CS 295: **Optimal Control and Reinforcement Learning Winter 2020**

Lecture 18: Multi-Task Learning

Roy Fox **Department of Computer Science** Bren School of Information and Computer Sciences University of California, Irvine

Today's lecture

- Transfer learning
 - World model
 - Perceptual features
 - Policy
- Domain randomization + adaptation
- Curriculum learning
- Shared learning

Learning from very little data

- As the number of learnable tasks grows
 - sample complexity per task must drop to be practical
- Our goal: learn a new task with
 - O-shot: no new training interactions (exploration / demonstration)
 - <u>1-shot</u>: single training episode
 - few-shot: very few training episodes

Prior knowledge

- To only need little information from data, the rest must be a-priori
- Programmed prior knowledge:
 - Programmed policy / skills
 - Choice of observation and action representations
 - Feature extraction
 - World model (dynamics / reward)
 - Learner model class / neural network architecture

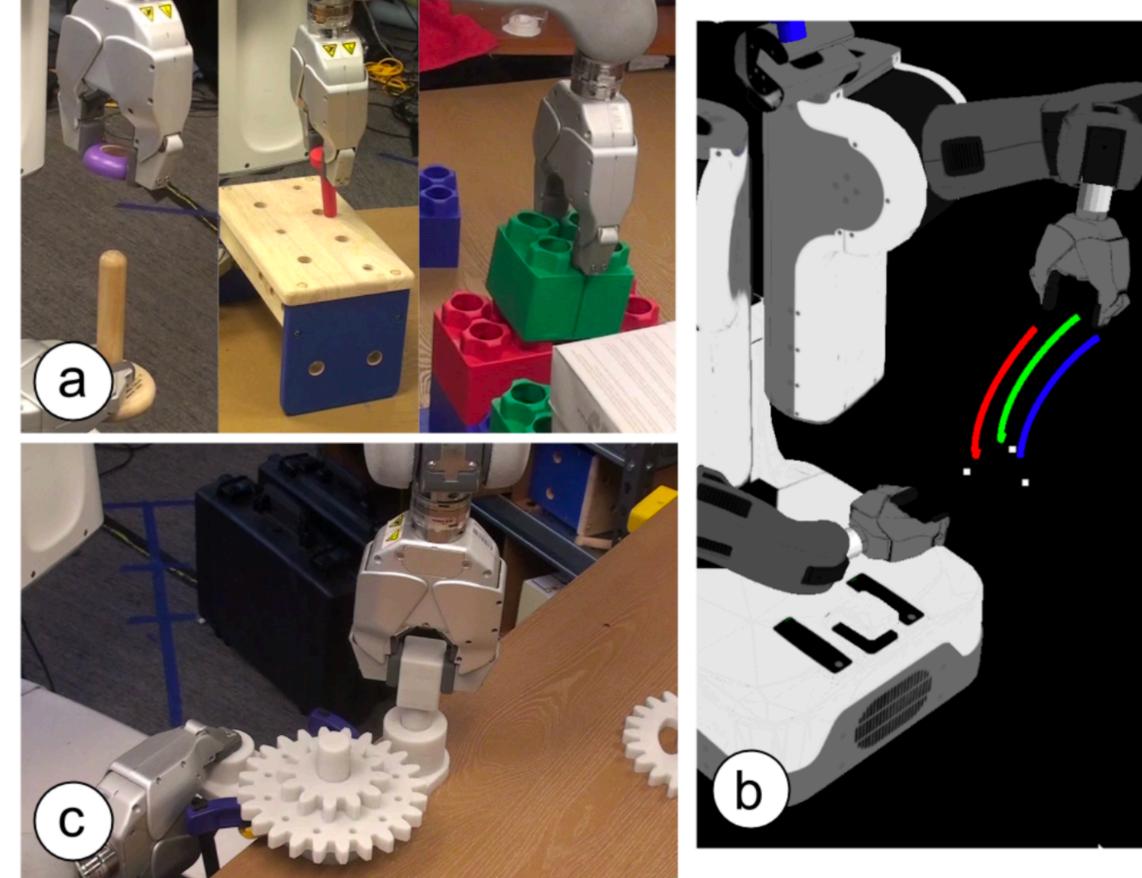
Learning prior knowledge from other tasks

- Transfer learning: first learn other task(s), then solve new task
 - with (>0-shot) or without (0-shot) more learning in the new task
- Practical question: what knowledge is transferred / shared
 - World model
 - Perceptual features
 - Value function / policy
 - More later...

