0 (x0) = lim

T→∞

1
2T (x⊺

0Sx0 +
T

∑
t=1

tr(SΣω)) = 1
2 tr(SΣω)

noise–cost term, due to process noise

state independent

new term, constant
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Partial observability

• What happens when we see just an observation , not the full state 


‣ Simplest observability model — Linear–Gaussian: 


 


‣ Markov property: all  and  are independent, for all 


• Why is there observation noise?


‣ Transient process noise that doesn't affect future states; only in agent's sensors

yt ∈ ℝk xt

p(yt |xt) = 𝒩(yt; Cxt, Σψ)

yt = Cxt + ψt ψt ∼ 𝒩(0,Σψ) C ∈ ℝk×n, Σψ ∈ ℝk×k

ωt ψt t

xt+1xtxt−1

yt−1 yt

A A

C

ψt−1 ψt

C
special case of 

Hidden Markov Model 
(HMM)

ωt−1 ωt
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Gaussian Processes

• Jointly Gaussian variables: 


‣ Conditional distribution: 


 


‣ Converse also true: if  and  are Gaussian   jointly Gaussian


• Gaussian Process (GP) : all variables are (pairwise) jointly Gaussian

[x
y] ∼ 𝒩 ([μx

μy], Σ(x,y) = [
Σx Σxy

Σyx Σy ])
x |y ∼ 𝒩(μx|y, Σx|y)

μx|y = 𝔼[x |y] = μx + ΣxyΣ−1
y (y − μy)

Σx|y = Cov[x |y] = Σx − ΣxyΣ−1
y Σyx = Σ(x,y)/Σy

y x |y ⟹ (x, y)

x0, y0, u0, x1, …
sufficient
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Linear–Quadratic Estimator (LQE)

• Belief: our distribution over state  given what we know


• Belief given past observations (observable history): 


•  is sufficient statistic of  for  = nothing more  can tell us about 


‣ In principle, we can update  only from  and  = filtering


‣ Probabilistic Graphical Models terminology: belief propagation


• Linear–Quadratic Estimator (LQE): belief for our Gaussian Process


‣ Update equations = Kalman filter

xt

bt(xt |y≤t)

bt y≤t xt y≤t xt

bt+1 bt yt+1
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Belief and prediction

• Belief = what observable history says of current state: 


• Prediction = what observable history says of next state: 


• In this Gaussian Process, both are Gaussian


‣ Can be represented by their means ,  and covariances , 


‣ Computed recursively forward

bt(xt |y≤t)

b′￼(xt+1 |y≤t)

̂xt ̂x′￼t+1 Σt Σ′￼t+1

xt+1xtxt−1

yt−1 yt⋯

bt(xt |y≤t)

b′￼t(xt+1 |y≤t)
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Kalman filter
• Given belief , predict :


 


• Given prediction , update belief of  on seeing :


 


 

bt(xt |y≤t) = 𝒩( ̂xt, Σt) xt+1

̂x′￼t+1 = 𝔼[xt+1 |y≤t] = 𝔼[Axt + ωt |y≤y] = A ̂xt

Σ′￼t+1 = Cov[xt+1 |y≤t] = Cov[Axt + ωt |y≤t] = AΣtA⊺ + Σω

b′￼t(xt |y<t) = 𝒩( ̂x′￼t, Σ′￼t) xt yt

̂xt = 𝔼[xt |y≤t] = μxt|y<t
+ Σxtyt|y<t

Σ−1
yt|y<t

(yt − μyt|y<t
)

= ̂x′￼t + Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1(yt − C ̂x′￼t)

Σt = Cov[xt |y≤t] = Σxt|y<t
− Σxtyt|y<t

Σ−1
yt|y<t

Σytxt|y<t

= Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t

like conditioning  on  
and doing this given 

xt yt
y<t

yt = Cxt + noise ⟹ Σxtyt|y<t
= Σxt|y<t

C⊺

Σyt|y<t
= CΣxt|y<t

C⊺ + Σψ

prediction error / innovation et
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Kalman filter

