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Logistics

_  Assignment 2 due this Friday
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Today's lecture

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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n-step DQN

* In DQN, the target y is the 1-step rolled out value predictor:

1
Y (1, 8,,1) =1+ ymax Qp(s,, 1,y q)
Ariq

e Can we instead use the n-step rolled out predictor?

n _ n—1 n _
YT oo Fgne15Sp4n) = it o+ 7 Fgy g+ max QS ayy,

2

> The bootstrapped value predictor max ()5 is more discounted = less bias

> But we use just one sample of the n-step trajectory, not averaged — more variance

> May be a better tradeoff, allows TD(A) methods that combine different n
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Can we use n-step DQN off-policy?

« n-step DQN target:

—1
T Y max QS gy )

2

yn(rta coeo rt+n—1’St+n) — ]/'t—l— coo _I_y

e Problem:a, ¢, ...,a,.,_1 must all be on-policy for the target to be unbiased

e Solutions:

> Ignore the problem: just use it off-policy anyway

> Use Importance Sampling: use data x ~ p, to estimate k., [ f(x)]

- - p1(x)
x~p1[f(x)] T TTX~D, []?2()6) f(X)]
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Off-policy policy evaluation

- How to get an unbiased estimator of ¥y = E;_, [R(S)]

from data sampled from a different distribution &;, ..., &y ~ pg?

— importance weight

po(&) ™
= R
Fo=Fen |

pe(é) . p(S()) ﬂg(at ‘ St) p(St+1 ‘ Sta Clt) JZ'H(Clt ‘ St)
Po(S) - p(sp) H mgla.|s) p(seeq | S ay) H o a | St)

[

» Areward r, is not affected by future probability divergence

(a,.|s,)
_z:_ t _z:_ t _Ilé’tt
je — Staathgl[}/ Wrt‘] - Stvathg’ I:}/ Wtrl] Wl. —

t f <t mgla, | s,)
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Off-policy n-step DQN

e |mportance weighted n-step DQN target:

- 1~
yn(rt’ cees Ty 19St+n) = I e +yn Fiin—1 +ynmaXQ5’(St+n’at+n)

iy n

+k

e | ~ m(a,|s,)
With importance-weighted rewards: r,, ; = H

Vivk
)

>
=i Mol 1 Se

> Replay buffer must contain consecutive > n-step trajectories

- and the probability ,(a | s) of taking each action using the policy at that time
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Off-policy MC advantage estimation

MC advantage estimation: Z y'r(s,a,) — Vﬂg(s)

[

= Y V(15 @) + 7V (5,01 = Vi (s) = D YAl (5. a)
A A

« What if estimate the advantage of our current 7z, under a proposed new policy 7,?

we want to
maximize this!

e | D 1T a) = V(s | = 0= T
[

A 1
_grvpef Z ytAﬂg(Sl" al‘)
[

Z y' -St,athg,[A}@(St, a,)]
A

ﬂ /(Cl S ) A
. 2: Al — O\Mt1°t) ~1
— Y Si~Dy a,|s,~my Aﬂ'g(st’ at)
!

> We can't estimate this empirically, because of s, ~ p, ; what's the difference if we just use s, ~ p,?
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Change of measure

o Intuition: switching from s, ~ p,y to s, ~ pgyisn't too bad if they are similar

> In Kullback-Leibler (KL) divergence: D[py||p,]

. Or in Total Variation (TV) distance: o(py, Pg) = % | Do —pg\l < \/% )[pollpgl

. Suppose we 1y, 1y are similar: | my( - |s) — my( - [5)]; < 2\/§ = ¢'for all s

> Then they induce similar marginal distributions at time ¢

E, ., )] = Ey , [f9)]] < | pg = Pyl maxf(s) < te' max (s,

! !
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Trust-Region Policy Optimization (TRPO)

gl a; | S;) A
maxz;f - o4, t) (st, a,)