World model transfer

- Interact on many related task(s)
- Fit a world model to the dynamics
- Model-based RL of a new task

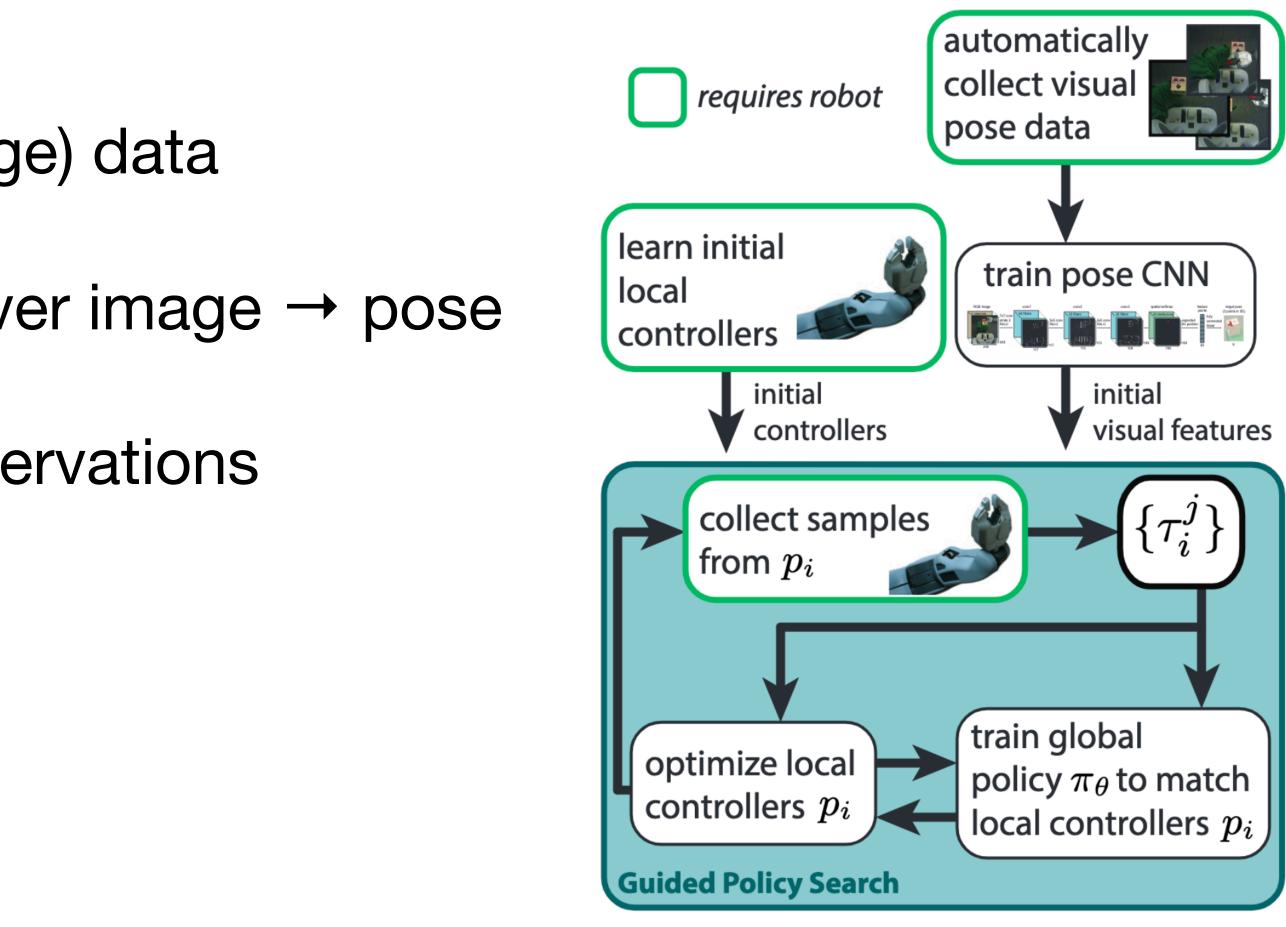
- Problem: prior model is inaccurate
- Solution: take the <u>pre-trained</u> model
 - and <u>fine-tune</u> it using new task data



Perceptual features transfer

- Interact to collect (robot pose, image) data
- Train perceptual features that recover image \rightarrow pose
- RL with perceptual features as observations

May again benefit from fine-tuning



Policy transfer

- Find similar task(s) where data is abundant
 - Many demonstrations / exploration episodes can be obtained
 - E.g. simulator of the world \rightarrow real world (<u>sim2real</u>)
- Train policy with RL / IL in the abundant domain
- Execute policy in the scarce domain
 - Or fine-tune with further few-shot RL / IL, as needed