• Linear belief update: 


• Kalman gain: 


• Covariance update — Ricatti equation:


 


‣ Compare to prior (no observations): 


‣ Observations help, but actual observation not needed to say by how much

̂xt = A ̂xt−1 + Ktet = (I − KtC)A ̂xt−1 + Ktyt

Kt = Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

Σxt+1
= AΣxt

A⊺ + Σω

et = yt − C ̂x′￼t
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Control as inference
• View Bayesian inference as optimization: minimizes MSE 


• Control and inference are deeply connected:


 


 


• The shared form (Ricatti) suggests duality:


• Information filter: recursion on , presents better principled duality

𝔼[(xt − ̂xt)]

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

(Σ′￼t)−1

LQR LQE
backward forward

ST−t Σ′￼t

A A⊺

B
Q
R

C⊺

Σω
Σψ
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Linear–Quadratic–Gaussian (LQG) control

• Putting it all together:


 


 

xt+1 = Axt + But + ωt ωt ∼ 𝒩(0,Σω) Σω ∈ ℝn×n

yt = Cxt + ψt ψt ∼ 𝒩(0,Σψ) C ∈ ℝk×n, Σψ ∈ ℝk×k

xt+1xtxt−1

ut−1 utyt−1 yt

̂xt−1 ̂xt
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LQE with control

• How does control affect estimation?


‣ Shifts predicted next state 


‣  known  no change in covariances, Ricatti equation still holds


‣ Same Kalman gain 


 


• And... that's it, everything else the same

̂x′￼t+1 = A ̂xt + But

But ⟹

Kt

̂xt = A ̂xt−1 + Ktet = (I − KtC)(A ̂xt−1 + But−1) + Ktyt
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LQR with partial observability
• Bellman recursion must be expressed in terms of what  can depend on: 


‣ Problem: but value depends on the true state 


• Value recursion for full state:


 


• In terms of only :

 




• Certainty equivalent control:  with the same feedback gain 


• And... that's it, everything else the same

ut ̂xt

xt

𝒥t(xt, ̂xt, u) = 𝔼[c(xt, ut) + 𝒥t+1(xt+1, ̂xt+1, u) |xt, ̂xt]

̂xt

𝒥t( ̂xt, u) = 𝔼[𝒥t(xt, ̂xt, u) | ̂xt] = 𝔼[c(xt, ut) + 𝒥t+1(xt+1, ̂xt+1, u) | ̂xt] = 𝔼[c(xt, ut) + 𝒥t+1( ̂xt+1, u) | ̂xt]

ut = Lt ̂xt Lt

works because  is sufficient for , separating it from ̂xt+1 xt+1 ̂xt
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LQG separability

• LQR:


‣ Compute value Hessian recursively backwards


 




‣ Compute feedback gain:


 


‣ Control policy: 

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

Lt = − (R + B⊺St+1B)−1B⊺St+1A

ut = Lt ̂xt

• LQE:


‣ Compute belief covariance recursively forward


 


‣ Compute Kalman gain:


 


‣ Belief update: 

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

Kt = Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1

̂xt = A ̂xt−1 + Ktet

Given , solve LQG = LQR + LQE separately(A, B, C, Σω, Σψ, Q, R)
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Extensive cost-to-go term

• Optimal cost-to-go: 


• Extensive (linear in ) term: 




• Infinite horizon: 


‣  and  are solutions of algebraic Ricatti equation

𝒥*t (xt) = 1
2 x⊺

t Stxt + 𝒥*t (0)

T

𝒥*t (0) = 1
2

T

∑
t′￼=t

(tr(QΣt′￼
) + tr(St′￼+1(Σ′￼t′￼+1 − Σt′￼+1)))

𝒥* = 1
2 tr(QΣ)+ 1

2 tr(S(Σ′￼− Σ))

S Σ′￼

immediate cost of uncertainty in xt cost-to-go of uncertainty added by 1-step prediction