5~ Po a,|s,~my ﬂé’( a, ‘ St)

s.t. [ﬂe,Hﬂ@] <e€

» For small enough €, the objective is close to 7, — 7,

> Guarantees improvement of our objective; in practice, good € is too large

* TRPO loss: mportante weigt advantage estimate Lagrange multiplier
/ / 9 for KL constraint
, 7oa | s) , —
Zy(s,a,r,8) = — m(”"‘ YVy(s) — Viy(s)) + AD[zy( - [ )| 75( - |5)]
0

* The actual algorithm is more complicated; simpler variant: PPO
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Today's lecture

Off-policy evaluation, TRPO

Linear Quadratic Regulator

Hamiltonian
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Linear Time-Invariant (LTl) system

A A
Xr—1 Xy Arr1

 Continuous state space: x, € |

> Distributions and values may be hard to represent

» Simplest system — linear: x,,; = Ax, A € R™"

> Linear Time-Invariant (LTl): A does not depend on ¢

 How does the system evolve over time?

— Al
x, = A'X,
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Stability

» To analyze: use eigenvectors Ae = Ae

« Consider a basis of eigenvectors ¢y, ..., e, & C"

xO—Zae — x1=AxO=ZaZ/IZel —> X, —Zal :€;
i

. Stability: all ||4]| < 1, sothat lim x, = 0

[— 0

. Instability: some |[4]| > 1, so that lim ||x,|| = oo

[— 00

>~ When some ||4;|| = 1, that component never vanishes or explodes
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Linear control systems

A A
1 Ay

m

At A1

« Continuous action (control) space: u, € |

. Controlled LTI system: x,, | = Ax, + Bu, B € R/™m

x, = A'x, + At_lBuo + .-+ ABu, ,+ Bu,_,

U, 1

U, -

x,—A'xy=|B AB ... A"IB

U
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Reachability

x,—A'xy=|B AB - A"IB

« Can we reach a given state x, at time 7
» |f and only if x, —Atxo € span [B AB ... Af—lB]
 Can we reach all states eventually?
» Cayley-Hamilton: A satisfies its characteristic polynomial = A" € span{/, A, L, AT

- Sufficient to consider controllability matrix: € = [B AB --- A”‘IB]

> Reachability = spané = R" < ranké = n
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Stabilizability

 Controllability matrix: € = [B AB ... A”_lB]

» Can we eventually reach x, = 0?

> Some components may be uncontrollable but stable — they reach 0 on their own

~ Stabilizability: e; € span€ for all e; with 4, > 1
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Today's lecture

Off-policy evaluation, TRPO

Stability, reachability, stabilizability

Hamiltonian
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Quadratic costs

e Simplest rewards: concave quadratic (linear has no maximum)

» Consider costs: c(x,, U,) = —xTth+ ~u! Ru,

» 0 € R™""js positive semidefinite Q > O: %xTQx > () forall x

- No incentive to go to infinity in any direction

» R € R™ s positive definite R > 0: %MTRM > () for all u

- Incentive against infinite control in any direction

> Usually no discounting — finite or infinite undiscounted horizon
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Linear Quadratic Regulator (LQR)

» Given LTI dynamics + quadratic cost (A, B, O, R)

» Find the control function u,(x,)

T—1 T—1
_ That minimizes # (X, ) = Z c(x, u,) = %2 x!'Ox, + u!Ru,

e Such that x,, | = f(x,, u,) = Ax, + Bu, for all t
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Bellman recursion

o j;k(xt) = min C(Xt, I/lt) + jﬁ_l(xﬂ-l)
Uy

« Let's solve while we prove by induction that j;k IS quadratic

~ Base case: 7 =0

1 :
| | >x< I T

» Solve: Vut(C(.xt, I/lt) + j;i_l(xt_l_l)) =0
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Bellman optimality

0= Vut(c(xp ut) T j?fl_l(‘xt+1))
B %Vut(xtTth + u, Ru, + (Ax, + Bu)'S,, |(Ax, + Bu,))
= Ru,+ B'S, {(Ax, + Bu,)