Soft-optimal policies for fine-tuning

- Problem: policy can "overfit" to pre-training task
 - Policy may become deterministic
 - unfit for exploration
 - optimizer may struggle to again introduce uncertainty
 - Perceptual features may deteriorate to only what's needed for actions
- Solution: keep policy soft-optimal
 - Max entropy subject to sufficiently high value

SQL pre-training helps fine-tuning

Soft Q-learning Fine-tuning a pretrained policy in a new environment

Domain randomization

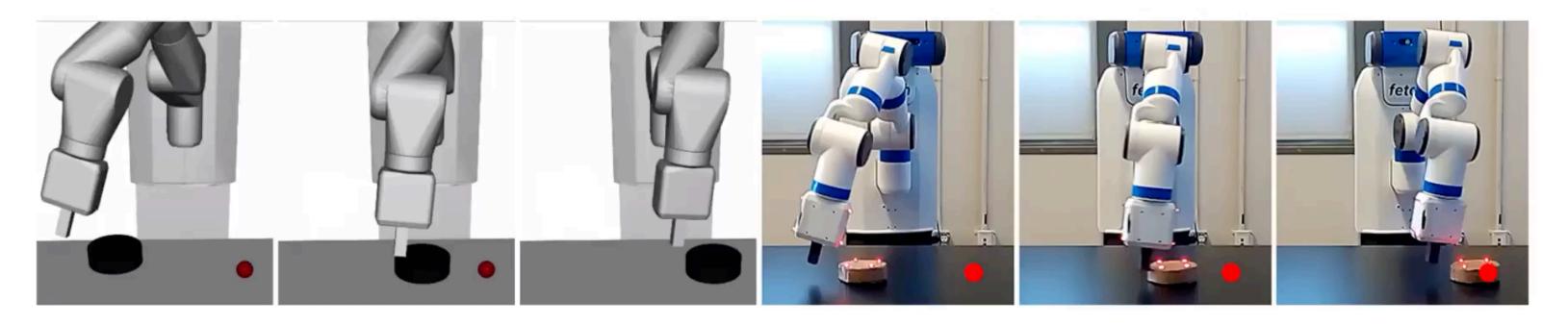
- Choosing a source domain to match the target domain may be hard
- Can we do better with multiple source domains?
 - Define distribution over tasks that supports the target = interpolation
 - Generalize even outside the support = extrapolation

Sim2real with domain randomization

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

Xue Bin Peng^{1,2}, Marcin Andrychowicz², Wojciech Zaremba², Pieter Abbeel^{1,2}

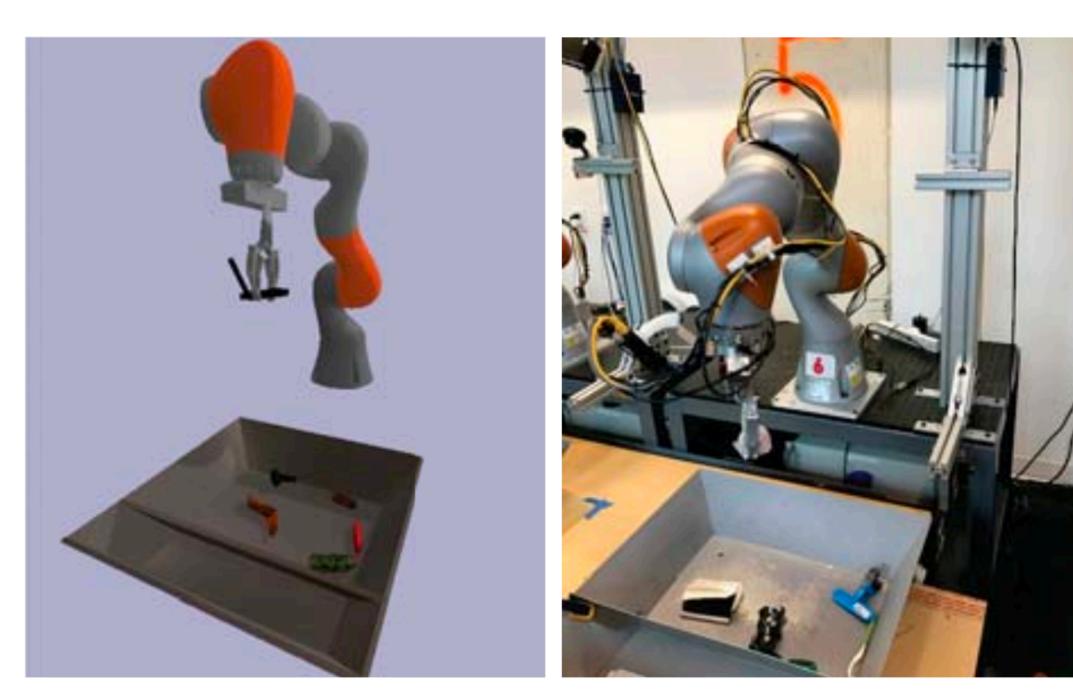
¹Electrical Engineering and Computer Sciences, UC Berkeley, USA ²OpenAI, USA



