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In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly explain
informally the reasoning behind your answers.

Part 1 Relation between BC and PG (25 points)

Consider a dataset D of trajectories, some of which are expert teacher demonstrations and some random
policy rollouts. Suppose each trajectory ξi is flagged with a bit bi indicating whether it was generated by
the teacher (bi “ 1) or the random policy (bi “ 0).

1. First, we’d like to learn a policy by imitating the expert with a cross-entropy loss. Recall that, in
supervised learning, the cross-entropy loss (also called negative log-likelihood) for an instance x and its
true label y is Lθpx, yq “ ´ log pθpy|xq. What is the Behavior Cloning loss for dataset D? (10 points)

2. Now suppose we had a teacher label each trajectory ξi with its return Ri “ Rpξiq. What is the Policy
Gradient loss (as in the REINFORCE algorithm) for dataset D? (10 points)

3. What intuition can you draw from this? (5 points)

Part 2 Model-Free Value Representation (25 points)

In model-based Value Iteration we have a recursion for the optimal state–value function V psq:

V psq Ð max
a
Err ` γV ps1q|s, as.

In Fitted Value Iteration, we optimize a parametric model Vθpsq, in the hope of approximating the optimal
state–value function. We minimize the square error in the above recursion, with a stabilized target network
Vθ̄ updated slowly from Vθ:

min
θ
pmax

a
Err ` γVθ̄ps

1q|s, as ´ Vθpsqq
2.

Once we wanted to be model-free, i.e. not assume knowledge of the dynamics pps1|s, aq (nor perhaps the
reward rps, aq), we switched to the state–action value function Qps, aq, instead of V psq.

Why is it impossible to have a model-free reinforcement learning algorithm that represents only V psq, and
nothing else, as its solution? (Hint: is such a solution useful?)

Part 3 Model-Free Reinforcement Learning algorithms (50 points)

1 Policy Gradient (5 points)

Download the code at https://royf.org/crs/W21/CS277/A2/pg.py.

https://royf.org/crs/W21/CS277/
https://royf.org/crs/W21/CS277/A2/pg.py


In the function policy_gradient_loss, write TensorFlow code that computes the Policy Gradient loss.
(Hint: arithmetic operators work for TF tensors, and TF has build-in functions for NumPy-like operators,
e.g. reduce_sum.)

In the function calculate_returns, write NumPy code that computes the return of steps in sample_batch.
sample_batch is guaranteed to represent part of a single trajectory, and in this assignment we’ll assume it’s
the entire trajectory. The return will be the sum of rewards along the trajectory. You can discount the sum
however you’d like, or not at all.

Note that returns is expected to be a 1-D NumPy array of the same size as the rewards, i.e. the length of
the trajectory. Repeat the same total episode return for the entire array.

Run pg.py. Take note of the “Result logdir” that RLlib prints after each evaluation. When running the
algorithm, you can specify a different logdir, or just use the default like we did here.

Behold your creation:

rllib rollout <logdir>/<checkpoint_num>/<checkpoint-num> --run PG --env CartPole-v1
--steps 2000

Append a printout of your code as a page in your PDF.

2 Policy Gradient with Future Return (15 points)

We can reduce the variance of the gradient estimator by not taking into account past rewards. Copy
pg.py as pg2.py, and change calculate_returns to sum (with or without discounting, but be consis-
tent with what you did before) only future rewards in each step. (Hint: the functions numpy.cumsum and
ray.rllib.evaluation.postprocessing.discount_cumsum can come in handy, but be careful how you use
them.)

Tip: Don’t forget to change the name of the PG_Trainer.

Run pg2.py and view the results.

Append a printout of your code as a page in your PDF.

3 DQN (10 points)

Download the code at https://royf.org/crs/W21/CS277/A2/dqn.py. Run it and view the results.

rllib rollout <DQN logdir>/<checkpoint_num>/<checkpoint-num> --run DQN --env CartPole-v1
--config '{"dueling": false}' --steps 2000

dones is a vector of booleans that, for each time step, indicates whether the next state (reached at the end
of the step) terminated the episode.

Explain the role of dones in line 43.

4 Double DQN (15 points)

Fix dqn.py such that, if policy.config["double_q"] is True, the loss will be the Double DQN loss:

Lθps, a, r, s1q “ pr ` γQθ̄ps
1, argmax

a1

Qθps
1, a1qq ´Qθps, aqq

2,

where θ̄ are the parameters of the target network.

Change policy.config["double_q"] to True, run your code, and view the results.

Append a printout of your code as a page in your PDF.

https://www.tensorflow.org/api_docs/python/tf/math/reduce_sum
https://royf.org/crs/W21/CS277/A2/dqn.py


5 Visualize results (5 points)

TF comes with a utility for visualizing training results, called TensorBoard.

Run a TensorBoard web server:

tensorboard --logdir <the result logdir from the previous sections>

Take note of the URL in which TensorBoard is now serving (likely http://localhost:6006/). Open a
browser at that URL. Take some time to make yourself familiar with the TensorBoard interface.

You should be able to see all the RLlib runs on the bottom left, with a color legend. If you happened to
execute more runs than the four detailed above, uncheck all the other runs.

Find the plot tagged “tune/episode_reward_mean”. You can find it manually, or use the “Filter tags” box
at the top. Enlarge the plot using the left of 3 buttons at the bottom.

On the left you’ll find some useful options. Uncheck “Ignore outliers in chart scaling” and note the effect on
the plot.

Unfortunately, there’s currently no good way to save the plot as an image, so just take a screenshot, and
include it as a page in your PDF.

6 Extra fun

For extra fun, repeat the above experiments with other (discrete action space) environments from OpenAI
Gym (https://gym.openai.com/envs), such as Acrobot-v1, LunarLander-v2, Pong-v4, and Breakout-v4.
There’s no extra credit, because getting good results will likely take more --steps and time than I can
require.

http://localhost:6006/
https://gym.openai.com/envs
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