CS 295: Optimal Control and Reinforcement Learning
Winter 2020
Assignment 2

due Tuesday, February 4 2020, 11pm

Part 1

1. Consider a dataset D of trajectories, some of which are expert teacher demonstrations
and some random policy rollouts. Suppose each trajectory &; is flagged with a bit
b; indicating whether it was generated by the teacher (b; = 1) or the random policy
First, we’d like to learn a policy by imitating the expert with a cross-entropy loss.
Recall that, in supervised learning, the cross-entropy loss for an instance x and its true
label y is —log pg(y|z). What is the imitation learning loss for dataset D?

Now suppose we had a teacher label each trajectory with its return R;. What is the
policy gradient loss for dataset D?

What intuition can you draw from this?
2. In model-based Value Iteration we had a recursion for the state value function V'(s)
V(s) = max E[r + 4V (s)|s,al.
We could also optimize a parametric model, in the hope of approximating the state
value function
H%H(m{?XE[T +Va(s)s, a] — Va(s))?.
This method is called Fitted Value Iteration.

Once we wanted to be model-free, i.e. not assume knowledge of the dynamics p(s'|s, a)
(nor perhaps the reward (s, a)), we switched to the state-action value function Q(s, a).

Why can’t we represent only Vj in a model-free algorithm? (Hint: think about what
the algorithm needs to output when it’s done.)

Part 11

In this part, you will install a Deep RL framework, RLIib (https://ray.readthedocs.io/
en/latest/rllib.html), and use it to implement a couple of simple Deep RL algorithm,

1


https://ray.readthedocs.io/en/latest/rllib.html
https://ray.readthedocs.io/en/latest/rllib.html

execute them, and evaluate the results. The OS we use in this assignment is Linux / MacOS.
If you're using Windows or another OS, please use a local or remote virtual machine.

1 Install dependencies

Make sure you have a recent version of Python installed, such as the latest Python 3.7; but
not Python 3.8, as RLIib doesn’t seem to support it at this time. It is recommended that
you create a new conda environment for this assignment, instructions here: https://docs.
conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html.

RLIib can use any Deep Learning library. Most of the algorithms already implemented
in RLIlib support TensorFlow (TF), and some support PyTorch. In this assignment we will
use TF for CPU. It is also possible to install TF for GPU, and this would allow much faster
execution, but is not needed in this assignment.

Install TF:

pip install tensorflow

2 Install RLIlib

RLIib is implemented on top of the Ray distributed execution library.
Install RLIlib:
pip install ray[rllib]

3 Policy Gradient

Download the code at https://royf.org/crs/W20/CS295/A2/pg. py.

In the function policy_gradient_loss, write TensorFlow code that computes the Policy
Gradient loss. (Hint: arithmetic operators work for TF Tensors, and TF has build-in func-
tions for NumPy-like operators, e.g. https://www.tensorflow.org/api_docs/python/tf/
math/reduce_sum#for_example.)

In the function calculate_returns, write NumPy code that computes the return of
sample_batch. sample_batch is guaranteed to represent part of a single trajectory, and in
this assignment we’ll assume it’s the entire trajectory. The return will be the sum of rewards
along the trajectory (see the previous function for how to extract rewards). You can discount
the sum however you’d like, or not at all.

Note that returns is expected to be a 1-D NumPy array of the same size as the rewards,
i.e. the length of the trajectory. Repeat the same total episode return for the entire array.

Run pg.py. Take note of the “Result logdir” that RLIlib prints after each evaluation.
When running the algorithm, you can specify a different logdir, or just use the default like
we did here.


https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://royf.org/crs/W20/CS295/A2/pg.py
https://www.tensorflow.org/api_docs/python/tf/math/reduce_sum#for_example
https://www.tensorflow.org/api_docs/python/tf/math/reduce_sum#for_example

4 Policy Gradient with Future Return

We can reduce the variance of the gradient estimator by not taking into account past rewards.
Copy pg.py as pg2.py, and change calculate_returns to sum (with or without discount-
ing, but be consistent with what you did before) only future rewards in each step. (Hint:
the functions numpy.cumsum and ray.rllib.evaluation.postprocessing.discount can
come in handy, but be careful how you use them.)

Tip: Don’t forget to change the name of the PG_Trainer.

Run pg2.py.

5 DQN

Create a new trainer (using build_trainer as before) that uses the SimpleQPolicy (https:
//github.com/ray-project/ray/blob/master/rllib/agents/dqn/simple_q_policy.py).
Run it.

6 Double DQN

Now copy SimpleQPolicy to a new file, and fix the loss to be the Double DQN loss

Lo(s,a,7,5") = (r + 7Qq(s', argmax Qy(s', a')) — Qo(s, a))*,

where 6 are the parameters of the target network. Note that the current code actually uses,
instead of the square loss, the more commonly used Huber loss

(e) = {56 1 e

|
lef =3 el

You can either keep the Huber loss or switch to the square loss.
Run your code.

7 Visualize results

TF comes with a utility for visualizing training results, called TensorBoard.

Run a TensorBoard web server:

tensorboard --logdir <the result logdir from the previous sections>

Take note of the URL in which TensorBoard is now serving (likely http://localhost:
6006/)). Open a browser at that URL. Take some time to make yourself familiar with the
TensorBoard interface.

You should be able to see all the RLIlib runs on the bottom left, with a color legend. If
you happened to execute more runs than the four detailed above, uncheck all the other runs.

Find the plot tagged “tune/episode reward mean”. You can find it manually, or use the
“Filter tags” box at the top. Enlarge the plot using the left of 3 buttons at the bottom.


https://github.com/ray-project/ray/blob/master/rllib/agents/dqn/simple_q_policy.py
https://github.com/ray-project/ray/blob/master/rllib/agents/dqn/simple_q_policy.py
http://localhost:6006/
http://localhost:6006/

On the left you'll find some useful options. Uncheck “Ignore outliers in chart scaling” and
note the effect on the plot.

Unfortunately, there’s currently no good way to save the plot as an image, so just take a
screenshot, and include it in your submission.

8 Analyze results
In your submission, include short answers to the following questions:

1. Which algorithms seem to perform better than others according to the plot you got?
Try to explain why this is so, at least partially.

2. You may notice some jitter in the curves, which is likely the result of the stochasticity
of the environment and of the algorithms. How could your analysis be more robust to
these fluctuations and better compare the average performance of the algorithms?



	I 
	II 
	Install dependencies
	Install RLlib
	Policy Gradient
	Policy Gradient with Future Return
	DQN
	Double DQN
	Visualize results
	Analyze results