Domain adaptation

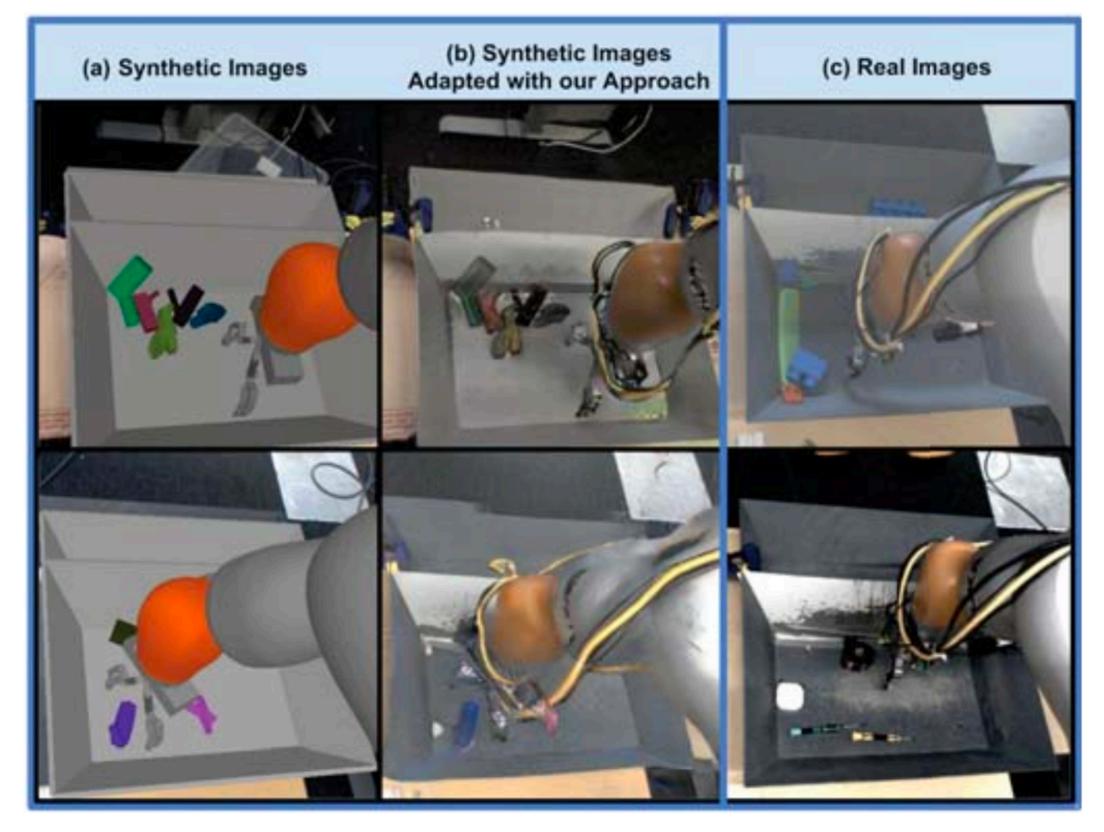
- Domain randomization alleviates the need for target domain knowledge
 - But much is still needed: a simulator in the ballpark, the randomization ranges
- The more we know about target domain, the better we can adapt source
- Can we automate this adaptation process?
 - Using target-domain data

