

CS 277: Control and Reinforcement Learning Winter 2021 Lecture 18: Multi-Agent RL

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine



Logistics

assignments

Assignment 5 due Friday

evaluations

Evaluations due end of the week

Today's lecture

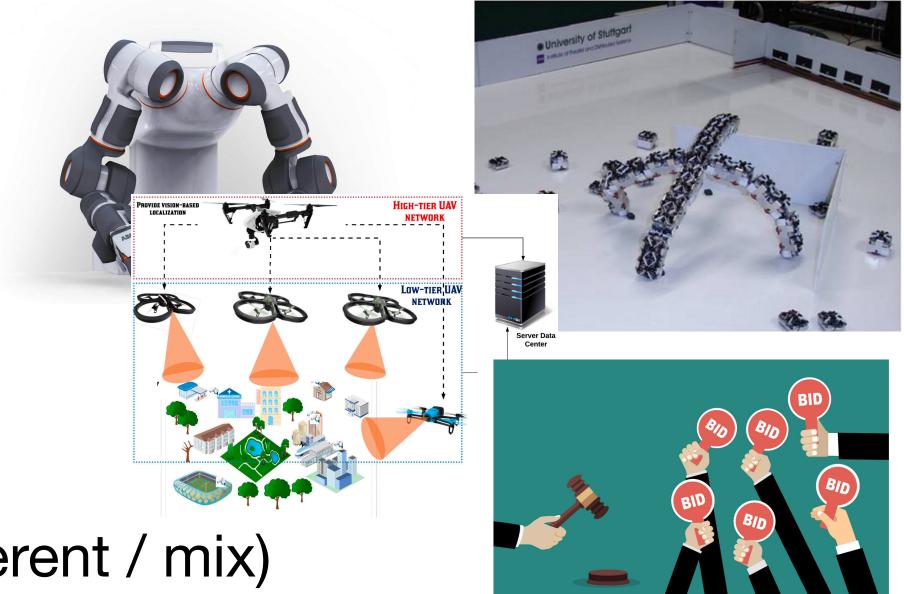
Centralized vs. decentralized RL

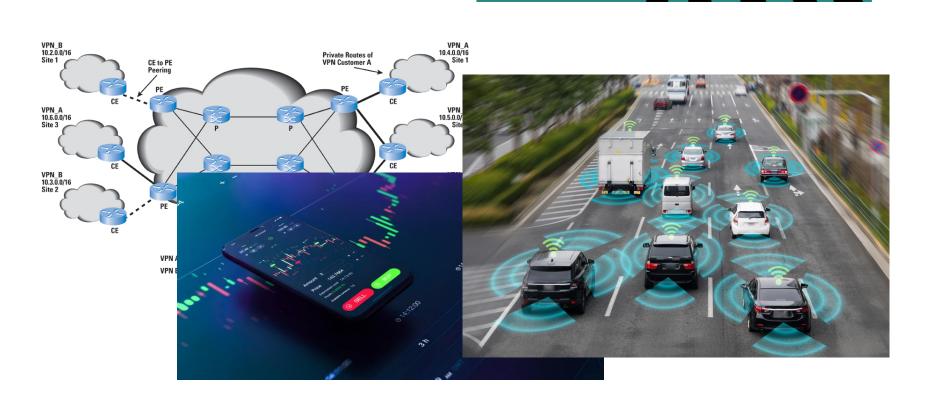
(Fictitious) Self Play

Double Oracle

Multi-agent systems

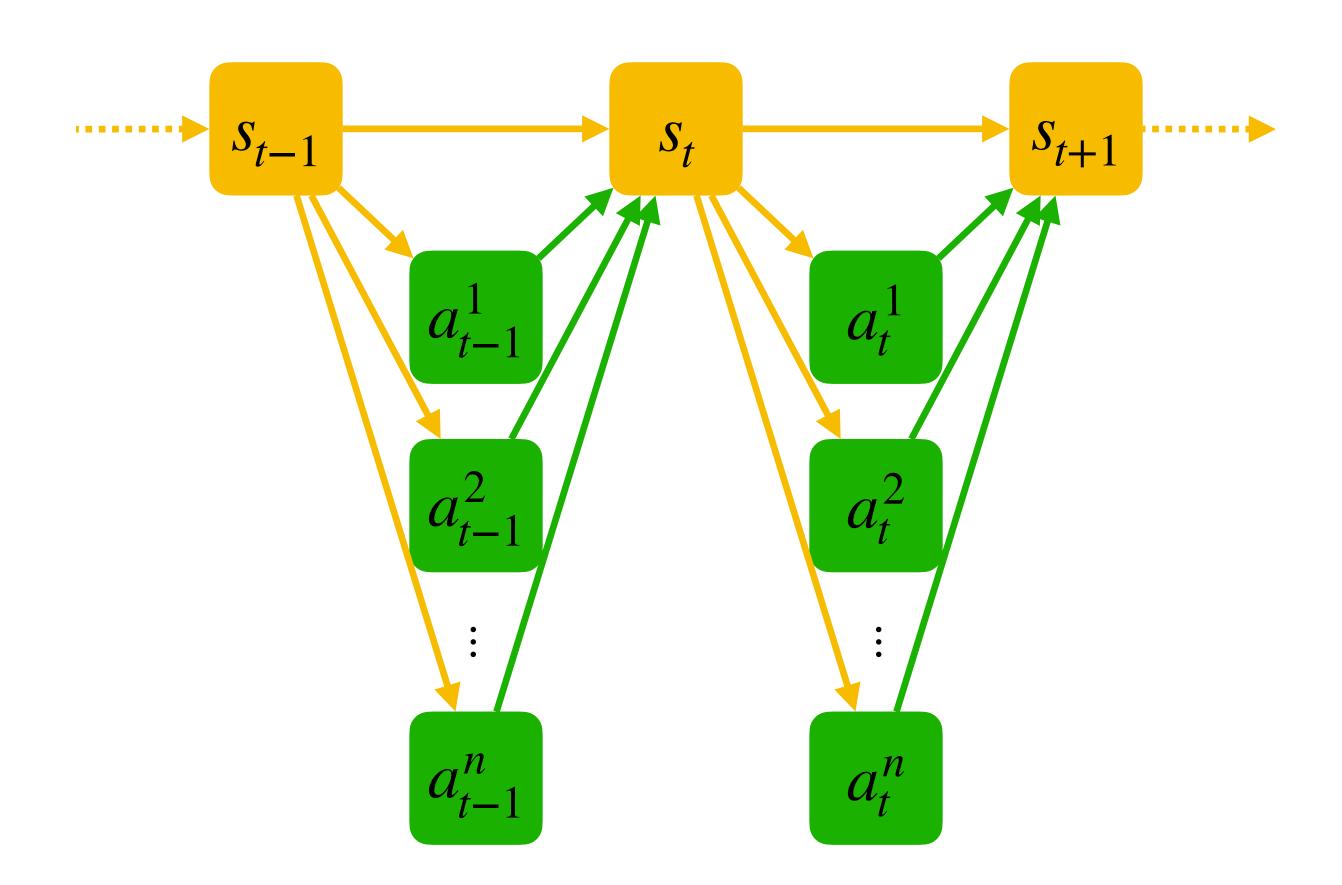
- Agent = actuator + sensor + self-interest (reward function) + optimizer
- Multi-agent system:
 - Distributed actuation
 - Distributed sensing / information hiding
 - Distinct interests (cooperative / competitive / indifferent / mix)
 - Distributed optimization
 - ► ⇒ distributed memory state ⇒ Theory of Mind





Centralized cooperative RL

- n agents = players; joint action = $a = (a^1, ..., a^n) \in \mathcal{A} = \mathcal{A}^1 \times \cdots \times \mathcal{A}^n$
- State transition = p(s'|s,a); policy profile = $\pi = (\pi^1, ..., \pi^n)$



