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Logistics

_  Assignment 2 due this Friday
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Today's lecture

LQR with process noise

Linear—-Quadratic Estimator

Linear—-Quadratic-Gaussian control
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Optimal control: properties

mxn

e Linear control policy: u, = L,x, L el

- Feedback gain: L, = — (R + B1S,, \B)"'B1S,, |A

. Quadratic value (cost-to-go) function f (x,)* = %xtTStxt

» Cost Hessian §, = V)zct S ¥ is the same for all x,
« Ricatti equation for S, can be solved recursively backward
S, =0 +AN(Sy; — S B(R + B'S,,1B)"'BTS,, A

> Without knowing any actual states or controls (!) = at system design time

» Woodbury matrix identity shows S, = Q + AT(SiH + BR7'BT)'A > 0
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Infinite horizon

T—1

_ Average cost: [ = lim L

T C (Xta uz)
1T— o0

=0
» For each finite T we solve with Bellman recursion, affected by end ¥ » = 0

* In the limit, the solution must converge to time-independent

> Discrete-time algebraic Ricatti equation (DARE):

S=0+AT(S — SB(R+ BTSB)"'B1S)A
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Non-homogeneous case

 More generally, LQR can have lower-order terms
> X1 =JlX 1) = Ax, + Bu, + ¢,
> Clx, U) = —xTtht+%utTRtut + u!Nx,+ q'x,+rlu,+ s,
. More flexible modeling, e.g. tracking a target trajectory %(xt —x)10x, — X,)

* Solved essentially the same way

» Cost-to-go # will also have lower-order terms

Roy Fox | CS 277 | Winter 2021 | Lecture 8: Stochastic Optimal Control



Co-state

» Consider the cost-to-go ¥ (x,, u) = c(x,, u,) + 7, (f(x,, u,), u)
* To study its landscape over state space, consider its gradient

Uy = thjt = thct +V jt+1 thf; — thct T Vit1 thft

Xt41

» Co-state v, € R" = direction of steepest increase in cost-to-go
~ Linear backward recursion, initialization: v, = (

>V, f, = Jacobian of the dynamics
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Lagrangian

. Constrained optimization: max g(u) s.t. h(u) = 0
U

., Equivalent to Lagrangian (with Lagrange multiplier A): max min g(u) + Ah(u)
u A

. Our optimization problem: min ¥ s.t. x,, | = f(x,, u,)
u

T—1
Lagrangian: £ = z c(x, u) + v, (f(x, u,) — x4 1)
=0

>

> Atthe optimum: V, Z =0 — v, =V, ¢, +v,,,V, [, =the co-state

 Lagrange multipliers often have their own meaning
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Hamiltonian

 Hamiltonian = first-order approximation of cost-to-go
= (X u,) + Uy 1 (X, 1))

o At the optimum, defines all x, u, and v in one equation:

th%t = thct T Vit1 thft — U
Vum%t = J(X Uy) = Xy

Vi i =V (L + Vg 1%,) =0

» Can solve these (2n + m)T equations in (2n + m)T variables

> Generally, nonlinear with many local optima
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Hamiltonian in LQR

* |n LQR, the Hamiltonian is quadratic
1 1
%t — ExtTth_I_ EutTRut + I/H_I(A)Ct + lett)
e This suggest forward-backward recursions for x, u, and v:
=V, X, =v,A+ x'Q
V.7 ,=Ru,+BWw! =0

« These correspond to the previous approach with utT =3S5x, u, =Lx,
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Recap

e | QR = simplest dynamics: linear; simplest cost: quadratic

» Can characterize stability, reachability, stabilizability in terms of (A, B)

* Can use Ricatti equation to find cost-to-go Hessian

o Alternatively: Hamiltonian gives state forward / co-state backward recursions
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Today's lecture

Hamiltonian

Linear—-Quadratic Estimator

Linear—-Quadratic-Gaussian control
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Stochastic control

A A
Xr—1 Xy Arrl

\ B \ B
= |
» Simplest stochastic dynamics — Gaussian: p(x,, | | x,, u,) = N (x,,1;Ax,+ Bu, %2 )
X, =Ax,+ Bu, + o, o, ~ N(0,X ) Y, € R
» Markov property: all w, are i.i.d for all ¢

 Why is there process noise?