Sim2real with domain adaptation



(a) Simulated World

(b) Real World



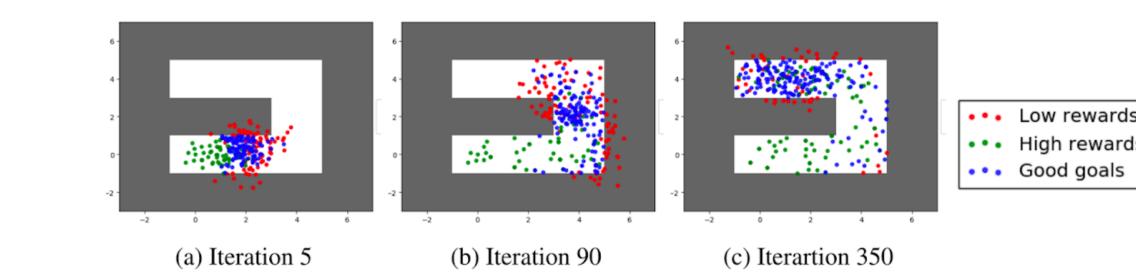
Curriculum learning

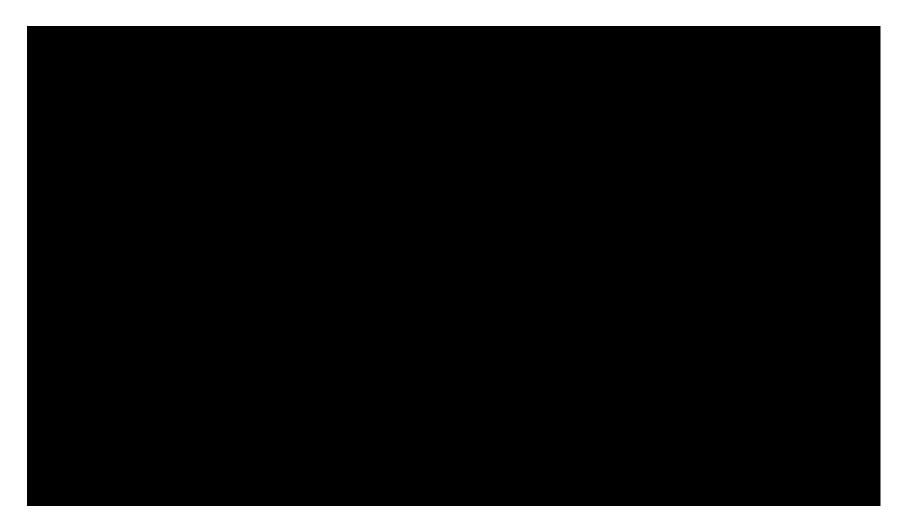
- Another purpose for policy pre-training
 - (So far: to have more data)
 - Start by learning easy versions of the task, make it gradually harder
- If a task is hard to solve by itself, "training wheels" can help
 - Exploration never finds rewards? Shorten task
 - Rewards don't encourage exploring / reaching subgoals? Leave "breadcrumbs"
 - Poor SGD convergence properties? Coarsen states / actions / time
 - Challenging state inference under partial observability? Add observability

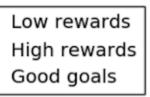
Goal GAN

- Sample goals, roll out policy
 - Reject goals with too low / high rewards
- Train GAN to generate goals with this distribution
- Train agent on generated goals

- Generated goals are intermediate-level:
 - just hard enough for the agent to learn something new
 - not so hard that it struggles to do it







Multi-task learning settings

- Transfer learning
- Shared learning
 - Learn multiple tasks jointly, have them inform each other
- Lifelong learning
 - Learn tasks as they occur, but also keep past abilities

Earlier domains / tasks are only stepping stones towards the ultimate task

- No <u>catastrophic forgetting</u>, where fine-tuning a model degrades its quality for old task

Shared learning

- Sharing a world model / perceptual features
 - Similar to above
- Sharing a policy
 - Multi-task policy distillation
 - Task-aware policy
- Sharing modules in a structured policy
 - Multi-task hierarchical imitation learning (HIL-MT)

Policy distillation

- Wait, but... why?! if we already have the policy
 - Network compression

 - Combine multiple policies into one

Policy distillation = behavior cloning of existing policy with cross-entropy loss

Track "average" policy (stabilize training, fictitious play in game theory, etc.)

