Multiagent Reinforcement

Learning
Stephen McAleer

Why Multiagent Reinforcement Learning?

Multiagent RL Landscape

Cooperative Competitive (Zero Sum) General
2 Player Independent RL, Independent RL, ?7?7?
MADDPG, COMA NFSP, PSRO, DCFR, NeuRD,
ED

N Player Same as above 2777 ?7?77?

Centralized and Decentralized Settings

Cemral
ontroller
Sharable ! gent /
acH Boscy observations o 1
. S
Agent 3 }
‘ - : é é T Y T 5
Obser\anons Obserwa(lons ()bsenauons ()bscr\.mom Obwnanons lObqen:mons : -
(System) (System) (System)
(a) Centralized setting (b) Decentralized setting (c) Fully decentralized setting

with networked agents

Game Theory Crash Course

Game Representation 3,3 1,4
- Normal Form Games
- Extensive Form Games

- Zero-sum

- One player’s gain is the other player’s loss
- Best Response

- Best possible strategy to other player’s fixed strategy
- Nash Equilibrium

- All players are playing a best response to each other
- Mixed Nash always exist

- In zero-sum games, playing a Nash is optimal

4,1 2,2

Normal Form Game

Extensive Form Game

Multiagent Environments

a

(a) MDP

— (G —

(5.7)

-~

P{ System \f

e

aN

(5,r%)

(b) Markov game

(r'z).r’e) (re).r’e) (re).rie) (re).rie)

(c) Extensive-form game

Multiagent RL Landscape

Cooperative Competitive (Zero Sum) General
2 Player Independent RL, Independent RL, 27?7
MADDPG, COMA NFSP, PSRO, DCFR, NeuRD,
ED

N Player Same as above 2777 ?7?77?

Cooperative RL

- Every agent has same reward function
- Might be a sum of individual reward functions

- Team of agents work together to
accomplish common goal

Difficulties of Cooperative RL

- Nash Equilibria Selection Problem

1 0
0 1
0 0

Difficulties of Cooperative RL

- But in practice it can work surprisingly well

100 20 0
20 30 0
0 0

Independent RL (Cooperative Setting)

- Simply pretend each agent is in an MDP and optimize using standard RL
- Can be very unstable but can also work well

Centralized and Decentralized Settings

Cemral
ontroller
Sharable ! gent /
acH Boscy observations o 1
. S
Agent 3 }
‘ - : é é T Y T 5
Obser\anons Obserwa(lons ()bsenauons ()bscr\.mom Obwnanons lObqen:mons : -
(System) (System) (System)
(a) Centralized setting (b) Decentralized setting (c) Fully decentralized setting

with networked agents

Multi-Agent Deep Deterministic Policy Gradient
(MADDPG)

execution

- Uses centralized training and e I
decentralized execution f—ﬁ*) T
- While training, use a centralized critic o J(a)) --- o)a
that takes in all agents’ observations || U
Q, Q

Figure 1: Overview of our multi-agent decen-
tralized actor, centralized critic approach.

v@z‘](ﬂz) = IEx,aND [VGi”i(ai|Oi)vaiQf(x> U RRLLY aN)Iai—_—I‘i(O-i)]'

Counterfactual Multi-Agent Policy Gradients (COMA)

- Similar idea to MADDPG
- Use centralized critic, “counterfactual values”

u

Multiagent RL Landscape

Cooperative Competitive (Zero Sum) General
2 Player Independent RL, Independent RL, 27?7
MADDPG, COMA NFSP, PSRO, DCFR, NeuRD,
ED

N Player Same as above 2777 ?7?77?

Two Player Zero-Sum Games

Most well-understood theoretically

Algorithms seek to find approximate Nash Equilibria

Can use reinforcement learning to find approximate best response
In fully-observable games can use versions of minimax tree search

Independent RL (Zero-Sum games) P

- Independent RL fails to converge to Nash for very
simple games such as Rock Paper Scissors
- However, in practice it seems to work well on large

games
- Starcraft
- Dota

Fictitious Play

- Every iteration add best response
to population to the population

- Population average strategy
converges to Nash

Rock Paper Scissors
Pop Average | .8 A A
BR 0 1 0
Pop Average | 4 .55 .05
BR 0 0 1
Pop Average | .26 37 37

Extensive form Fictitious Play (XFP)

0 = AT + A2Ta.

o(s,a) X \Zr, (8)T1(8,a) + Aoxr, (8)T2(s, Q)

Vs, a,

Algorithm 1 Full-width extensive-form fictitious play

function FICTITIOUSPLAY(I)
Initialize 7, arbitrarily
g1
while within computational budget do
3j+1 + COMPUTEBRS(7;)
m;j+1 + UPDATEAVGSTRATEGIES(7;, 341)
Jei+1
end while
return 7;
end function

function CoMPUTEBRS()
Recursively parse the game’s state tree to compute a
best response strategy profile, 7 € b(m).
return

end function

function UPDATEAVGSTRATEGIES(7;, 341)
Compute an updated strategy profile 7;,; according
to Theorem 7.
return 7;

end function

Fictitious Self Play

For each information state u the
probability distribution of player i's
behaviour at u induced by sampling
from the strategy profile I'l defines a
behavioural strategy at u and is
realization equivalent to I'.

