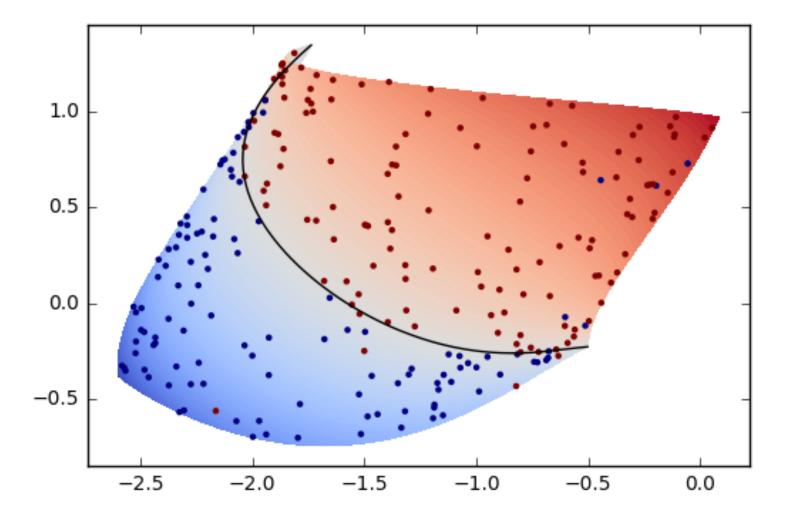
CS 273A: Machine Learning **Winter 2021** Lecture 9: Decision Trees

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



project

midterm

Independent project this week

• Midterm exam next Tue, Feb 9, 2–4pm on Canvas

• We'll accommodate other timezones — let us know

Review during lecture this Thu

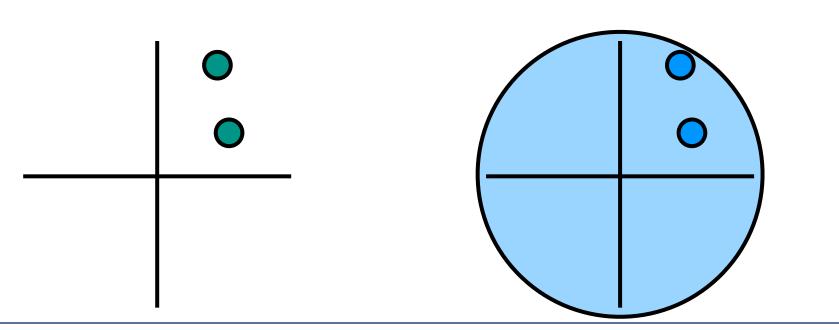
Shattering

- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, \ldots, x^{(h)}$

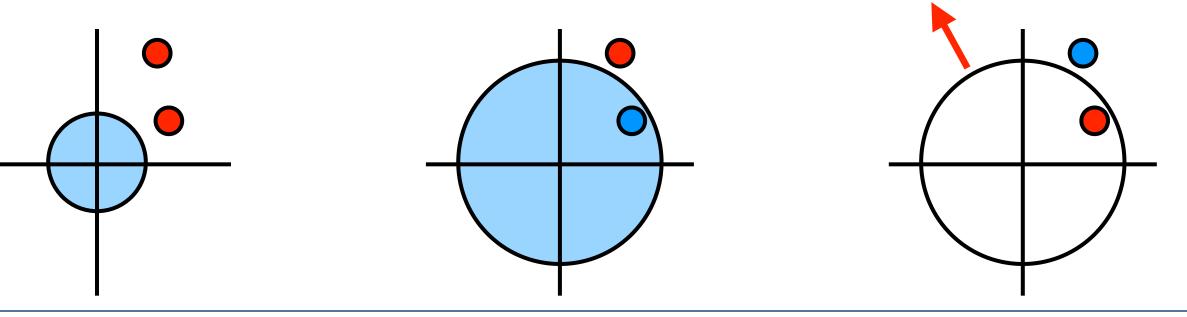
if for <u>any</u> labeling $y^{(1)}, \ldots, y^{(h)}$

there <u>exists</u> a model that classifies all of them correctly

• Example: $\operatorname{can} f_{\theta}(x) = \operatorname{sign}(x_1^2 + x_2^2 - \theta)$ shatter these points?



• Separability / realizability: there's a model that classifies all points correctly



Roy Fox | CS 273A | Winter 2021 | Lecture 9: Decision Trees

Vapnik–Chervonenkis (VC) dimension

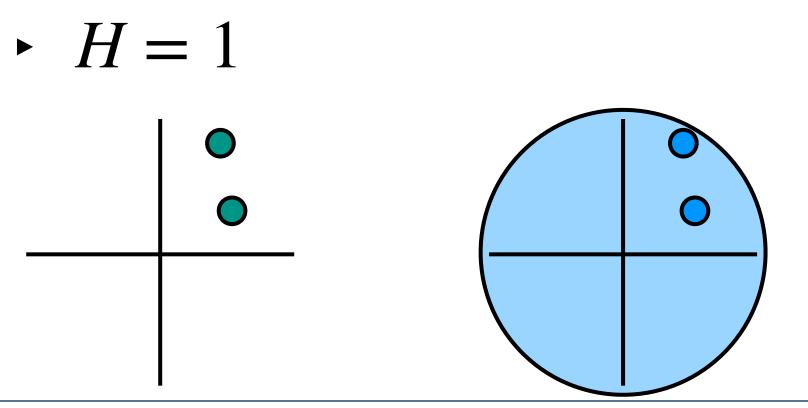
- A game:
 - Fix a model class $f_{\theta} : x \to y \quad \theta \in \Theta$
 - Player 1: choose h points $x^{(1)}, \ldots, x^{(h)}$
 - Player 2: choose labels $y^{(1)}, \ldots, y^{(h)}$
 - Player 1: choose model θ
- $h \leq H \implies$ Player 1 can win, otherwise cannot win

• VC dimension: maximum number H of points that can be shattered by a class

• Are all $y^{(j)} = f_{\theta}(x^{(j)})$? \Longrightarrow Player 1 wins $\exists x^{(1)}, \dots, x^{(h)}: \forall y^{(1)}, \dots, y^{(h)}: \exists \theta: \forall j: y^{(j)} = f_{\theta}(x^{(j)})$