Multi-task policy distillation

- Train a policy for each task
- Distill them into one policy

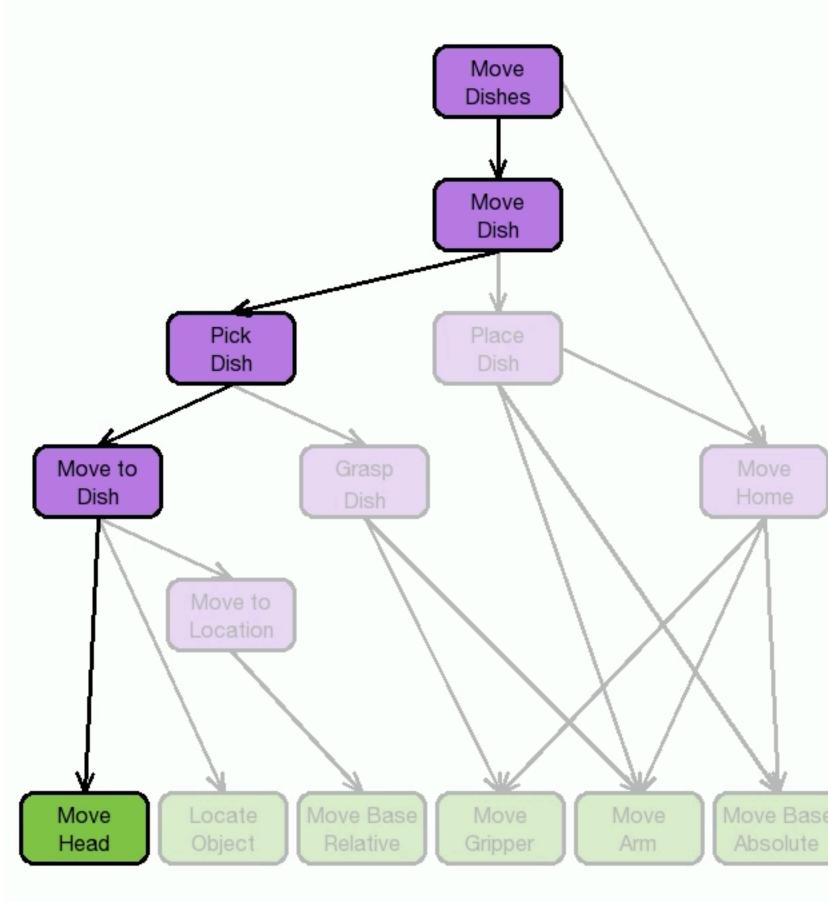
- Pros:
 - This is like combining the empirical evidence from all datasets = more data
 - If tasks are related, distilled policy can be more stable
- Cons:
 - If tasks aren't related, they compete for network capacity
 - One very wrong distilled policy can ruin it for everyone