Algorithm 2 General Fictitious Self-Play

function FICTITIOUSSELFPLAY(I". n.m)
Initialize completely mixed m;
;32 «— m
<2
while within computational budget do
1; + MIXINGPARAMETER(j)
D + GENERATEDATA(7;_1, 3;,n,m.7;)
for each playeri € A" do
M, + UPDATERLMEMORY (MY, . Df)
My¥,; < UPDATESLMEMORY(MY, . DY)
3} 41 + REINFORCEMENTLEARNING(MY,)
7, ¢ SUPERVISEDLEARNING(MY,)
end for
Jej+1
end while
return 7;
end function

function GENERATEDATA(7, 3. n.m.n)
oc+—(l—n)m+n3
D + n episodes {t1}1<k<,. sampled from strategy
profile o
for each playeri € \V do
D' « m episodes {f} }1<k<. sampled from strat-
egy profile (3*.077)
D' «D'UD
end for
return {D"}1<pcn
end function

Policy Gradient Fictitious Self Play (unpublished)

Initialize average policy
For each episode do:
Train approximate best response to average policy with policy gradient

Update average policy with supervised learning on trajectories

Neural Fictitious Self Play

- Fictitious Self Play with deep Q
learning

- Two networks: one learns best
response to average strategy with
RL, one learns average strategy with
supervised learning

- Average strategy converges to Nash N ..

DQN, greedy strategy
) L el N

Exploitability

NFSP ———

| 1 L |

0.01 L
1000 10000 100000 le+06

Iterations

Algorithm 1 Neural Fictitious Self-Play (NFSP) with fitted Q-learning

Initialize game I' and execute an agent via RUNAGENT for each player in the game
function RUNAGENT(I")
Initialize replay memories M g, (circular buffer) and Mgy, (reservoir)
Initialize average-policy network I1(s, a | ™) with random parameters 6"
Initialize action-value network Q(s, a | #9) with random parameters #%
Initialize target network parameters #9 « 69
Initialize anticipatory parameter 7
for each episode do

Set policy o {;greedy (@), with probability n

: with probability 1 — 7
Observe initial information state s; and reward 7,
fort =1.T do
Sample action a; from policy o
Execute action a; in game and observe reward ;. ; and next information state s;.,
Store transition (s;, as, 7441, S¢+1) in reinforcement learning memory Mgy,
if agent follows best response policy o = e-greedy (()) then
Store behaviour tuple (s;, a;) in supervised learning memory Mgy,
end if
Update " with stochastic gradient descent on loss
L(6™) = Ets.) Mar f— logI(s,a|6™)]
Update #9 with stochastic gradient descent on loss

" 2
L (OQ) =]E(S.a.r.s’)ﬂw'\/lnl |:(7 AN Q(S’, a' | 69) — Q(s,al BQ)) :|

Periodically update target network parameters §9" « 99
end for
end for
end function

Double Oracle

- Every iteration, add best response to meta-Nash of population

 new strategies n13, n23 added - best respanses do not improve result:
: Start : w1 n22 / Expand Restricted Game 4\ /—>rerminam —>.
mi|2|-1
Restricted Game Compute Best Response

n2| o 3
\b Solve Restricted Game /

LNE = <(1/2,172); 4203, 1/3)>

PSRO

Double Oracle Algorithm but uses RL as

approximate best response

Fictitious Self Play is PSRO but weighted
uniformly and with supervised learning for

average policy

ashConv

12000 1500
Episodes (In thausands)

(a) 2 players

Algorithm 1: Policy-Space Response Oracles

input :initial policy sets for all players I1
Compute exp. utilities U™ for each joint 7 € I1
Initialize meta-strategies o; = UNIFORM(II;)
while epoch e in {1.2.---} do
for player i € [[n]] do
for many episodes do
Sample 7_; ~o_;
Train oracle 7! over p ~ (7!, 7_;)
H.- = H.- U {’JT:}
Compute missing entries in U™ from IT
Compute a meta-strategy o from U"
Output current solution strategy o; for player i

3

M»AA‘L

Progression of Nash
of AlphaStar League

© -

260 360
Agent ID

14

Counterfactual Regret Minimization (CFR)

- Same as regret matching but for extensive form a(oh) = 3w)
games

- Weights regret by probability that that game node is r(h,a) = vi(@1a, k) — vi(a.).
reached when player always takes actions to get to .

that game node

T
Rl I.a)= Z,‘(

t=1

H *(I.a)

: —’——‘r— -+
0,1+](1.a] = { Z] R, (La ‘fZ = A(I (I.a) >0

AT otherwise.