Centralized cooperative RL

- n agents = players; joint action = $a = (a^1, ..., a^n) \in \mathcal{A} = \mathcal{A}^1 \times ... \times \mathcal{A}^n$
- State transition = p(s'|s,a); policy profile = $\pi = (\pi^1, ..., \pi^n)$
- Cooperative RL = all agents share the same rewards (payoffs) $r^1 = \cdots = r^n$
- Assume each agent gets observation o^i with probability $p(o^i \mid s)$

$$\implies \text{policy structure: } \pi(a \mid o) = \prod_i \pi^i(a^i \mid o^i) \qquad \text{agent } i^{\text{'s action }} a^i$$

$$\text{action distributions are independent}$$

• Can jointly optimize π with this independence structure

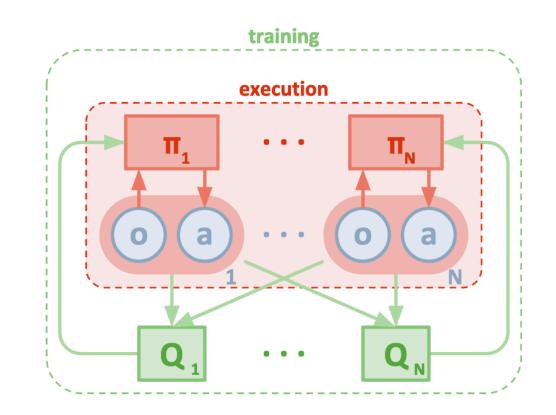
E.g. PG:
$$\nabla_{\theta} \mathcal{L}_{\theta} = \nabla_{\theta} \log \pi_{\theta}(a \mid o) R = \sum_{i} \nabla_{\theta_{i}} \log \pi_{\theta_{i}}(a^{i} \mid o) R$$

Independent RL

- Return R (or $R_{\geq t}$) is shared by all agents, but has high variance
 - Can we use some TD learning? Q-learning, AC, etc. \Longrightarrow need Q^i all agents except i
- Independent RL = train each agent i in MDP induced by others -i
 - $p(s'|s,a^i) = \mathbb{E}_{a^{-i}|o \sim \pi^{-i}}[p(s'|s,a)]$
 - Can train $Q^i(o^i, a^i)$ from experience $(o_t^i, a_t^i, r_t, o_{t+1}^i)$
- Problem: the MDP keeps changing with $\pi^{-i} \Longrightarrow \text{instability}$
 - May still work well in practice

Centralized critic / decentralized actors

- Actor–Critic presents opportunity:
 - ► No critic in test time critic may be unrealizable



- Multi-Agent Deep Deterministic Policy Gradient (MADDPG):
 - ► Train critic Q(o, a) for joint observation + action from experience (o_t, a_t, r_t, o_{t+1})
 - Use critic to train actors $\pi^i(a^i \mid o^i)$
- Stochastic actors: $\nabla_{\theta_i} \mathcal{L}_i = \nabla_{\theta_i} \log \pi_{\theta_i}(a^i \mid o^i) Q(o, a)$ (like AC)
- $\text{Deterministic actors: } \nabla_{\theta_i} \mathcal{L}_i = \nabla_{\theta_i} \mu_{\theta_i}(o^i) \nabla_{a^i} Q(o,a) \left|_{a_i = \mu_{\theta_i}(o^i)} \text{ (like DDPG)} \right|_{a_i = \mu_{\theta_i}(o^i)}$

Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play

Double Oracle

Solution concept: Nash equilibrium

- . Best response for player i to π^{-i} : $b^i(\pi^{-i}) = \arg\max_{\pi^i} \mathbb{E}_{\pi^i,\pi^{-i}}[R^i]$
- Nash equilibrium $\pi = \operatorname{each} \pi^i$ is best response to π^{-i}
 - \rightarrow player i has no incentive to deviate = π^{-i} is not exploitable
- Example 1: Prisoner's Dilemma

