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Logistics

• Assignment 2 due this Fridayassignments
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Today's lecture

Off-policy evaluation, TRPO

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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-step DQNn
• In DQN, the target  is the 1-step rolled out value predictor:


 


• Can we instead use the -step rolled out predictor?


 


‣ The bootstrapped value predictor  is more discounted  less bias


‣ But we use just one sample of the -step trajectory, not averaged  more variance


‣ May be a better tradeof, allows TD( ) methods that combine different 

y

y1(rt, st+1) = rt + γ max
at+1

Qθ̄(st+1, at+1)

n

yn(rt, …, rt+n−1, st+n) = rt + ⋯ + γn−1rt+n−1 + γn max
at+n

Qθ̄(st+n, at+n)

max Qθ̄ ⟹

n ⟹

λ n
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Can we use -step DQN off-policy?n
• -step DQN target:


 


• Problem:  must all be on-policy for the target to be unbiased


• Solutions:


‣ Ignore the problem: just use it off-policy anyway


‣ Use Importance Sampling: use data  to estimate 


 

n

yn(rt, …, rt+n−1, st+n) = rt + ⋯ + γn−1rt+n−1 + γn max
at+n

Qθ̄(st+n, at+n)

at+1, …, at+n−1

x ∼ p2 𝔼x∼p1
[ f(x)]

𝔼x∼p1
[ f(x)] = 𝔼x∼p2 [ p1(x)

p2(x)
f(x)]
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Off-policy policy evaluation
• How to get an unbiased estimator of 


from data sampled from a different distribution ?


 


• A reward  is not affected by future probability divergence


 

𝒥θ = 𝔼ξ∼pθ
[R(ξ)]

ξ1, …, ξN ∼ pθ′￼

𝒥θ = 𝔼ξ∼pθ′￼[ pθ(ξ)
pθ′￼

(ξ)
R(ξ)]

pθ(ξ)
pθ′￼

(ξ)
=

p(s0)
p(s0) ∏

t

πθ(at |st)
πθ′￼

(at |st)
p(st+1 |st, at)
p(st+1 |st, at)

= ∏
t

πθ(at |st)
πθ′￼

(at |st)
= w

rt

𝒥θ = ∑
t

𝔼st,at∼pθ′￼
[γtwrt] = ∑

t

𝔼st,at∼pθ′￼[γtwtrt] wt = ∏
t′￼≤t

πθ(at′￼
|st′￼

)
πθ′￼

(at′￼
|st′￼

)

importance weight
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Off-policy -step DQNn

• Importance weighted -step DQN target:


 


‣ With importance-weighted rewards: 


‣ Replay buffer must contain consecutive -step trajectories


- and the probability  of taking each action using the policy at that time

n

yn(rt, …, rt+n−1, st+n) = r̃t + ⋯ + γn−1r̃t+n−1 + γn max
at+n

Qθ̄(st+n, at+n)

r̃t+k =
t+k

∏
t′￼=t+1

πθ(at′￼
|st′￼

)
πθ′￼

(at′￼
|st′￼

)
rt+k

≥ n

πθ′￼
(a |s)
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Off-policy MC advantage estimation
• MC advantage estimation: 


 


• What if estimate the advantage of our current  under a proposed new policy ?


 


‣ We can't estimate this empirically, because of  ; what's the difference if we just use ?

∑
t

γtr(st, at) − Vπθ
(s)

= ∑
t

γt(r(st, at) + γVπθ
(st+1) − Vπθ

(st)) = ∑
t

γt ̂A1
πθ

(st, at)

πθ πθ′￼

𝔼ξ∼pθ′￼[∑
t

γt ̂A1
πθ

(st, at)] = 𝔼ξ∼pθ′￼[∑
t

γtr(st, at) − Vπθ
(s0)] = 𝒥θ′￼

− 𝒥θ

= ∑
t

γt𝔼st,at∼pθ′￼
[ ̂A1

πθ
(st, at)]

= ∑
t

γt𝔼st∼pθ′￼[𝔼at|st∼πθ [ πθ′￼
(at |st)

πθ(at |st)
̂A1
πθ

(st, at)]]
st ∼ pθ′￼

st ∼ pθ

we want to 
maximize this!
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Change of measure

• Intuition: switching from  to  isn't too bad if they are similar


‣ In Kullback-Leibler (KL) divergence: 


‣ Or in Total Variation (TV) distance: 


• Suppose we ,  are similar:  for all 


‣ Then they induce similar marginal distributions at time 


 

st ∼ pθ′￼
st ∼ pθ

𝔻[pθ′￼
∥pθ]

δ(pθ′￼
, pθ) = 1

2 |pθ′￼
− pθ |1 ≤ 1

2 𝔻[pθ′￼
∥pθ]