> Part of the state we don't model; maximum entropy if we only assume w, is not large

» In continuous time = Langevin equation; Bu, = external force
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Stochastic optimal control

T—1
Minimize expected cost-to-go 7 (X, Us,) = Z “[e(x,, uy) | X, U]

t'=t

= [—XTQXt Rut + S i1 (Xig 1 Uy D 1% qu]

 Bellman equation:

j;k(xt) = min Xey1 | Xptty~ N (Ax+Buy, 2,) [_XTQX_I_ RM T jt+1(xt+1)]

Uy

* Now the cost-to-go is quadratic, but with free term:

x = ( is no longer absorbing

S (%) = —XTS + *(0)
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Solving the Bellman recursion

» Good to know — expectation of quadratic under Gaussian: E,_ 4, s,[xTSx] = p/Sp, + tr(SZ))

: 1
f ;k (xt) = 1nin —x, 1 | %t~ N (AxABu,X,) ExtTth_l_ Rut T EXLJSHIXHI T j ;2_1(0)

Uy

~

= min (—xTQx+ uRu, + (Ax + Bu,)'S,, |(Ax, + But)+ tr(StHZ ) + jr+1(0)>
U, \

| new term, constant
» Linear control: u* = L,x, with same feedback gain: L, = — (R + B'S,,;B)""B'S, 1A

. Same Ricatti equation for cost-to-go Hessian: S, = Q + A'(S,,; — S,. {B(R + B1S,, \B)"'BTS,, DA

noise—cost term, due to process noise

T
. Cost-to-go: £ F(x,) = —xTS X, + Z %tr(St,Zw)/

t'=r+1

state independent

g T— o0 T— o0

/
Infinite horizon case: I1m —f >I<()co) = lim — =7 ( TSxO -+ Z tr(Sx )) = %tr(SZw)

=1
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Today's lecture

Hamiltonian

LQR with process noise

Linear—-Quadratic-Gaussian control

Roy Fox | CS 277 | Winter 2021 | Lecture 8: Stochastic Optimal Control



Partial observability

A

A1 At X+1 special case of

Hidden Markov Model

C C
\ \A (HMM)

« What happens when we see just an observation y, € | k, not the full state X,

» Simplest observability model — Linear-Gaussian: p(y, | x,) = 4 (y; Cx;, Z)

v, =Cx,+y,  y~HN0OZ) CeR* X, e R

» Markov property: all @, and y;, are independent, for all ¢

 Why is there observation noise?

> Transient process noise that doesn't affect future states; only in agent's sensors
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Gaussian Processes

Ex Z“)cy

. . . A X _
Jointly Gaussian variables: [y] N [//ty]’E(X,Y) = 5. 3,

» Conditional distribution: x | y ~ ,/V(//tx‘y, be/)

Hxly = -[x\y] = Ky T nyz)jl(y _//ty)

— — —1 —
Sy = Covix|yl =X, - S 3718 =% /%

» Converse also true: if y and x| y are Gaussian = (x, y) jointly Gaussian

sufficient

/
« Gaussian Process (GP) Xy, ¥p, Uy, X1, - ... all variables are (pairwise) jointly Gaussian
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Linear—-Quadratic Estimator (LQE)

» Belief: our distribution over state X, given what we know

- Belief given past observations (observable history): b,(x; | y,)

» b, is sufficient statistic of y, for x; = nothing more y_, can tell us about x,

~ In principle, we can update b, ; only from b, and y,. | = filtering
> Probabilistic Graphical Models terminology: belief propagation

o |inear—Quadratic Estimator (LQE): belief for our Gaussian Process

» Update equations = Kalman filter
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Belief and prediction

bt(x; |y g;)
X, _ X

1X t
~ m

» Belief = what observable history says of current state: b(x; | y,)

Arr1

b(x 41 |y <)

» Prediction = what observable history says of next state: b'(x,, ;| y<,)

 |n this Gaussian Process, both are Gaussian

a7

~ Can be represented by their means x, X/, ,

/

and covariances 2., 2,

> Computed recursively forward
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Kalman filter

» Given belief b(x,|y,) = NV (X,, Z,), predict x, ;:

X1 = Elxg g 1y<] = E[Ax, + wt‘ySy] = AX,
o1 = Covlity [yl = CovlAx, + o, |yg] = ATAT+3,