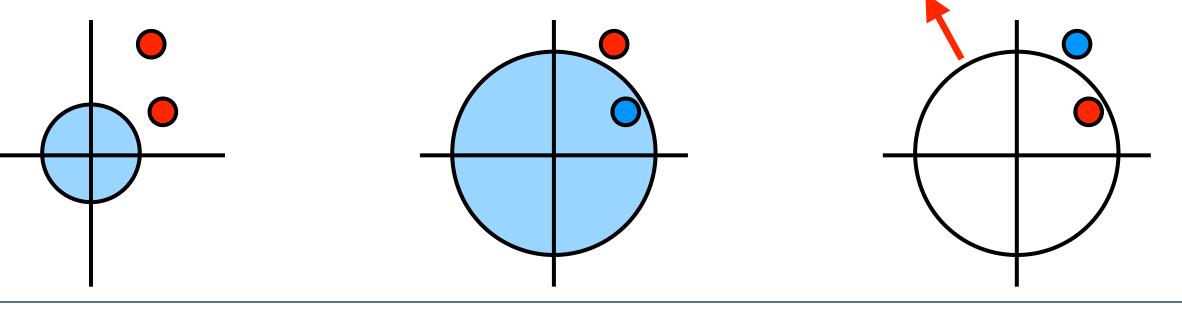
VC dimension: example (1)

- To find H, think like the winning player: 1 for $h \leq H$, 2 for h > H
- Example: $f_{\theta}(x) = \text{sign}(x_1^2 + x_2^2 \theta)$
 - We can place one point and "shatter" it
 - We can prevent shattering <u>any two points</u>: make the distant one blue



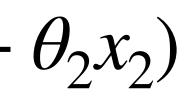
Roy Fox | CS 273A | Winter 2021 | Lecture 9: Decision Trees

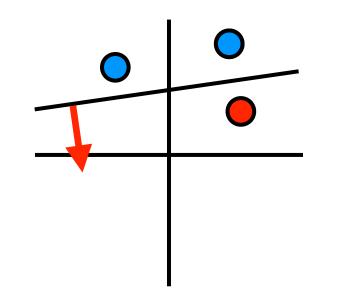
• VC dimension: maximum number H of points that can be shattered by a class

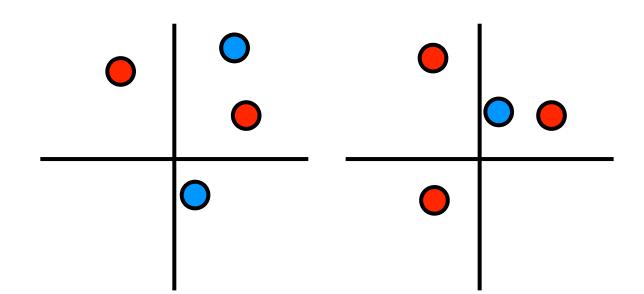


VC dimension: example (2)

- Example: $f_{\theta}(x) = \operatorname{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - We can place 3 points and shatter them
 - We can prevent shattering <u>any 4 points</u>:
 - If they form a convex shape, alternate labels
 - Otherwise, label differently the point in the triangle
 - H = 3
- Linear classifiers (perceptrons) of d features have VC-dim d + 1
 - But VC-dim is generally not #parameters







VC Generalization bound

- VC-dim of a model class can be used to bound generalization loss:
 - With probability at least 1η , we will get a "good" dataset, for which

test loss – training loss $\leq \sqrt{\frac{H lc}{-1}}$

generalization loss

- We need larger training size *m*:
 - The better generalization we need
 - The more complex (higher VC-dim) our model class
 - The more likely we want to get a good training sample

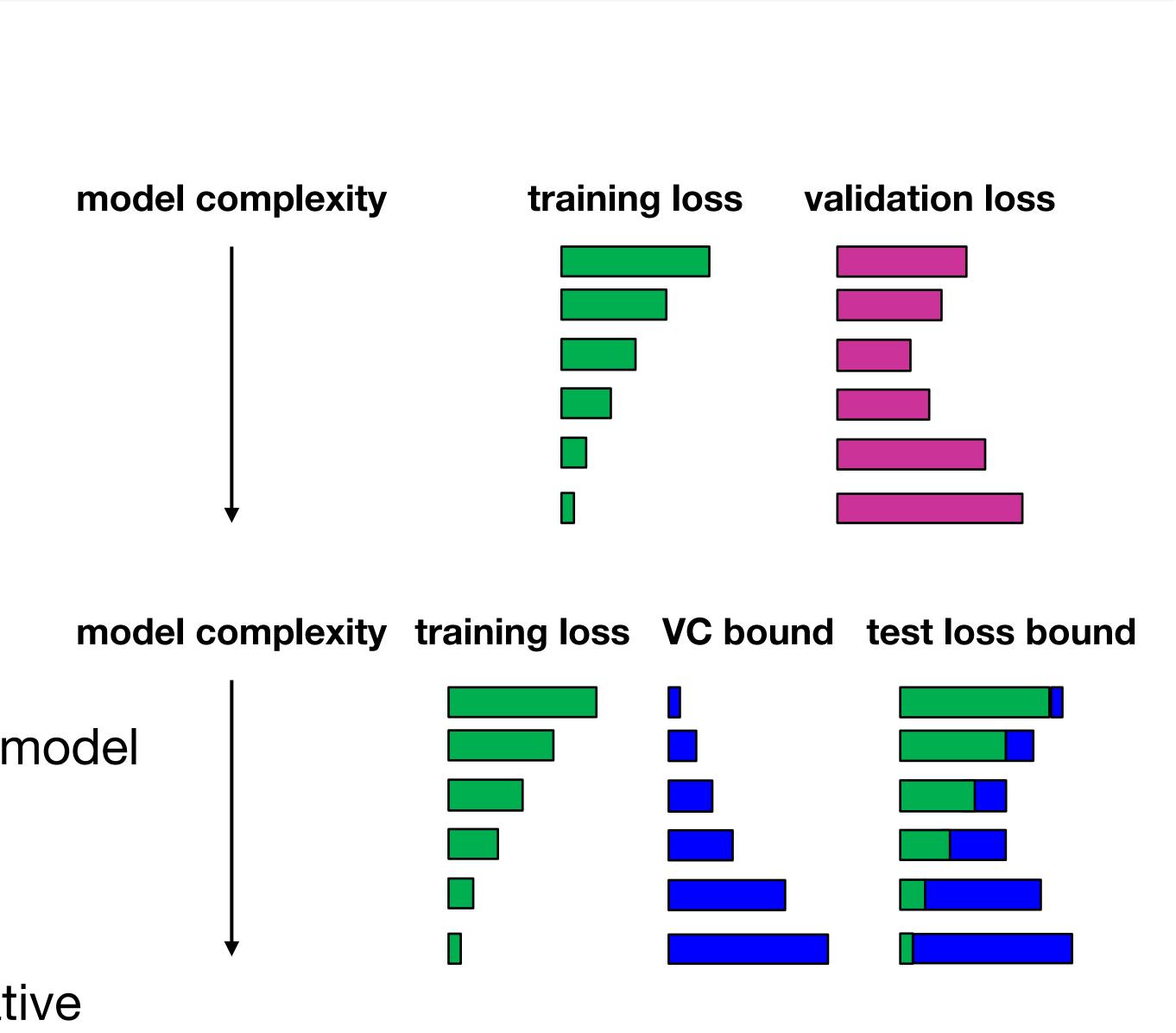
$$\log(2m/H) + H - \log(\eta/4)$$

M

Model selection with VC-dim

- Using validation / cross-validation:
 - Estimate loss on held out set
 - Use validation loss to select model

