

CS 277: Control and Reinforcement Learning Winter 2021

Lecture 10: Model-Based Methods

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

Assignment 3 to be published this week

Due next Friday

• Assignments 1 + 2 to be graded this weekend

Learning vs. planning

- Model = dynamics + reward function
 - Planning = finding a good policy with access to a model
- Learning = improving performance using data
 - Are rollouts from the model considered "data"?
 - If yes, planning can involve learning
- Model-based learning = methods that explicitly learn the model
 - Unlike planning, access to a model is not given; it is learned

Model-based learning

- Is learning algorithm \mathscr{A} model-based?
- In tabular representation just count parameters:
 - ► Model-free = $O(|\mathcal{S}| \cdot |\mathcal{A}|)$ (to represent $\pi(a|s)$ or Q(s,a))
 - Model-based = $\Omega(|\mathcal{S}|^2 \cdots |\mathcal{A}|)$ (to represent p(s'|s,a))
- Not always clear-cut:
 - If intermediate features of DQN $Q_{\theta}(s, a)$ are informative of s', is this model-free?
- Not to be confused with ML terminology calling anything learned a "model"

Model-based learning: benefits

- Dynamics p has more parameters than $\pi \Longrightarrow$ harder to learn? Usually, easier
 - p can have simpler form and generalize better to unseen states and actions and
 - p can be learned locally; π or Q encode global knowledge (long-term planning)
- Model-based methods produce transferable knowledge
 - Useful if MDP changes only slightly / partially
 - E.g. only the task changes, i.e. r changes but not p
 - Can generalize across environment changes, e.g. friction or arm length
 - Can help transfer learning in an inaccurate simulator to the real world (sim2real)

How to learn a model

- Interact with environment to get trajectory data
 - Deterministic continuous dynamics / reward: minimize MSE loss

$$\mathcal{L}_{\phi}(s, a, r, s') = \|s' - f_{\phi}(s, a)\|_{2}^{2} + (r - r_{\phi}(s, a))^{2}$$

Stochastic dynamics: minimize NLL loss

$$\mathcal{L}_{\phi}(s, a, s') = -\log p_{\phi}(s'|s, a)$$

- Data can be off-policy

 — unbiased estimate, but with covariate shift
 - Random policy is often used
- Another possibility discussed later

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Policy Gradient through the model

Model is often learned with SGD — must be differentiable

$$\hat{\mathcal{J}}_{\theta} = \sum_{t} \gamma^{t} \hat{c}(x_{t}, u_{t}) = \sum_{t} \gamma^{t} \hat{c}(\hat{f}(\dots \hat{f}(x_{0}, \pi_{\theta}(x_{0})) \dots, \pi_{\theta}(x_{t-1})), \pi_{\theta}(x_{t}))$$

- Just do Policy Gradient over $\hat{\mathcal{J}}_{\theta}$?
 - Chain rule
 back-propagation through time
- Sadly, $\hat{\mathcal{J}}_{\theta}$ is ill-conditioned for SGD
 - Perturbing one action individually may change $\hat{\mathcal{J}}_{\theta}$ unreasonably little / much
 - Vanishing / exploding gradients
 - Second-order methods can help, but Hessian is even nastier for the same reason

PG with a model

Luckily, we have the Policy Gradient Theorem

$$\nabla_{\theta} \hat{\mathcal{J}}_{\theta} = \mathbb{E}_{\xi \sim p_{\theta}} \left[\sum_{t} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \hat{Q}_{\bar{\theta}}(s_{t}, a_{t}) \right]$$

- Idea: use the model as a fast simulator just to estimate $\hat{Q}_{ar{ heta}}(s_t,a_t)$
 - E.g., by Monte Carlo
 - Avoids complications of gradients through the model
 - Only backprop through single-step $\log \pi_{\theta}(a_t | s_t)$

How to use a learned model

- Ways to use a learned model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Model-free RL with a model

• General scheme for using a model for model-free RL:

• Benefit: get diverse off-policy s, and fresh on-policy a

Model-free RL with a model

• On-policy actions \Longrightarrow allows n-step estimation without bias:

```
collect data train model \hat{p}, \hat{r} repeat sample s from the replay buffer roll out the learner's policy for n steps in the simulator perform n-step model-free RL
```

- $\hat{r}(s_t, a_t) + \gamma \hat{r}(\hat{s}_{t+1}, a_{t+1}) + \dots + \gamma^{n-1} \hat{r}(\hat{s}_{t+n-1}, a_{t+n-1})$ is unbiased
 - Except for model inaccuracy

Dyna

```
collect data train model \hat{p}, \hat{r} repeat sample (s, a) from the replay buffer \Delta Q(s, a) \leftarrow \hat{r}(s, a) + \gamma \mathbb{E}_{s'|s, a \sim \hat{p}} [\max_{a'} Q(s', a')] - \varrho(s, a) use model as simulator to estimate
```

- Improvement: mix in samples generated from learner interactions
 - Original benefit: keep training the model to be good for states that learner sees
 - With function approximation: feed the replay buffer and reduce covariate shift

Wait... Model-free RL... with a model?