πθ′￼
πθ |πθ′￼

( ⋅ |s) − πθ( ⋅ |s) |1 ≤ 2 ϵ
2 = ϵ′￼ s

t

|𝔼st∼pθ′￼
[ f(s)] − 𝔼st∼pθ

[ f(s)] | ≤ |pθ′￼
− pθ |1 max

st

f(st) ≤ tϵ′￼max
st

f(st)
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Trust-Region Policy Optimization (TRPO)

 


• For small enough , the objective is close to 


‣ Guarantees improvement of our objective; in practice, good  is too large


• TRPO loss:


 


• The actual algorithm is more complicated; simpler variant: PPO

max
θ′￼

∑
t

γt𝔼st∼pθ [𝔼at|st∼πθ [ πθ′￼
(at |st)

πθ(at |st)
̂A1
πθ

(st, at)]]
s.t. 𝔻[πθ′￼

∥πθ] ≤ ϵ

ϵ 𝒥θ′￼
− 𝒥θ

ϵ

ℒθ(s, a, r, s′￼) = −
πθ(a |s)
πθ̄(a |s)

(r + γVϕ(s′￼) − Vϕ(s)) + λ𝔻[πθ( ⋅ |s)∥πθ̄( ⋅ |s)]

importance weight
advantage estimate Lagrange multiplier 

for KL constraint
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Today's lecture

Off-policy evaluation, TRPO

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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Linear Time-Invariant (LTI) system

• Continuous state space: 


‣ Distributions and values may be hard to represent


• Simplest system — linear: 


‣ Linear Time-Invariant (LTI):  does not depend on 


• How does the system evolve over time?


 

xt ∈ ℝn

xt+1 = Axt A ∈ ℝn×n

A t

xt = Atx0

xt xt+1xt−1
A A
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Stability

• To analyze: use eigenvectors 


• Consider a basis of eigenvectors 


 


• Stability: all , so that 


• Instability: some , so that 


‣ When some , that component never vanishes or explodes

λe = Ae

e1, …, en ∈ ℂn

x0 = ∑
i

αiei ⟹ x1 = Ax0 = ∑
i

αiλiei ⟹ xt = ∑
i

αiλt
iei

∥λi∥ < 1 lim
t→∞

xt = 0

∥λi∥ > 1 lim
t→∞

∥xt∥ → ∞

∥λi∥ = 1
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Linear control systems

• Continuous action (control) space: 


• Controlled LTI system: 


 


 

ut ∈ ℝm

xt+1 = Axt + But B ∈ ℝn×m

xt = Atx0 + At−1Bu0 + ⋯ + ABut−2 + But−1

xt − Atx0 = [B AB ⋯ At−1B]
ut−1
ut−2
⋮
u0

xt+1xtxt−1

ut−1 ut

A A

B B
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Reachability

 


• Can we reach a given state  at time ?


‣ If and only if 


• Can we reach all states eventually?


‣ Cayley-Hamilton:  satisfies its characteristic polynomial 


- Sufficient to consider controllability matrix: 


‣ Reachability = 

xt − Atx0 = [B AB ⋯ At−1B]
ut−1
ut−2
⋮
u0

xt t

xt − Atx0 ∈ span [B AB ⋯ At−1B]

A ⟹ An ∈ span{I, A, …, An−1}

𝒞 = [B AB ⋯ An−1B]

span𝒞 = ℝn ⟺ rank𝒞 = n
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Stabilizability

• Controllability matrix: 


• Can we eventually reach ?


‣ Some components may be uncontrollable but stable — they reach 0 on their own


‣ Stabilizability:  for all  with 

𝒞 = [B AB ⋯ An−1B]
xt = 0

ei ∈ span𝒞 ei λi ≥ 1
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Today's lecture

Off-policy evaluation, TRPO

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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Quadratic costs

• Simplest rewards: concave quadratic (linear has no maximum)


‣ Consider costs: 


‣  is positive semidefinite :  for all 


- No incentive to go to infinity in any direction


‣  is positive definite :  for all 


- Incentive against infinite control in any direction


‣ Usually no discounting — finite or infinite undiscounted horizon

c(xt, ut) = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut

Q ∈ ℝn×n Q ⪰ 0 1
2 x⊺Qx ≥ 0 x

R ∈ ℝm×m R ≻ 0 1
2 u⊺Ru > 0 u
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Linear Quadratic Regulator (LQR)

• Given LTI dynamics + quadratic cost 


• Find the control function 


• That minimizes 


• Such that  for all 

(A, B, Q, R)

ut(xt)

𝒥(x0, u) =
T−1

∑
t=0

c(xt, ut) = 1
2

T−1

∑
t=0

x⊺
t Qxt + u⊺

t Rut

xt+1 = f(xt, ut) = Axt + But t
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Bellman recursion

• 


• Let's solve while we prove by induction that  is quadratic


‣ Base case: 


‣ Assume: 


‣ Solve: 

𝒥*t (xt) = min
ut

c(xt, ut) + 𝒥*t+1(xt+1)

𝒥*t

𝒥*T = 0

𝒥*t+1(xt+1) = 1
2 x⊺

t+1St+1xt+1 St+1 ⪰ 0

∇ut
(c(xt, ut) + 𝒥*t+1(xt+1)) = 0
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Bellman optimality

