CS 277: Control and Reinforcement Learning Winter 2021 Lecture 14: Inverse RL

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Today's lecture

Feature Matching

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

MaxEnt IRL

GAIL

Learning rewards from demonstrations

- RL: rewards \rightarrow policy; IL: demonstrations \rightarrow policy
- Inverse Reinforcement Learning (IRL): demonstrations → reward function
 - Better understand agents (humans, animals, users, markets)
 - Preference elicitation, teleology (the "what for" of actions), theory of mind, language
 - First step toward Apprenticeship Learning: demos \rightarrow rewards \rightarrow policy
 - Infer the teacher's goals and learn to achieve them; overcome suboptimal demos
 - Partly model-based (learn r but not p); may be easier to learn, generalize, transfer
 - Teacher and learner can have different action spaces (e.g., human \rightarrow robot)

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Inverse Reinforcement Learning (IRL)

- r(s) expressive enough
- Given a dataset of demonstration trajectories $\mathcal{D} = \{\xi_i\}$ • Find teacher's reward function $r : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
 - Principle: demonstrated actions should achieve high expected return
- IRL is ill-defined
 - How low is the reward for states and actions not in \mathscr{D} ?
 - How is the reward distributed along the trajectory?
 - Sparse rewards = identify "subgoal" states; dense = score each step, as hard as IL
 - Demonstrator can be fallible = take suboptimal actions; how much?

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Feature matching

• /

Assume linear reward
$$r_{\theta}(s) = \theta^{\mathsf{T}} f_s$$
 in oracle state features $f_s \in \mathbb{R}^d$ $t \sim \operatorname{Geom}(1 - \sqrt{t})$
 $\Longrightarrow \operatorname{Return} = R_{\pi;\theta} = \sum_t \gamma^t \mathbb{E}_{s_t \sim p_{\pi}}[\theta^{\mathsf{T}} f_{s_t}] = \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s]$ (with $p_{\theta}(s) = \sum_t \gamma^t p_{\theta}(s_t)$)

- Teacher optimality: return $R_{e: heta}$ higher than any other policy's return $R_{\pi\cdot heta}$
 - \implies Find θ that maximizes the gap R_{ρ} .
 - \implies Apprenticeship Learning: find π that maximizes $R_{\pi:\theta}$ (for which θ ?)

• Solve:
$$\max_{\theta} \min_{\pi} \{ R_{e;\theta} - R_{\pi;\theta} \} = \max_{\theta} \min_{\pi} \{ \mathbb{E}_{s \sim p_e}[\theta^{\mathsf{T}} f_s] - \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s] \}$$

• Approximate $s \sim p_e$ with $s \sim \mathscr{D}$

$$_{;\theta} - R_{\pi;\theta}$$
 (for which π ?)

Feature matching

- Feature Matching:
 - Initialize $\Pi = \{\pi_0\}$
 - Repeat:

 $\eta, \|\theta\|_2 \leq 1$

- Add to Π the optimal policy π for $r_{\theta}(s) = \theta^{T} f_{s}$

• On convergence: π optimal for θ (no gap), can't find θ with gap

$$\Longrightarrow \mathbb{E}_{s \sim \mathcal{D}}[\theta^{\mathsf{T}} f_s] \approx \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s] \text{ for a}$$

Solve the Quadratic Program: max η s.t. $\mathbb{E}_{s \sim \mathcal{D}}[\theta^{\dagger} f_s] \geq \mathbb{E}_{s \sim p_{\pi}}[\theta^{\dagger} f_s] + \eta \quad \forall \pi \in \Pi$

feature matching

all $\theta \Longrightarrow \mathbb{E}_{s \sim \mathscr{D}}[f_s] \approx \mathbb{E}_{s \sim p_{\pi}}[f_s]$