	Cooperate	Defect
Cooperate	-1 \ 1	-3 \ 0
Defect	0 \ -3	-2 \ -2

- Example 2: Matching Pennies mixed equilibrium
 - Generally, stochastic policies needed

	Heads	Tails
Heads	1 \ -1	-1 \ 1
Tails	-1 \ 1	1 \ -1

Nash equilibrium: challenges

- Problem 1: is finding a Nash equilibrium all we need?
 - Example:

	action 1	action 2
action 1	1\1	0 \ 0
action 2	0 \ 0	2\2

- Nash equilibrium is a pretty weak (but simple) solution concept
- Problem 2: how to find a Nash equilibrium?
 - Iteratively switch to each player's best response?
 - Counter-example: Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	0 \ 0	-1 \ 1	1\-1
Paper	1 \ -1	0 \ 0	-1 \ 1
Scissors	-1 \ 1	1\-1	0 \ 0

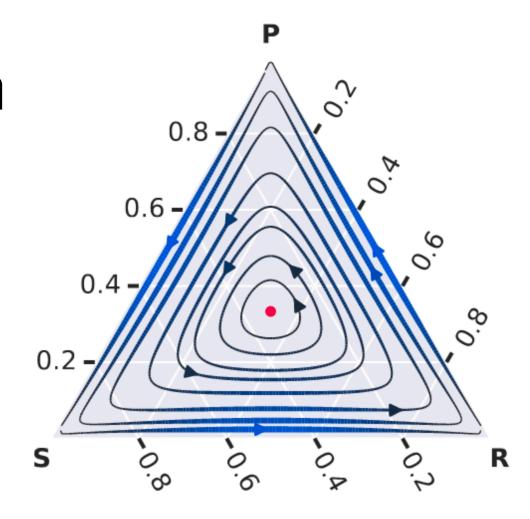
- Best response can be deterministic; equilibrium may require stochastic

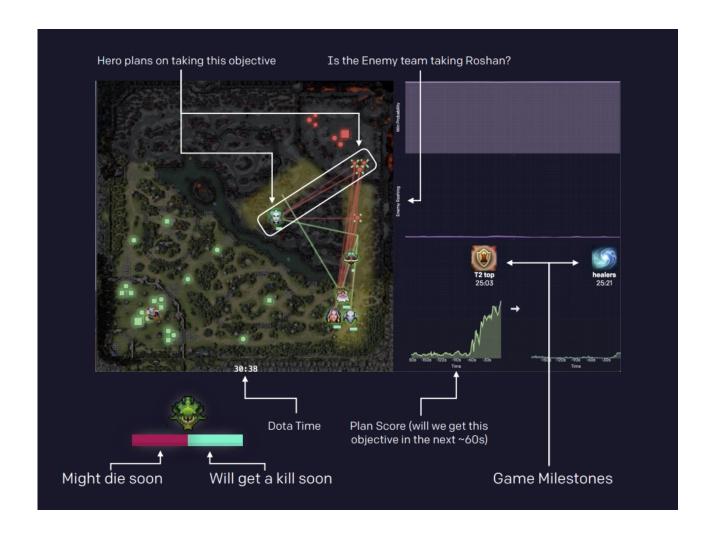
Two-player zero-sum games

- Zero-sum: $r^1 = -r^2 = r$
- Optimization problem: $\max_{\pi^1} \max_{\pi^2} \mathbb{E}_{\pi^1,\pi^2}[R]$
 - Under mild conditions: max-min = min-max (no duality gap)
 - All Nash equilibria have the same value
- Very hard optimization problem
 - Gradient-based algorithms usually try to avoid a saddle-point
 - Here we're seeking a saddle-point

Self Play

- Self Play (= independent RL) = train each agent in MDP induced by others
- Problem: no guarantees of convergence to Nash equilibrium
 - E.g., not clear how to keep policies sufficiently stochastic
- But may work well in practice