7

» Given prediction b/(x,|y_,) = N (X, 2;), update belief of x, on seeing y.:

Y= Cx,+noise = X . =%, CT
)%t :_/[)C£ ‘ yg] — /’txtb/q T thytlyqz;t\lyq(y t — H Yz|)’<t)¢prediction error / innovation e,
e oo 0 =&+ ZCICECT 42,70, - CF
Zylye = Coup LT+ 2y
2, = COV[Xt | ygt] — Ext\y<t o thyt|Y<z2y_t\1Y<rZytxt‘y<t

=3 - X C(CLCT+%,)'CE,
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Kalman filter

e, =y — CX;
. . / .
o Linear belief update: X, = AX,_; + Ke, = (I — KC)AX,_, + K.y,

» Kalman gain: K, = 2.C1(CX/.CT + Zw)_l
 Covariance update — Ricatti equation:
Y =AC - ZCH(CE,CT+ X)) 'CEDAT+ 3,

» Compare to prior (no observations): 2, =A2X A+ 2,

Xt41

> Observations help, but actual observation not needed to say by how much
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Control as inference

» View Bayesian inference as optimization: minimizes MSE E[(x, — X,)]

e Control and inference are deeply connected:
1 =AC - ZCH(CZCT+Z ) 'CIDAT+ X,

S=0+A%S,,,—S,.B(R+B'S,,,B)"'BTS_ A

* The shared form (Ricatti) suggests duality: LQR LQE
backward forward
51—t 2
A Al
B CT
Q 2
R 2,

 Information filter: recursion on (Z;)_l, presents better principled duality
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Today's lecture

LQR with process noise

Hamiltonian

Linear—-Quadratic Estimator
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Linear—-Quadratic—Gaussian (LQG) control

Xr—1 Xy Arr1

\ /)
W o

 Putting it all together:

X, =Ax,+ Bu, + o, w, ~ N(0,X ) Y. € R™"

)

vy=Cx,+y, wy,~N0ZL) CeR*" X R
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LQE with control

* How does control affect estimation?

» Shifts predicted next state x;, | =

AX, + Bu,
> But known — no change In covariances, Ricatti equation still holds
> Same Kalman gain K,

)Act — A)Act—l + Ke, = ( — KtC)(Ajet—l T But—l) + K.y,

 And... that's it, everything else the same
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LQR with partial observability

» Bellman recursion must be expressed in terms of what 1, can depend on: X,

> Problem: but value depends on the true state X,

e Value recursion for full state:

jt(xta )/eta l/t) —

» In terms of only X;:

jt(ﬁza l/t) — _[jt(xta )lét, l/t) ‘ﬁt] —

_[C(Xta I/tt) + jt+1(xt+1’ )/et+1’ ) ‘xt’ )%t]

works because X, , is sufficient for x,_ ;, separating it from x,

e, u) + F 1 (s X ) | X] =

=[x, ) + F 1 (K ys 1) | X

» Certainty equivalent control: u, = L x, with the same feedback gain L.

 And... that's it, everything else the same
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LQG separability

Given (A,B,C, 2, va’ 0, R), solve LQG = LQR + LQE separately

* LQR: e LQE:
» Compute value Hessian recursively backwards > Compute belief covariance recursively forward
S=0+A'S,, -5, BR+B'S_,B)"'BTS A Y =AC - ZICH(CE,CT+ X)) 'CEDAT+ 3,
>  Compute feedback gain: >  Compute Kalman gain:
L =-(R+B'S_B)"'B'S_,A K,=Z,C(CZCT+Z)"

~ Control policy: u, = L/X, > Belief update: X, = AXx,_; + K¢,
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Extensive cost-to-go term

. Optimal cost-to-go:  *(x,) = %xtTStxt + £ 7(0)

o Extensive (linearin 1) term:

T
FH0) = = ) (tr(Q%,) + tr(S, 1 (T — Zpy 1))

—

/ \

immediate cost of uncertainty in Xx, cost-to-go of uncertainty added by 1-step prediction

o Infinite horizon: f£* = %tr(QZ)+%tr(S(Z’ —2))

> S and 2’ are solutions of algebraic Ricatti equation

Roy Fox | CS 277 | Winter 2021 | Lecture 8: Stochastic Optimal Control