- Using VC dimension:
 - Use generalization bound to select model
 - Structural Risk Minimization (SRM)
 - Bound not tight, must too conservative



Today's lecture

Decision Trees

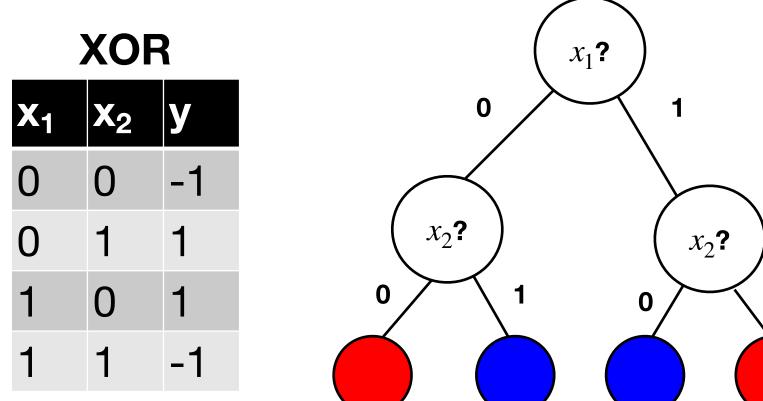
Roy Fox | CS 273A | Winter 2021 | Lecture 9: Decision Trees

Learning Decision Trees

Complexity of Decision Trees

Decision Trees

- Decision Tree = nested if-then-else statements
 - Assume discrete features
- Structure:
 - Internal nodes: check feature, branch on value
 - Leaf nodes: output prediction
- Parameters:
 - Internal node features
 - Leaf outputs



Toy example: car MPG

- Predict car gas usage (MPG = miles-per-gallon)
 - Discretize features and predictions (good / bad)

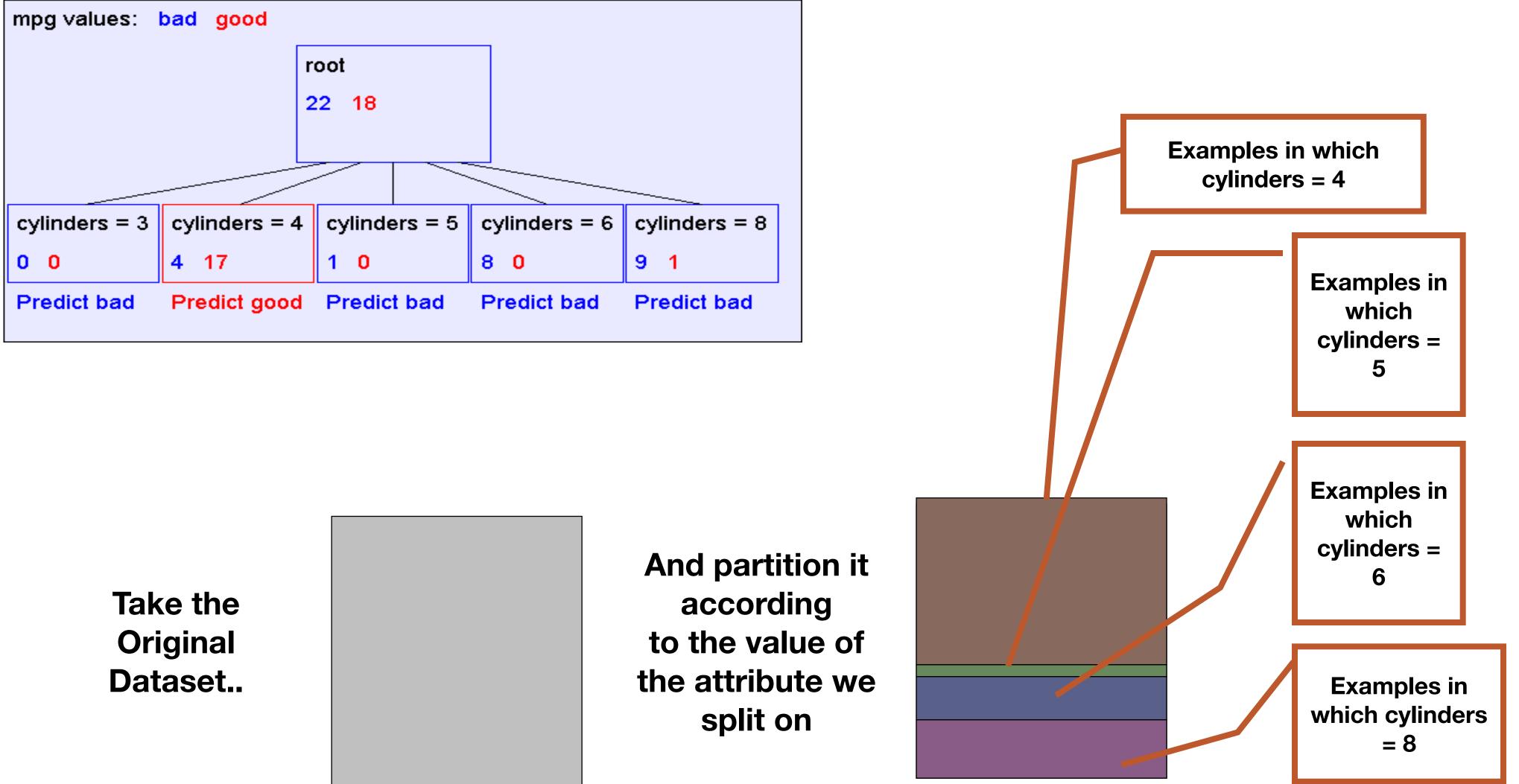
mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
		1					•
good		low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
	:	:	:	:	:	:	:
	:	:	:	:	:	:	:
	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