Today's lecture

Feature Matching

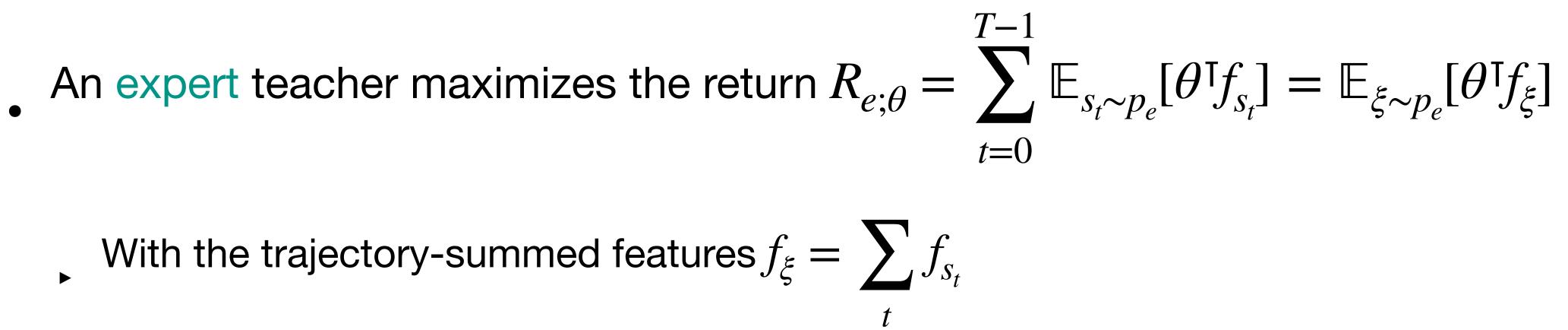
Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

MaxEnt IRL

GAIL

Modeling bounded teachers

- With the trajectory-summed features $f_{\xi} = \sum f_{s_t}$
- Bounded rationality: teacher has "unintentional" prior policy π_0
 - Cost to intentionally diverge: $\mathbb{D}[\pi_e \| \pi_0]$ (
 - Total cost over trajectory: $\mathbb{D}[p_e(\xi) \| p_0(\xi)]$
- Bounded optimality: max $\mathbb{E}_{\xi \sim p_e}[\theta^{\mathsf{T}} f_{\xi}] \tau \mathbb{D}[p_e || p_0]$ π_{e}



(with
$$\pi_0$$
 uniform: $\mathbb{H}[\pi_e]$)

$$\mathbb{E}[\pi_e \| \pi_0]$$

Bounded optimality: naïve solution

• Bounded optimality: $\max \mathbb{E}_{\xi \sim p_e} [\theta^{\mathsf{T}} f_{\xi}]_{\mathcal{F}_e p_e}$

- Naïve solution: allow any distribution p_e over trajectories
- No need to be consistent with dynamics $p(s' | s, a) \Longrightarrow p_e$ may be unachievable
- Add the constraint $\sum_{\xi} p_e(\xi) = 1$ with Lagrange multiplier λ
- Differentiate by $p_e(\xi)$ and = 0 to optimize

 $\theta^{\mathsf{T}} f_{\xi} - \log p_e(\xi) + \log p_0(\xi) - 1$

$$[\xi] - \mathbb{D}[p_e \| p_0]$$

$$+ \lambda = 0 \Longrightarrow p_e(\xi) = \frac{p_0(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})}{\sum_{\bar{\xi}} p_0(\bar{\xi}) \exp(\theta^{\mathsf{T}} f_{\bar{\xi}})}$$

IRL with bounded teacher

- - With partition function $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{T} f_{\xi})]$
- Find θ that minimizes NLL of demonstrations

$$\nabla_{\theta} \log p_{\theta}(\xi) = \nabla_{\theta}(\theta^{\mathsf{T}} f_{\xi} - \log Z_{\theta}) = f_{\xi} - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$
$$= f_{\xi} - \frac{1}{Z_{\theta}} \mathbb{E}_{\bar{\xi} \sim p_{0}}[\exp(\theta^{\mathsf{T}} f_{\bar{\xi}}) f_{\bar{\xi}}] = f_{\xi} - \mathbb{E}_{\bar{\xi} \sim p_{\theta}}[f_{\bar{\xi}}]$$

• To compute gradient, we need $p_{\theta} \Longrightarrow$ we need Z_{θ}

• Assume that demonstrations are distributed $p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_0(\xi) \exp(\theta^{T} f_{\xi})$

Computing Z_{β} : backward recursion

- Partition function: $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$
- Compute Z_{θ} recursively backward:
 - $Z_{\theta}(s_t, a_t) = \mathbb{E}_{p_0}[\exp(\theta^{\mathsf{T}} f_{\xi > t}) | s_t, a_t]$ $Z_{\theta}(s_t) = \mathbb{E}_{p_0}[\exp(\theta f_{\xi > t}) | s_t]$
- Z_{θ} defines $p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_{0}(\xi) \exp(\theta^{T} f_{\xi})$

• Marginalizing: $\pi_{\theta}(a_t | s_t) = \pi_0(a_t | s_t) \frac{Z_{\theta}(s_t, a_t)}{Z_{\theta}(s_t)}$

• π_{θ} is not globally consistent $p_{\theta}(\xi) \neq p_{\pi_{\theta}}(\xi)$, because we ignored the dynamics