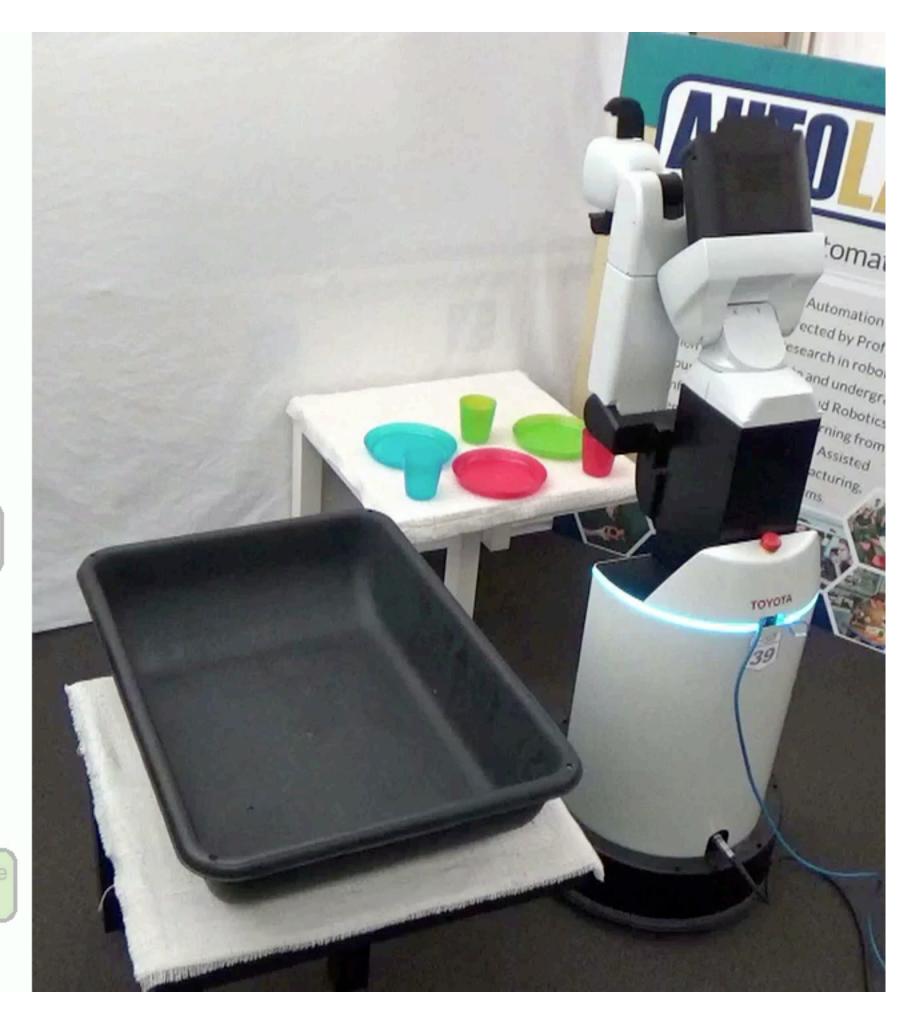
Task-aware policy

- Similar to goal-conditioned behavior cloning (Lecture 2)
 - Except, a goal is a state, a task = (dynamics + reward) is more general
- Separate policy $\pi_{\tau}(a|s)$ for each task is like one task-aware $\pi(a|s,\tau)$
 - With the task given by its index
- Sometimes, a task has a natural embedding
 - Direction + speed for Walker / Swimmer / Hopper
 - Index of block + position to place it

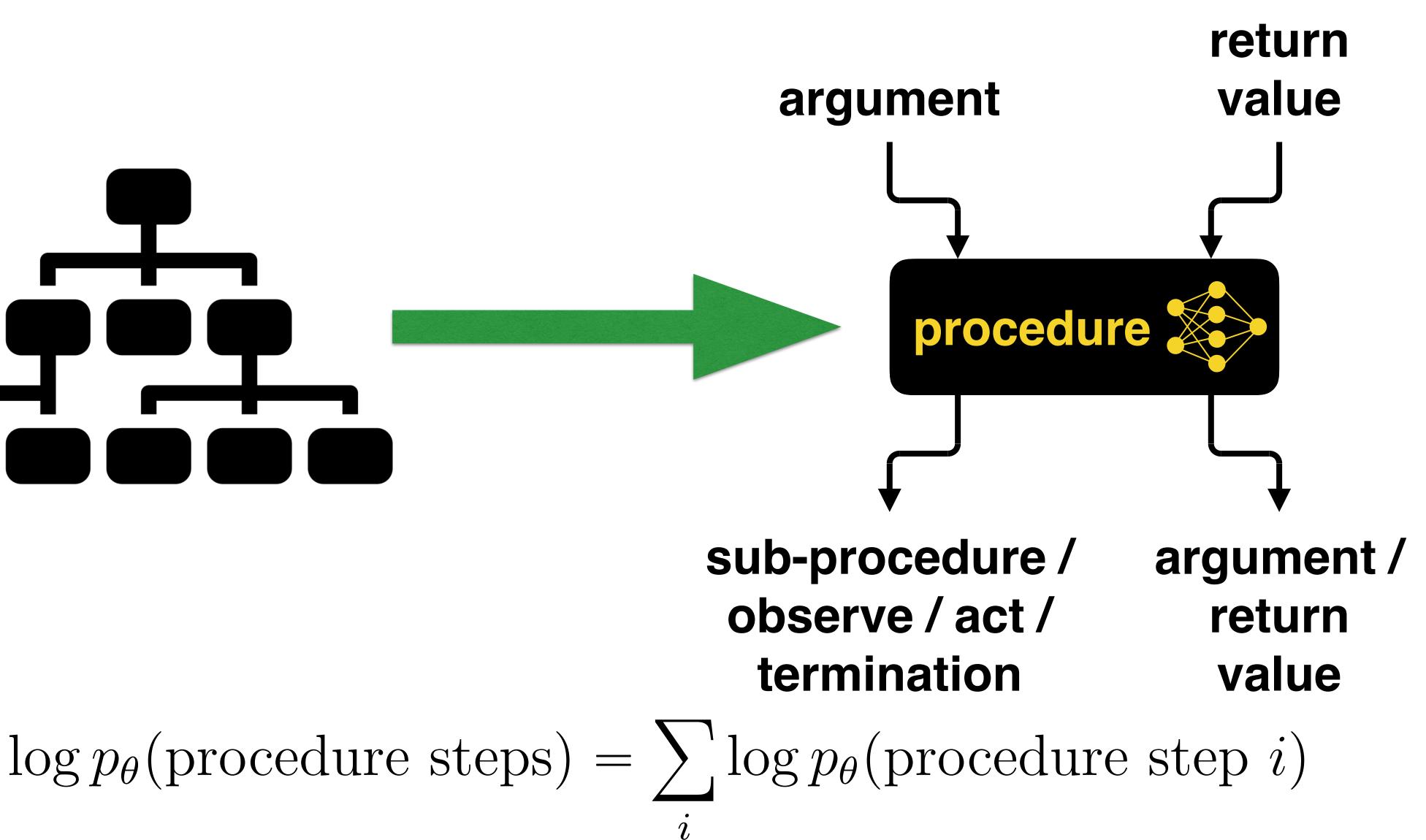
Otherwise, can learn to embed task specification (demo / text / target image)