Deep CFR

- Partially goes through game tree and trains neural network on CFR buffer

Hole s - B
L 2
v v 51 . |
o
23 84 g
i" & M FC| | FC
Board iz; v -
A + >—> L | ||
" 192 192 64
64 .
Rank Emb 1T .:EI:EI
Suit Emb%}) Bet Occurre —’FC —
Card Emb
Bet Pot Frac
< Betting Position —» 64 64

FC

normalize

64 64
Linear,

FC := [Skip,]
RelU

64

Fold
Call
Raise 1

i

Exploitability (mbblg)

Comvergence of Deep CFR vs Domain-Specific Abstractions

200 Buckets
N 30,000 Buckets
A Lossless Abstraction
Deep CFR (slow)
Deep CFR (fast)

X - N\
4','v l‘ \\\
\
w h ' \
A et 4 N\
XS L
Y .
5‘.‘1’_ . N
7“\A —
N
\\
"fls T 1“ T TrTOT 5 Y
g i 1"
10 10 10 10 10 10
Nodes Touched

Connection Between Policy Gradients and
Counterfactual Regret

So, (]ﬁ.,[h’,. (11) = E,‘.v-._‘-_[(;f_, .S‘f - S, .“(= ('ll]

_ , _ ‘ T(2)
= Z Pr(h | s¢)n™(ha, 2)u;(2) where ™ (ha. z) = —,]—
_ = (h)w(s.a)
h.z€Z(s;:.ay)
Pr(s; | h) Pr(h)
%n“ (ha. z)u;(2) by Bayes' rule
r{S¢

Pr(h) = oy (2) S gy
— A, 2)U(2 smce C S, n1sumque to s
I)r(,\-’] 1 a,z)u) CcE ¢ que St
)

B _:;‘“‘%n"tlm.:)u,(:)

ni(h)n=,(h)
Z, (r},"lkh']r[f,(h’}

V'Es

n" (ha, 2)u;(2)

n(sin™,(h) _ L
" (ha,2)u;(z) due to def. of s; and perfect recall

s l:]f(s)zh,, =i (R)

€s

n™.(h) 1
= L'—l}’(hn.:)u,(:) =

Sreed TiW)

1 €5

—v (7. 55, a;).
5 T (R} 3\ t
b hE sy n*flh'l

h.zeZ(8:,a¢)

QPG/RPG/RMPG

VIC(s) = Z[er(s, a;0)] (q(s, a; w) — Z 7(s,b;0)q(s,b, W))

b

a

+
V5FC(s ng ((s,a;w) Zw(s, b: 0)q(s, b:w))

b

+
VG (s Z[Vg’ﬂ' s,a;0) (A} W) Z’/T(S b; 0)q(s, b, W))

Exploitability Descent

- Based off of BR-CFR Algorithm 2: Exploitability Descent (ED)

- Last iteration converges to tngi car —doiial jold poficy
_ 1 forte {1,2,---} do
approximate Nash

fori € {1,--- ,n}do
_ Compute a best response bt (7' !)
- However, very expensive to do BR fori € {1,---,n},s € S; do
calculations

Define b’ ; = {b'};
Let q°(s) VALUESVSBRS(ﬂ' l(s), bt.,)
mt(s) = GRADASCENT(m!~(s), at, g®(s))

"m o W W

a

~

Replicator Dynamics

- Members of the population replicate in
proportion to their relative fitness
- Average dynamics converges to Nash

z;(t + 1) = z;(t) fi(t)

f(¢)

Neural Replicator Dynamics (NeuRD)

Approximates replicator dynamics with neural network
Turns out to be a policy gradient

yr(a) = y(a; 0¢-1) + 0 (g™ (a) — ™)

g 101':
: \ O = 011 — 3 Vod(yi(a). y(a: 0,-1)).
§ 107 T— 1
21 ewo 0r = 611~ 3 Vo5 191(0) - y(a; 610l
S (o o J S v— I IRMI—— —
001020 10100 100 2 g, 4 5y (a) — y(a: 00-1))Vey(a: Op-1)
a
(b) Leduc Poker 9)

= 60r-1 + 1t 2. Voy(as 0:-1)(q" (a) — v”),
a

Multiagent RL Landscape

Cooperative Competitive (Zero Sum) General
2 Player Independent RL, Independent RL, ?7?7?
MADDPG, COMA NFSP, PSRO, DCFR, NeuRD,
ED

N Player Same as above 2777 ?7?77?

References

- Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

- Counterfactual Multi-Agent Policy Gradients

- Grandmaster level in StarCraft Il using multi-agent reinforcement learning

- Fictitious Self-Play in Extensive-Form Games

- Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

- A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning

- Actor-Critic Policy Optimization in Partially Observable Multiagent Environments

- Neural Replicator Dynamics

- Deep Counterfactual Regret Minimization

- Computing Approximate Equilibria in Sequential Adversarial Games by Exploitability Descent