Fictitious Play (FP)

- Self Play has the right idea: if $b^i(\pi^{-i})$ is better than $\pi^i \Longrightarrow$ update toward it
 - But by how much?
- Fictitious Play
 - Add $b^i(\pi^{-i})$ to a population
 - $\pi^i \leftarrow$ average of population
- π guaranteed to converge to Nash equilibrium

	Rock	Paper	Scissors
Pop. avg.	1	0	0
BR	0	1	0
Pop. avg.	0.5	0.5	0
BR	0	1	0
Pop. avg.	0.33	0.67	0
BR	0	0	1
Pop. avg.	0.25	0.5	0.25
BR	0	0	1
Pop. avg.	0.2	0.4	0.4
BR	1	0	0
Pop. avg.	0.33	0.33	0.33
BR	1	0	0

•

How to implement this with (Deep) RL?

Neural Fictitious Self Play (NFSP)

- Representation: "best-response" values Q^i + "average" policies π^i
 - Use DQN to train Q^i against π^{-i}
 - Roll out episodes using $(\epsilon$ -greedy $(Q^i), \pi^{-i}) \to \text{replay buffer}$
 - Sample $(s_t^i, a_t^i, r_t^i, s_{t+1}^i)$ from replay buffer \rightarrow descend on square Bellman error
 - Use policy distillation (supervised learning) to average Qⁱ as it changes into π^i
 - Sample (s^i, a^i) from replay buffer \rightarrow descend on NLL loss $-\log \pi^i(a^i \mid s^i)$
- Unlike FP, Q^i isn't immediately best response \Longrightarrow NFSP can be unstable

Today's lecture

Centralized vs. decentralized RL

(Fictitious) Self Play

Double Oracle

Double Oracle (DO)

- Unweighted population average guaranteed asymptotic convergence
 - Some policies are better than others (e.g. late vs. early in training) => weights?
- Assume payoffs / utilities given by matrix U_{π^1,π^2} (normal form) for all π^1 , π^2
- Idea: weight by mixed Nash equilibrium on population
 - σ find Nash equilibrium restricted to population policies Π^i
 - Add best response to population: $\Pi^i \leftarrow \Pi^i \cup \{b^i(\sigma^{-i})\}$

	R	Р	S
Pop.NE	1	0	0
BR	0	1	0
Pop.NE	0	1	0
BR	0	0	1
Pop.NE	0.33	0.33	0.33

• Guarantee: $\sigma \rightarrow$ Nash equilibrium; hopefully before all policies added

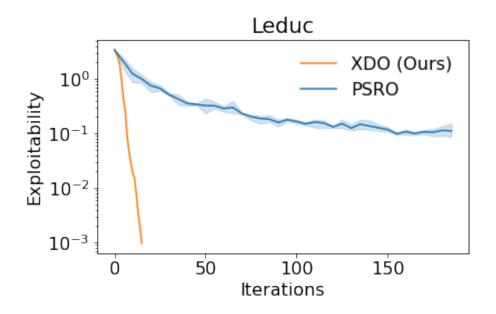
Policy-Space Response Oracles (PSRO)

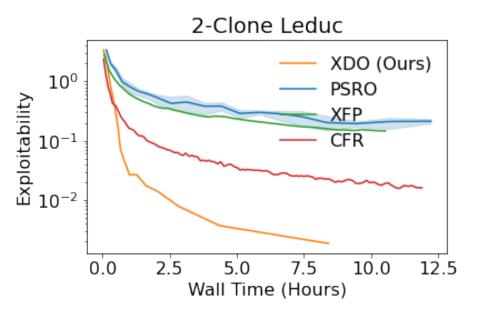
- Problem: computing and storing entire utility matrix is infeasible in RL
 - Policy-space size is exponential in belief-space size $|\mathcal{A}|^{|\mathcal{B}|}$
- Idea: match pairs of population policies \Longrightarrow estimate $U_{\pi^1,\pi^2}=\mathbb{E}_{\pi^1,\pi^2}[R]$
 - Find meta-Nash equilibrium over population policies Π^i
 - \Longrightarrow meta-policy σ^i = mixture over Π^i
 - Add best response to σ^{-i}
- Guarantee: $\sigma \rightarrow$ Nash equilibrium; hopefully before all (many!) policies added