 


 


• Plugging  into the Bellman recursion and rearranging terms:


 


• Ricatti equation: 

0 = ∇ut
(c(xt, ut) + 𝒥*t+1(xt+1))

= 1
2 ∇ut

(x⊺
t Qxt + u⊺

t Rut + (Axt + But)⊺St+1(Axt + But))
= Rut + B⊺St+1(Axt + But)

u*t = − (R + B⊺St+1B)−1B⊺St+1Axt

u*t

𝒥*t (xt) = 1
2 x⊺

t (Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A)xt

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A
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Optimal control: properties
• Linear control policy: 


‣ Feedback gain: 


• Quadratic value (cost-to-go) function 


‣ Cost Hessian  is the same for all 


• Ricatti equation for  can be solved recursively backward


 


‣ Without knowing any actual states or controls (!) = at system design time


• Woodbury matrix identity shows 

ut = Ltxt

Lt = − (R + B⊺St+1B)−1B⊺St+1A

𝒥t(xt)* = 1
2 x⊺

t Stxt

St = ∇2
xt

𝒥*t xt

St

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

St = Q + A⊺(S†
t+1 + BR−1B⊺)†A ⪰ 0
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Infinite horizon

• Average cost: 


• For each finite  we solve with Bellman recursion, affected by end 


• In the limit, the solution must converge to time-independent


‣ Discrete-time algebraic Ricatti equation (DARE):


 

𝒥 = lim
T→∞

1
T

T−1

∑
t=0

c(xt, ut)

T 𝒥T = 0

S = Q + A⊺(S − SB(R + B⊺SB)−1B⊺S)A
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Non-homogeneous case

• More generally, LQR can have lower-order terms


‣ 


‣ 


• More flexible modeling, e.g. tracking a target trajectory 


• Solved essentially the same way


‣ Cost-to-go  will also have lower-order terms

xt+1 = ft(xt, ut) = Atxt + Btut + ct

ct(xt, ut) = 1
2 x⊺

t Qtxt+
1
2 u⊺

t Rtut + u⊺
t Ntxt + q⊺

t xt + r⊺
t ut + st

1
2 (xt − x̃t)⊺Q(xt − x̃t)

𝒥
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Off-policy evaluation, TRPO
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Co-state

• Consider the cost-to-go 


• To study its landscape over state space, consider its gradient


 


‣ Co-state  = direction of steepest increase in cost-to-go


‣ Linear backward recursion, initialization: 


‣  = Jacobian of the dynamics

𝒥t(xt, u) = c(xt, ut) + 𝒥t+1( f(xt, ut), u)

νt = ∇xt
𝒥t = ∇xt

ct + ∇xt+1
𝒥t+1 ∇xt

ft = ∇xt
ct + νt+1 ∇xt

ft

νt ∈ ℝn

νT = 0

∇xt
ft
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Lagrangian

• Constrained optimization: 


‣ Equivalent to Lagrangian (with Lagrange multiplier ): 


• Our optimization problem: 


‣ Lagrangian: 


‣ At the optimum:  = the co-state


• Lagrange multipliers often have their own meaning

max
u

g(u) s.t. h(u) = 0

λ max
u

min
λ

g(u) + λh(u)

min
u

𝒥 s.t. xt+1 = f(xt, ut)

ℒ =
T−1

∑
t=0

c(xt, ut) + νt+1( f(xt, ut) − xt+1)

∇xt
ℒ = 0 ⟹ νt = ∇xt

ct + νt+1 ∇xt
ft
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Hamiltonian
• Hamiltonian = first-order approximation of cost-to-go


 


• At the optimum, defines all , , and  in one equation:


 


• Can solve these  equations in  variables


‣ Generally, nonlinear with many local optima

ℋt = c(xt, ut) + νt+1 f(xt, ut)

x u ν

∇xt
ℋt = ∇xt

ct + νt+1 ∇xt
ft = νt

∇νt+1
ℋt = f(xt, ut) = xt+1

∇ut
ℋt = ∇ut

(ℒ + νt+1xt+1) = 0

(2n + m)T (2n + m)T
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Hamiltonian in LQR

• In LQR, the Hamiltonian is quadratic


 


• This suggest forward–backward recursions for , , and :


 


• These correspond to the previous approach with 

ℋt = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + νt+1(Axt + But)

x u ν

xt+1 = ∇νt+1
ℋt = Axt + But

νt = ∇xt
ℋt = νt+1A + x⊺

t Q

∇ut
ℋt = Rut + B⊺ν⊺

t+1 = 0

ν⊺
t = Stxt ut = Ltxt
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Recap

• LQR = simplest dynamics: linear; simplest cost: quadratic


• Can characterize stability, reachability, stabilizability in terms of 


• Can use Ricatti equation to find cost-to-go Hessian


• Alternatively: Hamiltonian gives state forward / co-state backward recursions

(A, B)