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

Computing Z_{β} : backward recursion

- Partition function: $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$
- Compute Z_{θ} recursively backward:
 - $Z_{\theta}(s_t, a_t) = \mathbb{E}_{p_0}[\exp(\theta^{\mathsf{T}} f_{\xi > t}) | s_t,$ $Z_{\theta}(s_t) = \mathbb{E}_{p_0}[\exp(\theta f_{\xi > t}) | s_t]$
- Z_{θ} defines $p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_{0}(\xi) \exp(\theta^{T} f_{\xi})$

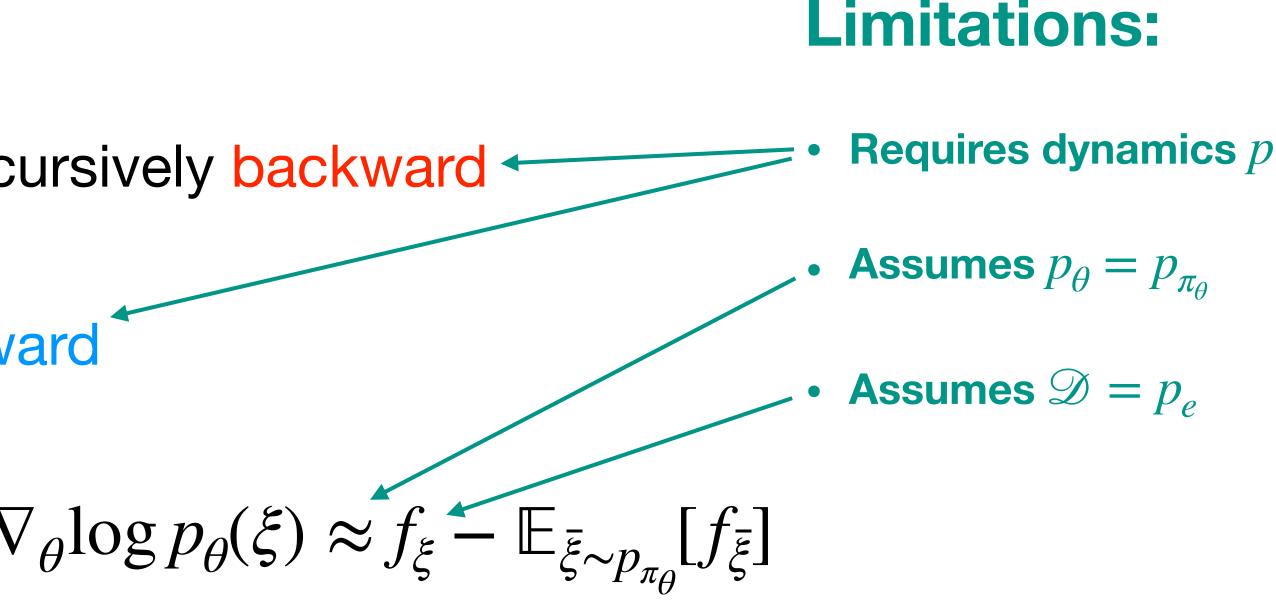
• Marginalizing: $\pi_{\theta}(a_t | s_t) = \pi_0(a_t | s_t) \frac{Z_{\theta}(s_t, a_t)}{Z_{\theta}(s_t)}$

$$[a_t] = \exp(\theta^{\mathsf{T}} f_{s_t}) \mathbb{E}_{s_{t+1}|s_t, a_t \sim p}[Z_{\theta}(s_{t+1})]$$
$$] = \mathbb{E}_{a_t|s_t \sim \pi_0}[Z_{\theta}(s_t, a_t)]$$

• π_{θ} is not globally consistent $p_{\theta}(\xi) \neq p_{\pi_{\theta}}(\xi)$, because we ignored the dynamics

MaxEnt IRL

- For each sample $\xi \sim \mathcal{D}$:
 - Compute $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$ recursively backward •
 - Compute $\mathbb{E}_{\bar{\xi} \sim p_{\pi o}}[f_{\bar{\xi}}]$ recursively forward
 - ► Take a gradient step to improve θ : $\nabla_{\theta} \log p_{\theta}(\xi) \approx f_{\xi} \mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$
- At the optimum: feature matching $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi o}}[f_{\xi}]$
 - ▶ MaxEnt IRL approximates $\max_{z} \mathbb{H}[\pi_{\theta}]$ s.t. $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$ θ