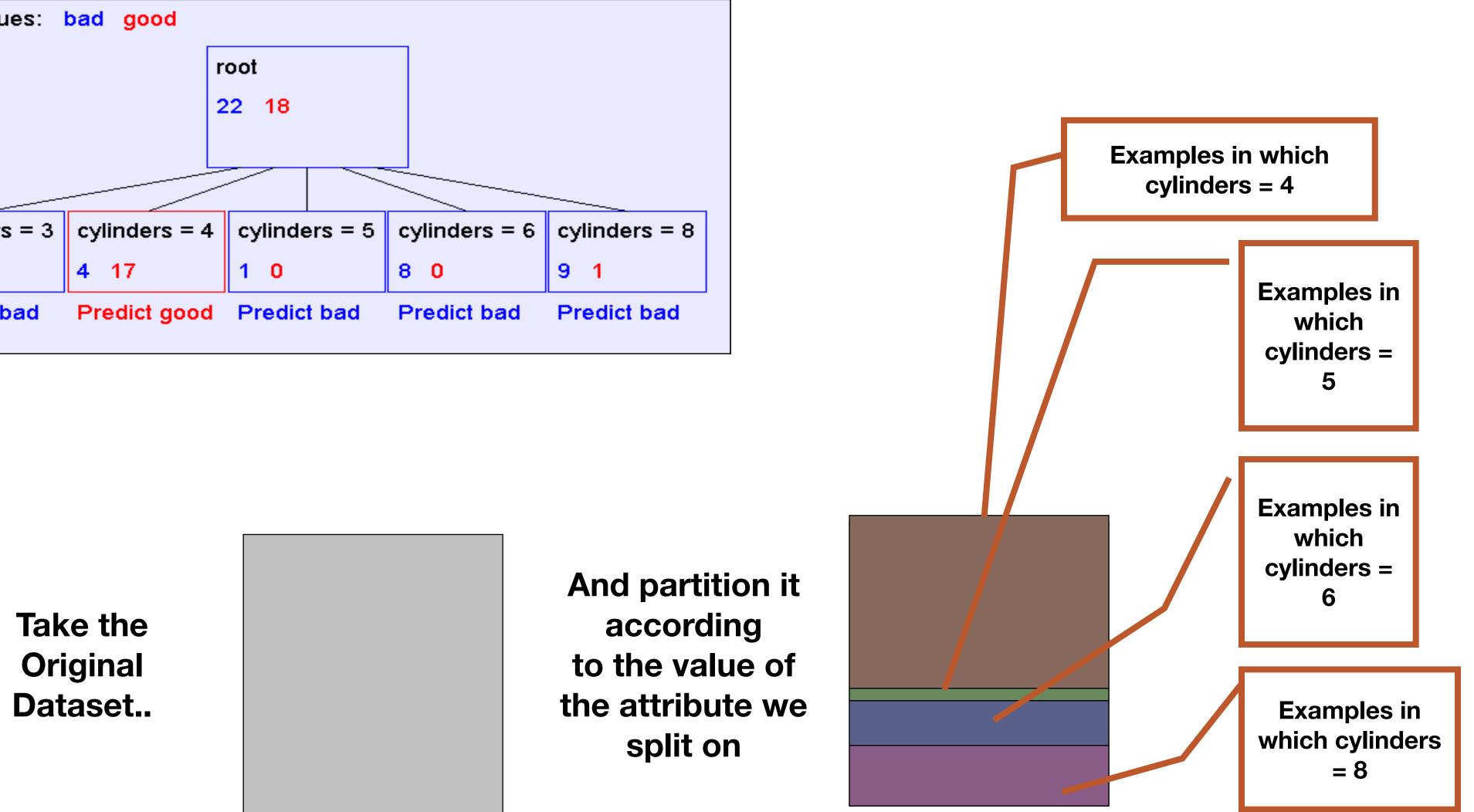
 ${\mathcal X}$

40 training examples

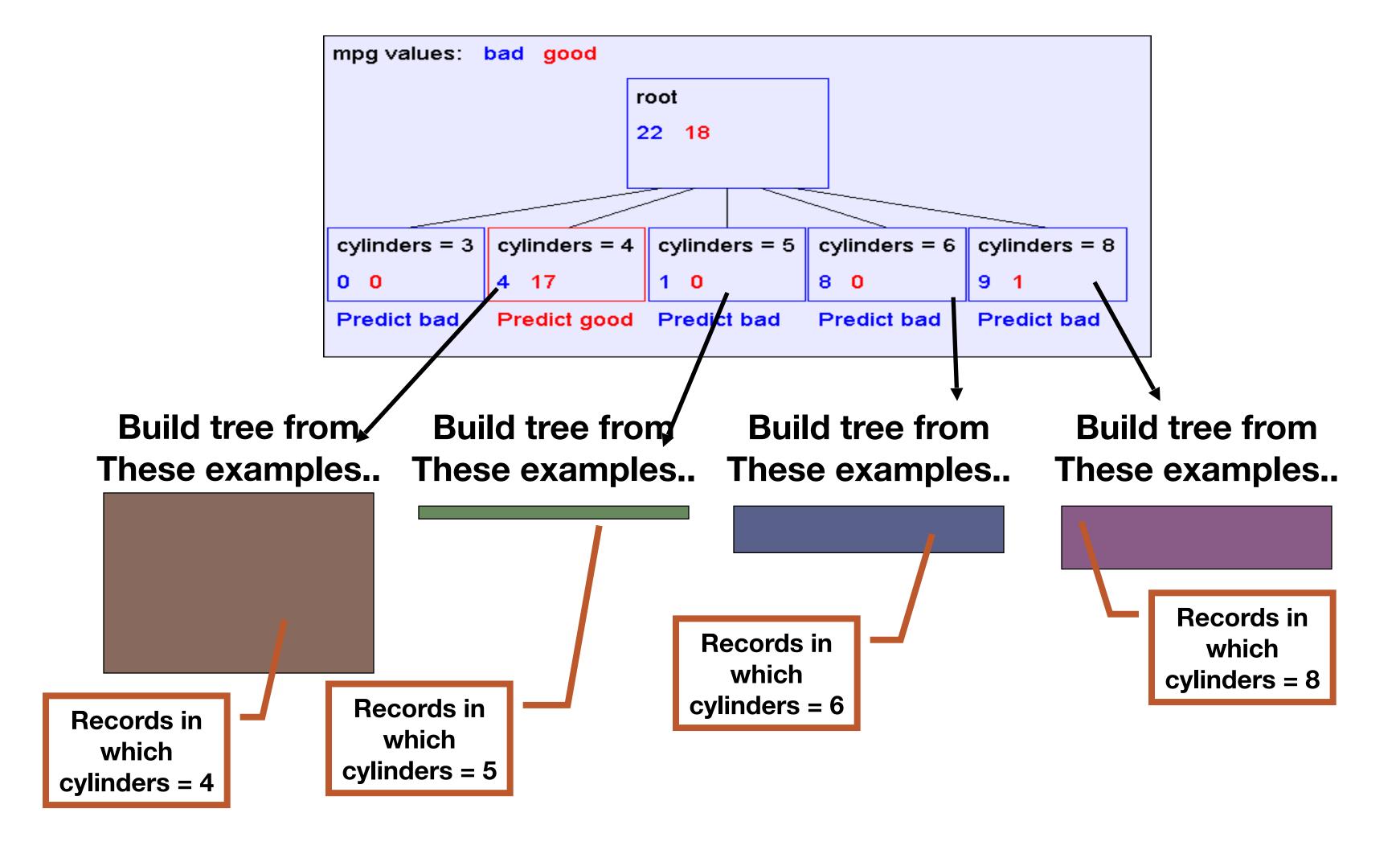
V

Decision Stump (1-rule)