Extensive-form Double Oracle (XDO)

- Extensive form = tree of game histories
 - Information set (infostate) = states with same observable history

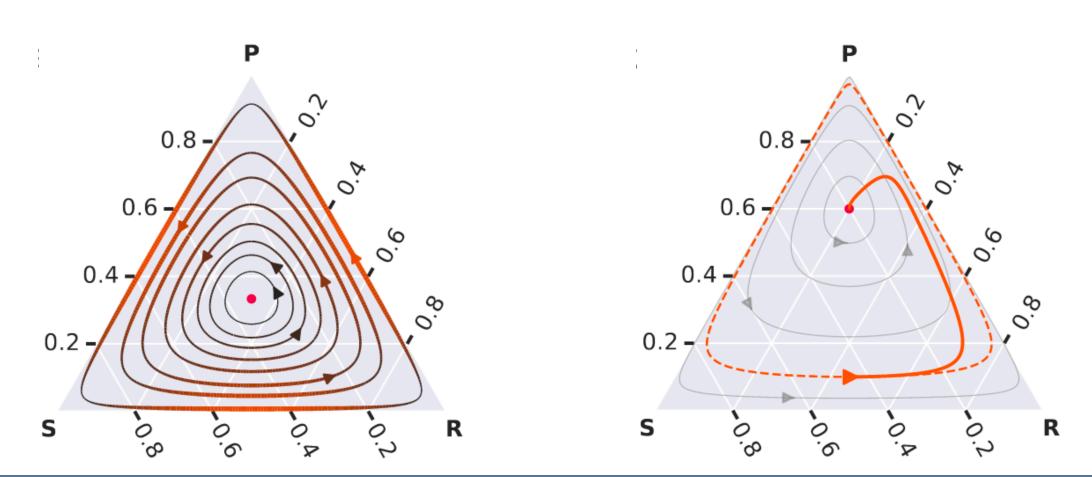
- Problem: in long game, mixing over few policies is very exploitable
 - ► Opponent can identify selected policy —> it becomes deterministic = exploitable
- Idea: mix over population policies again in every infostate
 - extensive-form game restricted to actions by any population policy





Other methods

- Counterfactual Regret Minimization (CFR)
 - In each episode: $\pi(a \mid h) \propto \text{regret}$ of not always taking a in infostate h
- Problem: in RL, we can't really get best responses
 - Idea: policy improvement dynamics that are guaranteed to converge
 - E.g. Replicator Dynamics (RD)



General sum games: challenges

- Between zero-sum and cooperative: competitive + cooperative aspects
- May have multiple Nash equilibria

 which is best? may be ill-defined
 - In one-shot game: which one will my opponent play? ill-defined
- >2 players (nothing special about 0-sum) \Longrightarrow can have coalitions etc.
 - Mixed Nash equilibria exist, but very weak solution concept
 - No good solution concept is known
- What to do? In practice, Self Play may work well

one critic per player with shared o and a, but with r^i

- Can also use MADDPG: $\nabla_{\theta_i} \mathcal{L}_i = \nabla_{\theta_i} \log \pi_{\theta_i}(a^i \mid o^i) Q^i(o, a)$

Recap

- Cooperative / general-sum games
 - ► ⇒ Self Play (aka independent RL), MADDPG
- Two-player zero-sum games
 - Self Play, MADDPG
 - Fictitious Play (FP), NFSP
 - Double Oracle (DO), PSRO, XDO
 - CFR, DeepCFR
 - Replicator Dynamics (RD), Neural RD (NeuRD)
 - Etc.