Today's lecture

Feature Matching

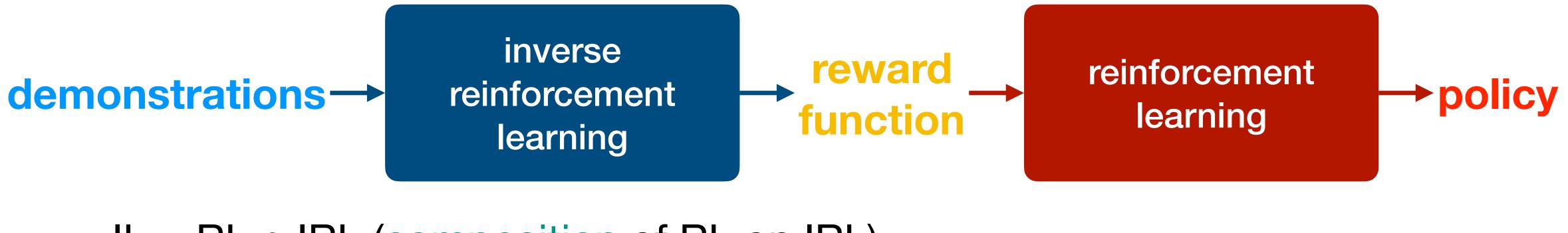
Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

MaxEnt IRL

GAIL

IRL: downstream tasks

Motivation: learn reward function for downstream tasks...



- $IL = RL \circ IRL$ (composition of RL on IRL)
- Our algorithms already learn π as part of learning θ for $r: s \mapsto \theta^{T} f_{s}$
 - Let's directly optimize IRL for the overall IL task = learn good π

IL as RL o IRL

- Entropy-regularized RL: $\max_{\pi \in \Pi} \{ \mathbb{E}_{s \sim \mu}$
- MaxEnt IRL: $\max_{r \in \mathbb{R}^{\mathcal{S}}} \{ \mathbb{E}_{s \sim p_e}[r(s)] m_{\pi \in \mathcal{R}^{\mathcal{S}}} \}$
- For any π , our objective

bjective with respect to *r* is:

$$\underset{e \in \mathbb{R}^{\mathscr{S}}}{\overset{e \in \mathbb{R}^{\mathscr{S}}}{\longleftarrow}} (p_e - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathscr{S}}} \left\{ \overbrace{(p_e - p_{\pi})}^{\circ} \cdot r - \psi(r) \right\}$$

• This form of function $\psi^* : \mathbb{R}^{\mathscr{S}} \to \mathbb{R}$ is called the convex conjugate of ψ

$$\max_{x \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \}$$

$$\operatorname{regularization over reward function spectrum}_{reward function spectrum}_{reward function}$$

$$\int_{x \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \} \} - \psi(r)$$

Reward-function regularizers

$$\psi^*(p_e - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ (p_e - p_{\pi}) \cdot r - \psi(r) \right\}$$

- Without regularizer: $\psi = 0 \implies$ solution only exists when $p_e = p_{\pi}$
- Hard linearity constraint: $\psi(r) = \begin{cases} 0 & \text{if } r(s) = \theta^{\mathsf{T}} f \\ \infty & \text{otherwise} \end{cases}$
 - \rightarrow max-entropy feature matching (MaxEnt IRL)

 \implies learner achieves teacher's state distribution: perfect solution, but hard to find

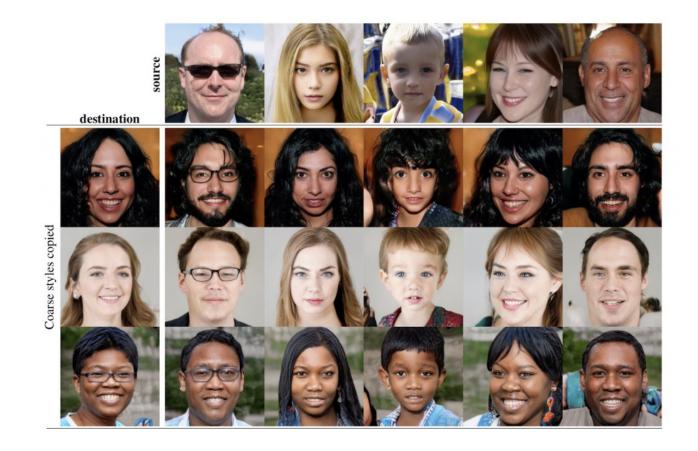
$$0 \quad \text{if } r(s) = \theta^{\mathsf{T}} f_s$$

• Great when the reward function really is linear in f_s , otherwise no guarantees



Generative Adversarial Networks (GANs)