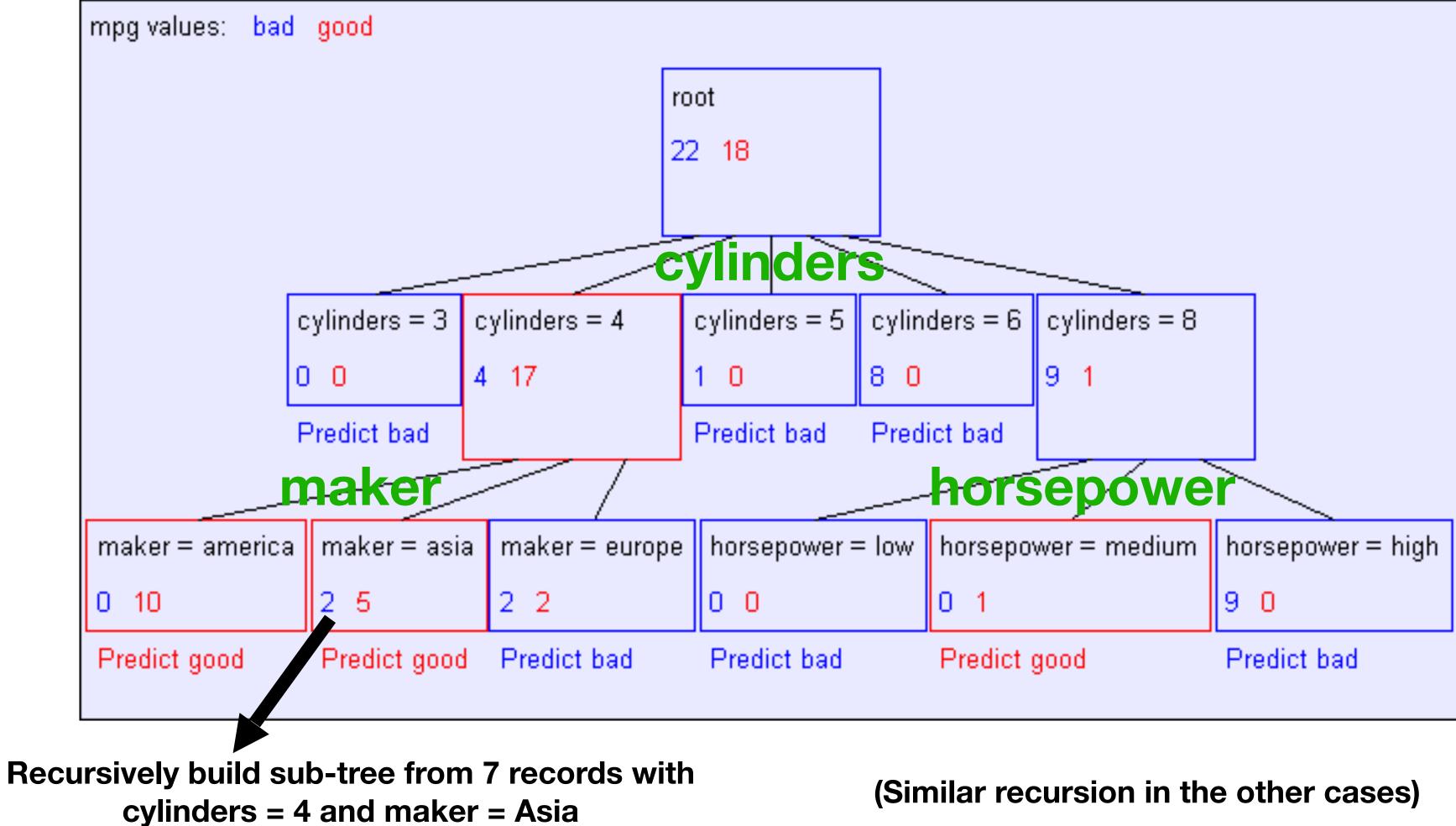




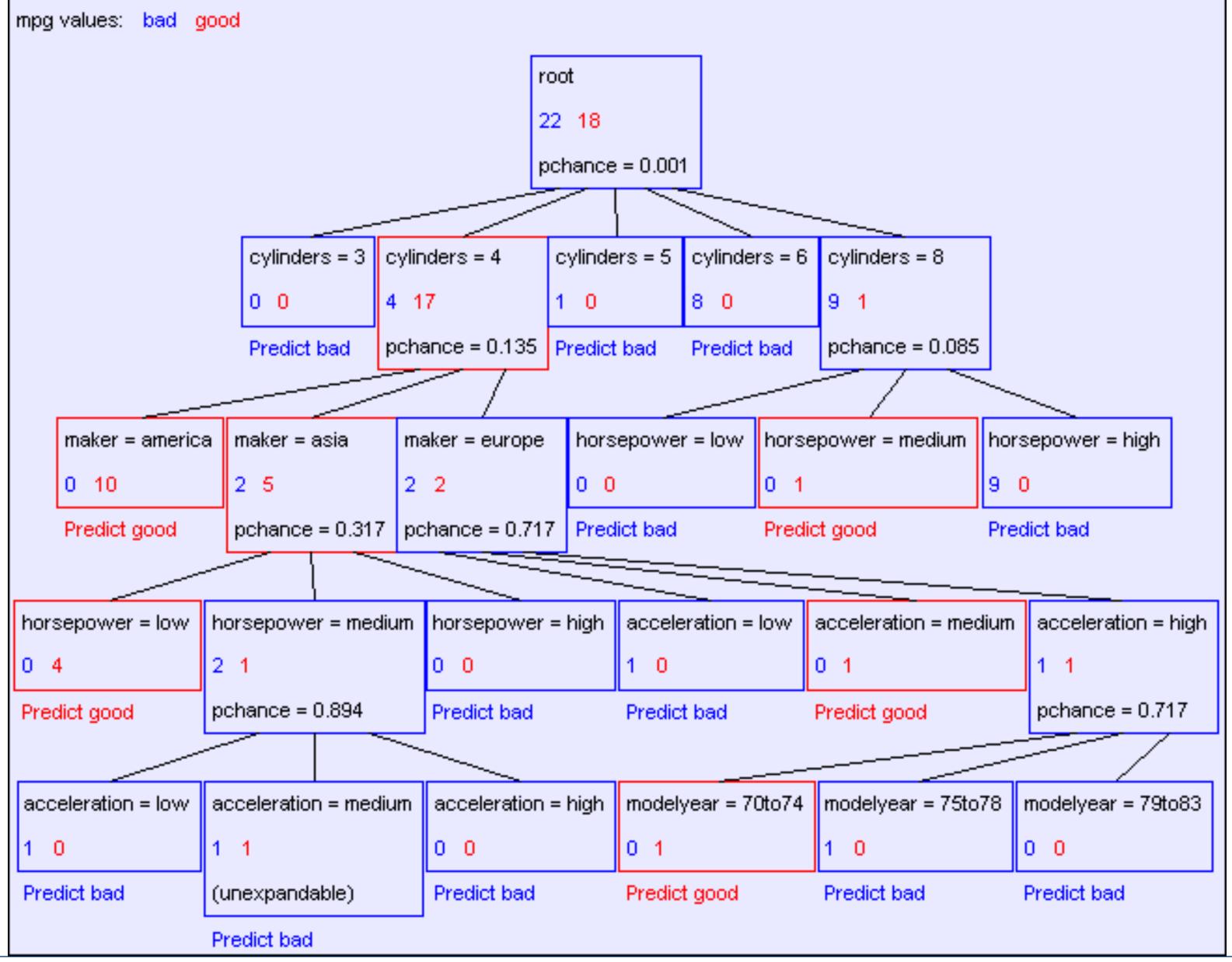
Recursion Step



Second level of tree

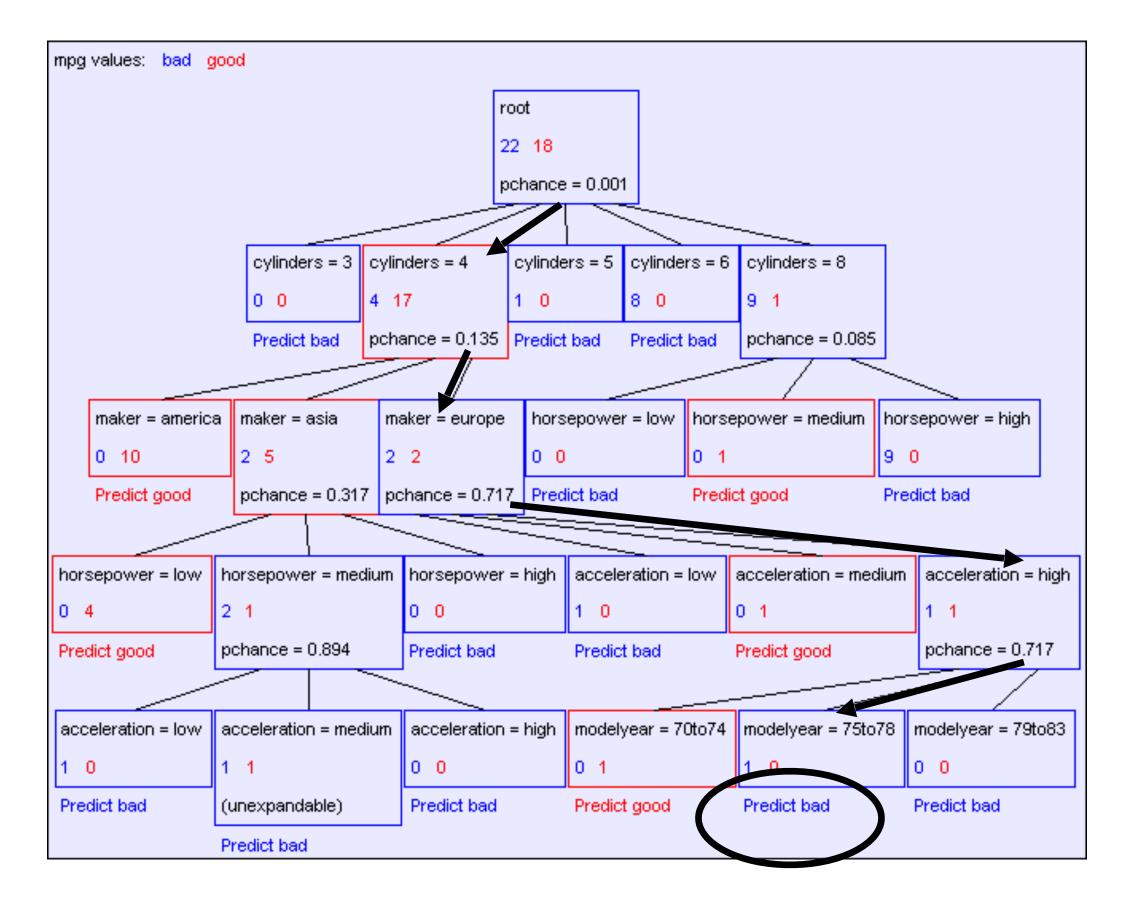


Final tree



Classification of a new example

- What to predict on x with
 - cylinders = 4
 - maker = Europe
 - acceleration = high
 - year = $76 \rightarrow 75-78$



Today's lecture

Decision Trees

Learning Decision Trees

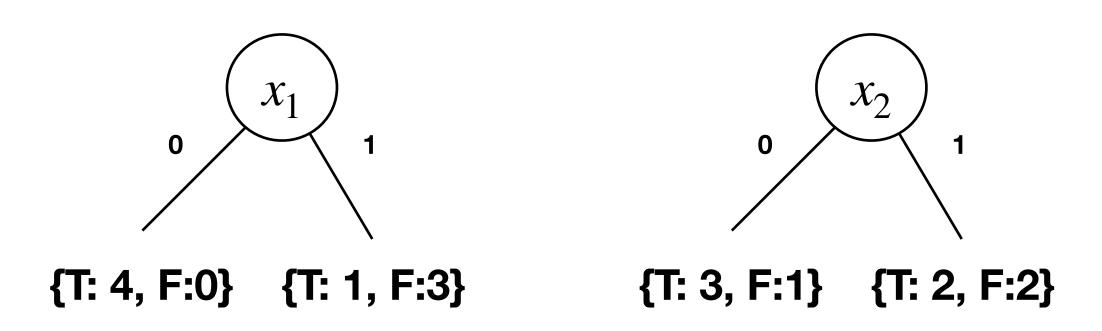
Complexity of Decision Trees

Learning Decision Trees is hard

- Many trees represent the same decision function
 - ► Some are smaller → more efficient, less complexity
- Finding the smallest Decision Tree is an NP-complete problem [Hyafil & Rivest '76]
- Greedy heuristic:
 - Start from empty decision tree
 - Split on "best" feature x_i : label root, split data to children
 - Repeat for each sub-tree, until no more features (or all data have same y)
 - Label leaf with majority y

Which split is best?

- "To grow a tree, start with a stump"
 - Select its feature
 - But which of x_1, \ldots, x_n ?