I/l;I< —_— (R + BTSt+1B)_1BTSt+1Axt
e Plugging ut* iInto the Bellman recursion and rearranging terms:
1 _
L F(x,) = ExtT(Q + AN, — S, B(R+ B'S, |B) IBTStH)A)xt

. Ricatti equation: S, = Q + AT(S,,; — S,, ;B(R + B'S,. ,B)"'BTS,, )A
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Optimal control: properties

e Linear control policy: u, = L,x,

- Feedback gain: L, = — (R + B1S,, \B)"'B1S,, |A

. Quadratic value (cost-to-go) function f (x,)* = %xtTStxt

» Cost Hessian §, = V)zct S ¥ is the same for all x,
« Ricatti equation for S, can be solved recursively backward
S, =0 +AN(Sy; — S B(R + B'S,,1B)"'BTS,, A

> Without knowing any actual states or controls (!) = at system design time

» Woodbury matrix identity shows S, = Q + AT(SiH + BR7'BT)'A > 0
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Infinite horizon

T—1

_ Average cost: [ = lim L

T C (Xta uz)
1T— o0

=0
» For each finite T we solve with Bellman recursion, affected by end ¥ » = 0

* In the limit, the solution must converge to time-independent

> Discrete-time algebraic Ricatti equation (DARE):

S=0+AT(S — SB(R+ BTSB)"'B1S)A
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Non-homogeneous case

 More generally, LQR can have lower-order terms
> X1 =JlX 1) = Ax, + Bu, + ¢,
» clx,u,) = —xTtht+%utTRtut + u!Nx,+ q'x,+rlu,+ s,
. . . . 1 - -
. More flexible modeling, e.g. tracking a target trajectory E(Xt —x)10x, — X,)

* Solved essentially the same way

» Cost-to-go # will also have lower-order terms
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Today's lecture

Off-policy evaluation, TRPO

Stability, reachability, stabilizability

Linear Quadratic Regulator
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Co-state

» Consider the cost-to-go ¥ (x,, u) = c(x,, u,) + 7, (f(x,, u,), u)
* To study its landscape over state space, consider its gradient

Uy = thjt = thct +V jt+1 thf; — thct T Vit1 thft

Xt41

» Co-state v, € R" = direction of steepest increase in cost-to-go
~ Linear backward recursion, initialization: v, = (

>V, f, = Jacobian of the dynamics
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Lagrangian

. Constrained optimization: max g(u) s.t. h(u) = 0
U

., Equivalent to Lagrangian (with Lagrange multiplier A): max min g(u) + Ah(u)
u A

. Our optimization problem: min ¥ s.t. x,, | = f(x,, u,)
u

T—1
Lagrangian: £ = z c(x, u) + v, (f(x, u,) — x4 1)
=0

>

> Atthe optimum: V, Z =0 — v, =V, ¢, +v,,,V, [, =the co-state

 Lagrange multipliers often have their own meaning
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Hamiltonian

 Hamiltonian = first-order approximation of cost-to-go
= (X u,) + Uy 1 (X, 1))

o At the optimum, defines all x, u, and v in one equation:

th%t = thct T Vit1 thft — U
Vum%t = J(X Uy) = Xy

Vi i =V (L + Vg 1%,) =0

» Can solve these (2n + m)T equations in (2n + m)T variables

> Generally, nonlinear with many local optima
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Hamiltonian in LQR

* |n LQR, the Hamiltonian is quadratic
1 1
%t — ExtTth_I_ EutTRut + I/H_I(A)Ct + lett)
e This suggest forward-backward recursions for x, u, and v:
=V, X, =v,A+ x'Q
V.7 ,=Ru,+BWw! =0

« These correspond to the previous approach with utT =3S5x, u, =Lx,
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Recap

e | QR = simplest dynamics: linear; simplest cost: quadratic

» Can characterize stability, reachability, stabilizability in terms of (A, B)

* Can use Ricatti equation to find cost-to-go Hessian

o Alternatively: Hamiltonian gives state forward / co-state backward recursions
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