- Why be model-free if we have the model?
- <u>Learning</u> to control is inherently model-free
 - Policy gradient is 0 for the $\log p(s'|s,a)$ term of $\log p_{\theta}(\xi)$
 - Same in Imitation Learning: optimize NLL $\mathcal{L}_{\theta}(s_t, a_t) = -\log \pi_{\theta}(a_t \mid s_t)$
 - As opposed to <u>planning</u>, which requires averaging over futures
- The model still gives benefits
 - It can diversify the experience data, like a replay buffer but more so
 - Incidental: generalization, transfer

Optimal exploration for model learning

- How to explore optimally for learning the model?
- Explicit Explore or Exploit (E³):
 - Maintain set \mathcal{S}_k of sufficiently explored states
 - The model $\hat{\mathcal{M}}$ has the empirical transitions and rewards on \mathcal{S}_k
 - Other states collapsed to single absorbing state with reward $r_{\rm max}$
- Principle of optimism under uncertainty

Explicit Explore or Exploit (E³)

```
S_k \leftarrow \emptyset
repeat
     \pi \leftarrow \text{plan in } \hat{\mathcal{M}}
     if Pr(\pi \text{ reaches absorbing state}) < \epsilon \text{ then}
          terminate
     Otherwise
          execute \pi
          if s \notin \mathcal{S}_k reached then
               take least tried action
               if each action tried K times then
                    empirically estimate \hat{p}(\cdot|s,\cdot), \hat{r}(s,\cdot)
                    add s to S_k
```

- When probability to explore is low, optimal policy in $\hat{\mathscr{M}}$ is truly near-optimal
- For provable guarantees, ϵ and K can be determined from $|\mathcal{S}|$
 - Or updated every time the number of visited states is doubled

R-max

- The model $\hat{\mathcal{M}}$ has all states, plus an optimistic absorbing state
- Sufficiently explored states have empirical transitions and rewards
- Others lead with probability 1 and reward $r_{\rm max}$ to the absorbing state

```
mark all states unknown

repeat

\pi \leftarrow \text{plan in } \hat{\mathcal{M}}

execute \pi

record (s, a, r, s') in unknown states

if N(s) = K then

empirically estimate \hat{p}(\cdot|s,\cdot), \hat{r}(s,\cdot)

mark s known
```

Implicit explore or exploit

Issues with approximate models (1)

- In large state / action spaces, we can only approximate the dynamics
- No guarantees outside of training distribution
 - As in model-free RL, we can't be too far off-policy
- Solution: keep interacting using learner policy and updating the model

Issues with approximate models (2)

- Model inaccuracy accumulates

 - We have to plan far enough ahead to realize the consequences of actions
 - But we don't have to execute those plans far ahead!
- Model Predictive Control (MPC):

```
\mathcal{D} \leftarrow \text{collect data}

repeat

\hat{\mathcal{M}} \leftarrow \text{train model } \hat{p}, \hat{r} \text{ from } \mathcal{D}

repeat

\pi \leftarrow \text{plan in } \hat{\mathcal{M}} \text{ from current state } s \text{ to horizon } H

take one action a according to \pi

add empirical (s, a, r, s') to \mathcal{D}
```

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Local models

- Can we use a learned model for iLQR?
 - ► Option 1: learn global model, linearize locally —> wasteful
 - Option 2: directly learn local linearizations:

```
initialize a policy \pi(u_t|x_t)
repeat
roll out \pi to horizon T for N trajectories
fit p(x_{t+1}|x_t, u_t)
plan new policy \pi
```

How to fit local dynamics

- Option 1: linear regression
 - Find $(A_t, B_t)_{t=0}^{T-1}$ such that $x_{t+1} \approx A_t x_t + B_t u_t$
 - Do we care about error / noise?
 - If we assume it's Gaussian, doesn't affect policy; but could help evaluate the method
- Option 2: Bayesian linear regression
 - Use global model as prior
 - More data efficient across time steps and across iterations

How to plan with local models

- Option 1: as in iLQR, find optimal control sequence \hat{u}
 - Problem: model errors will cause actual trajectory to diverge
- Option 2: execute the optimal policy $\hat{L}_t \delta x_t + \hat{\ell}_t + \hat{u}_t$ directly in the world
 - Problem: need spread for linear regression, dynamics may be too deterministic
- Option 3: make control stochastic $\hat{L}_t \delta x_t + \hat{\ell}_t + \hat{u}_t + \hat{u}_t + \epsilon_t$
 - Idea: have $\epsilon_t \sim \mathcal{N}(0, R^{-1})$
 - Optimal for the incurred costs, not for the spread needed for regression

Recap

- Roughly two schemes:
 - Plan in a learned model
 - Improve model-free RL using a learned model
- Good theory for how to explore optimally for learning a model