• Solve this, and greedy recursion gives entire tree

	-	
X ₁	X ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	L
F	Т	L
F	F	F

Measuring uncertainty

- Good splits reduce uncertain about y
 - Consider a branch of the tree: b = 0
 - Best distribution $p_{\mathcal{D}}(y \mid b)$: deterministic (all true or all false)
 - Worst distribution $p_{\mathcal{D}}(y | b)$: uniform

P(Y=A) = C

$$(x_i = v_i, x_j = v_j, \ldots)$$

$$1/2$$
 $P(Y=B) = 1/4$
 $P(Y=C) = 1/8$
 $P(Y=D) = 1/8$
 $1/4$
 $P(Y=B) = 1/4$
 $P(Y=C) = 1/4$
 $P(Y=D) = 1/4$

Entropy

- How surprised are we to see y = c? Su
- Entropy $\mathbb{H}[y]$ of a random variable y:
 - $\mathbb{H}[y] = \mathbb{E}[s_{v}(c)] = -$

- More uncertainty => more surprisal (or
- Example: binary variable $y \sim \text{Bernoull}$

•
$$\mathbb{H}[y] = -p\log p - (1-p)\log(1-p)$$

$$urprisal = s_y(c) = -\log p(y = c)$$

• If log is in base 2 (divide by log 2): number of bits, on average, to efficiently encode y = c

$$\sum_{c} p(y = c) \log p(y = c)$$

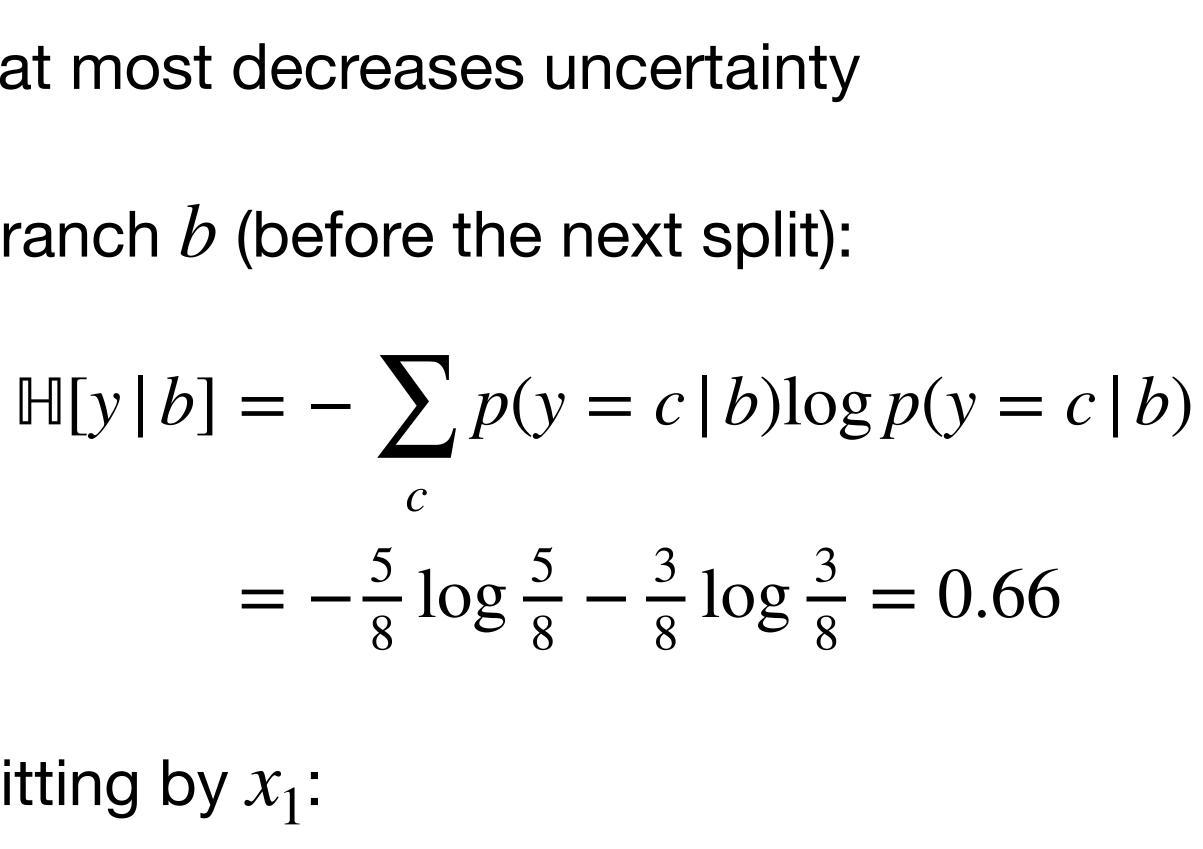
on average) \implies more entropy
li(p)

Entropy reduction

- Select feature that most decreases uncertainty
- Entropy of y in branch b (before the next split):

• Entropy after splitting by
$$x_1$$
:

$$\mathbb{H}[y \mid b, x_1] = \mathbb{E}_{x_1 \mid b}[\mathbb{H}[y \mid b, x_1]] = -\sum_{v} p(x_1 = v \mid b) \sum_{c} p(y = c \mid b, x_1 = v) \log p(y = c \mid b, x_1 = v) \\ = -\frac{4}{8}(\frac{4}{4}\log\frac{4}{4} + \frac{0}{4}\log\frac{0}{4}) - \frac{4}{8}(\frac{1}{4}\log\frac{1}{4} + \frac{3}{4}\log\frac{3}{4}) = 0.28$$



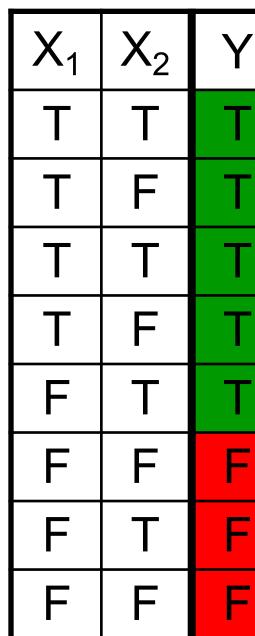
X ₁	X ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	L
F	F	L

Information gain

- Information gain = reduction in entropy from conditioning y on x_1
 - The amount of new information that x_1 has on y