- Train generative model $p_{\theta}(s)$ to generate states / observations
 - Can we focus the training on failure modes?
- Also train discriminator $D_{\phi}(s) \in [0,1]$ to score instances
 - Kind of like a critic: are generated instances good?
- $D_{\phi}(s)$ predicts the probability p(s gen)
 - Trained with cross-entropy loss: max
- The generator tries to fool the discrim



herated by learner
$$|s) = \frac{p_{\theta}(s)}{p_{\theta}(s) + p_{e}(s)}$$

$$\left\{\mathbb{E}_{s\sim p_{\theta}}[\log D_{\phi}(s)] + \mathbb{E}_{s\sim p_{e}}[\log(1 - D_{\phi}(s))]\right\}$$

$$\underset{\theta}{\text{ninator: min } \mathbb{E}_{s \sim p_{\theta}}[\log D_{\phi}(s)]}$$

Roy Fox | CS 277 | Winter 2021 | Lecture 14: Inverse RL

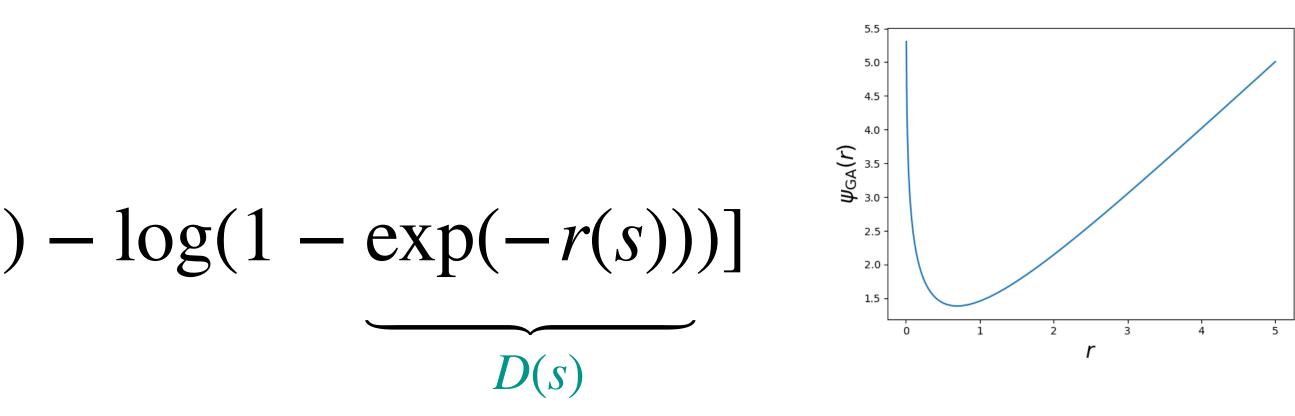
Teacher-based reward-function regularizer

Consider the regularizer

$$\psi_{\mathrm{GA}}(r) = \mathbb{E}_{s \sim p_e}[r(s)]$$

• It's convex conjugate is:

$$\begin{split} \psi_{\text{GA}}^*(p_e - p_\pi) &= \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ (p_e - p_\pi) \cdot r - \psi(r) \right\} \\ &= \max_{r \in \mathbb{R}^{\mathcal{S}}} [r(s) - r(s) + \log(1 - D(s))] - \mathbb{E}_{s \sim p_\pi} [\widetilde{r(s)}] \\ &= \mathbb{E}_{s \sim p_\pi} [\log D(s)] + \mathbb{E}_{s \sim p_e} [\log(1 - D(s))] \end{split}$$



• \implies GAN: generator p_{π} imitating teacher p_{ρ} ; discriminator $D(s) = \exp(-r(s))$

Generative Adversarial Imitation Learning (GAIL)

Input: demonstration dataset $\mathcal{D}_T \sim p_T$ repeat

 $\mathcal{D}_L \leftarrow \text{roll out } \pi_\theta$ take discriminator gradient ascent step

$$\mathbb{E}_{s \sim \mathcal{D}_L} \left[\nabla_{\phi} \log D_{\phi}(s) \right] + \mathbb{E}_{s \sim \mathcal{D}_T} \left[\nabla_{\phi} \log (1 - D_{\phi}(s)) \right]$$

We've already seen one entropy-regularized PG algorithm: TRPO

More next time

take entropy-regularized policy gradient step with reward $r(s) = -\log D_{\phi}(s)$

Recap

- To understand behavior: infer the intentions of observed agents
- If teacher is optimal for a reward function
 - The reward function should make an optimizer imitate the teacher
 - State (or state-action) distribution of learner should match the teacher
- In this view, Inverse Reinforcement Learning (IRL) is a game:

 - Learner optimizes for the reward

Reward is optimized to show how much the teacher is better than the learner

Reward is like a discriminator (high = probably teacher); learner like a generator