Learning from annotated demonstrations

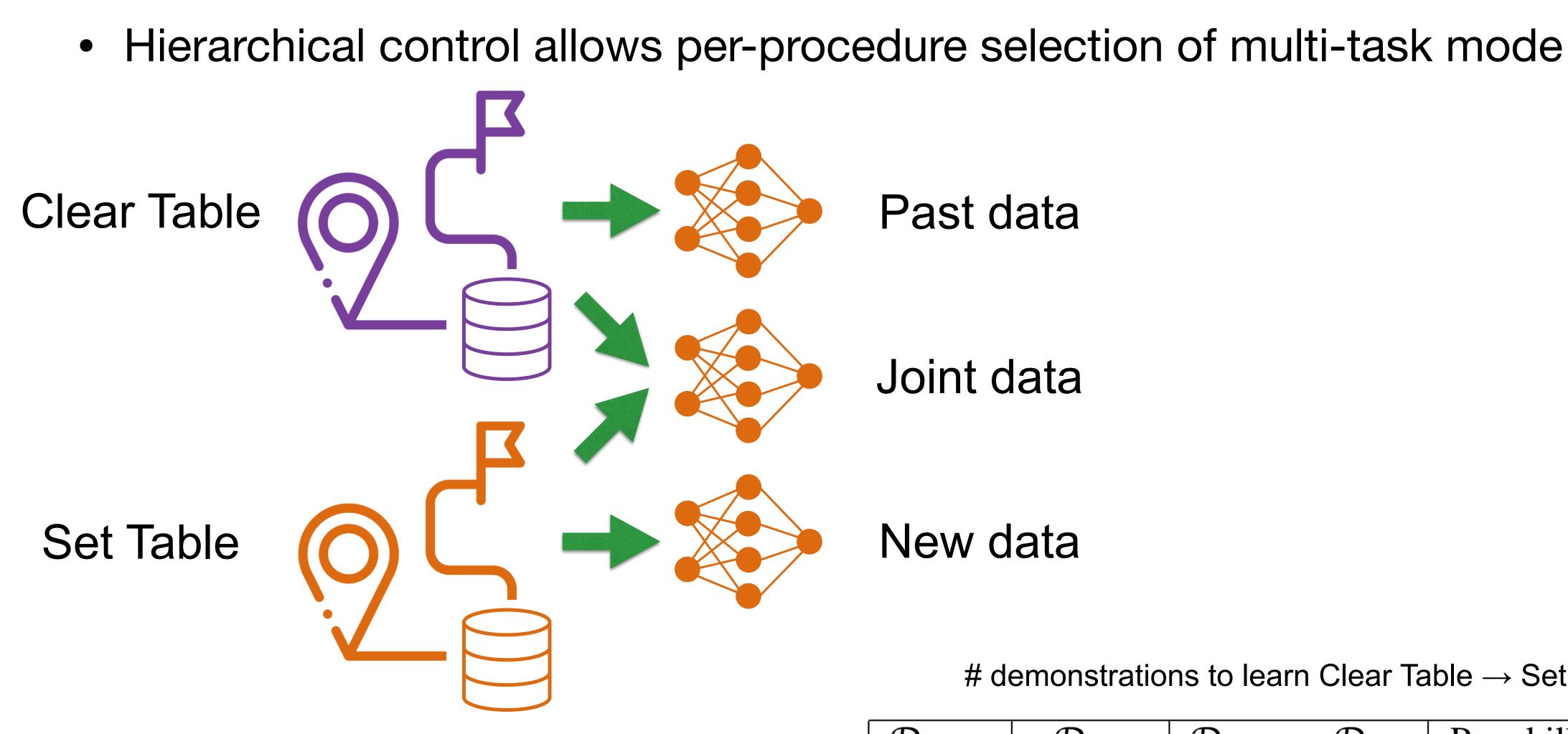




Supervised learning each skill



Multi-task hierarchical imitation learning (HIL-MT)



Past data

Joint data

New data

demonstrations to learn Clear Table \rightarrow Set Table

\mathcal{D}_{clear}	\mathcal{D}_{set}	$\mathcal{D}_{clear} \cup \mathcal{D}_{set}$	Per-skill selection
Failed	19±0.3	Failed	11.6 ±0.25

- Reuse data between related tasks
 - May hurt if tasks are unrelated
- To improve the task overlap: soft-optimality, randomization, adaptation
- Shared learning may benefit both ways
- Modularity allows mix-and-match of best approach
- Did not talk about: meta-learning, lifelong learning \bullet