$$\mathbb{I}[x_1; y \mid b] = \mathbb{H}[y \mid b] - \mathbb{H}$$

- Information gain is always non-negative
 - By convexity of the entropy



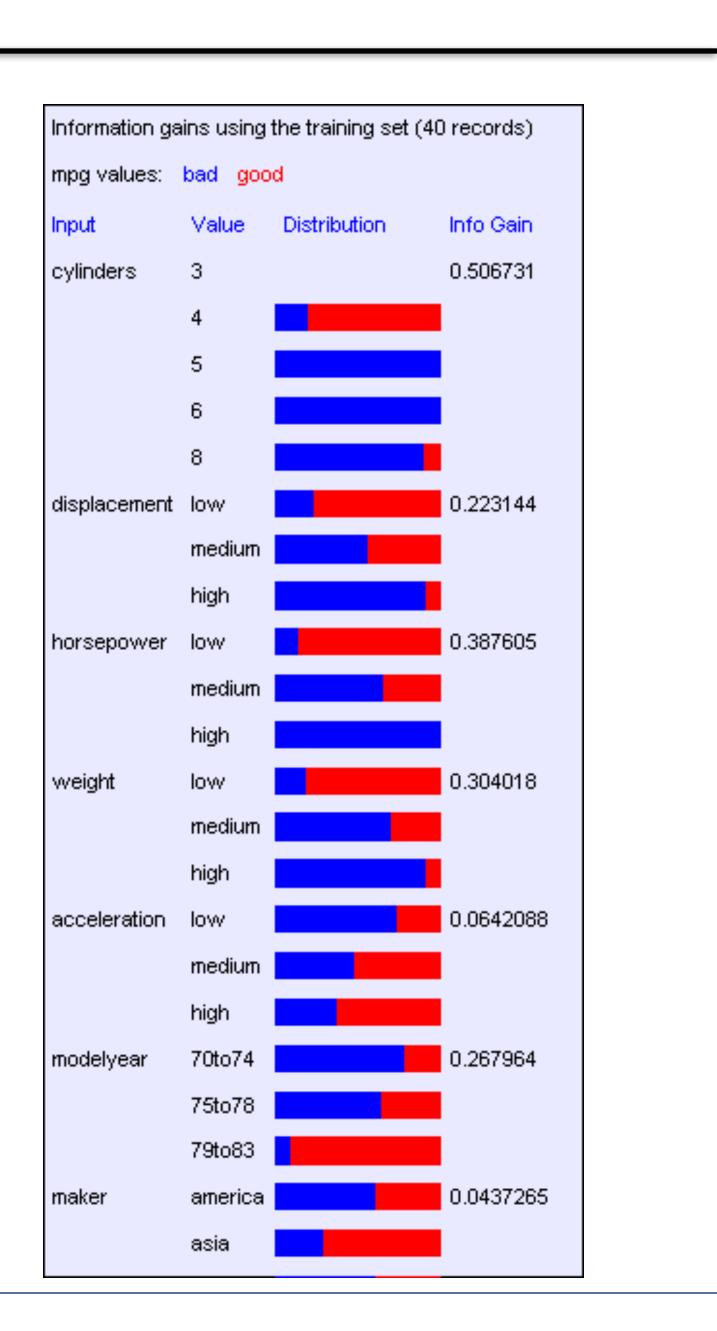
 $= \mathbb{H}[y|b] - \mathbb{H}[y|b, x_1] = 0.66 - 0.28 = 0.38$ F T F F F F $[x_2; y|b] = 0.66 - 0.63 = 0.03$ select x_1 for Decision Tree

Learning Decision Trees

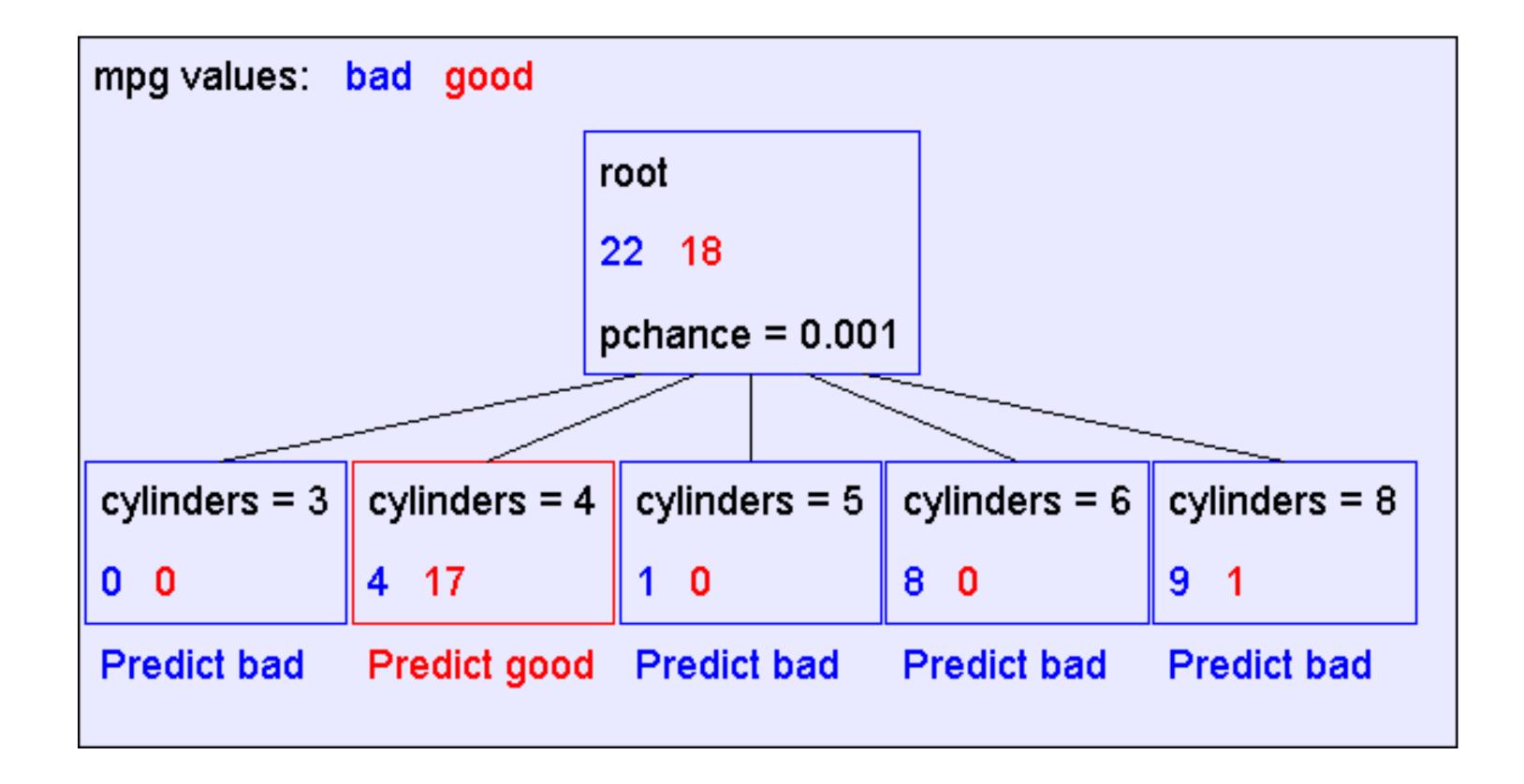
- Start from empty decision tree
- Split on max-info-gain feature x_i
 - $\operatorname{arg\,max}_{i} \mathbb{I}[x_{i}; y \mid b] = \operatorname{arg\,max}_{i} \mathbb{H}[y \mid b] \mathbb{H}[y \mid b, x_{i}]$
- Repeat for each sub-tree, until:
 - Entropy = 0 (all y are the same)
 - No more features
 - Information gain very small?
- Label leaf with majority y \bullet

Maximizing information gain

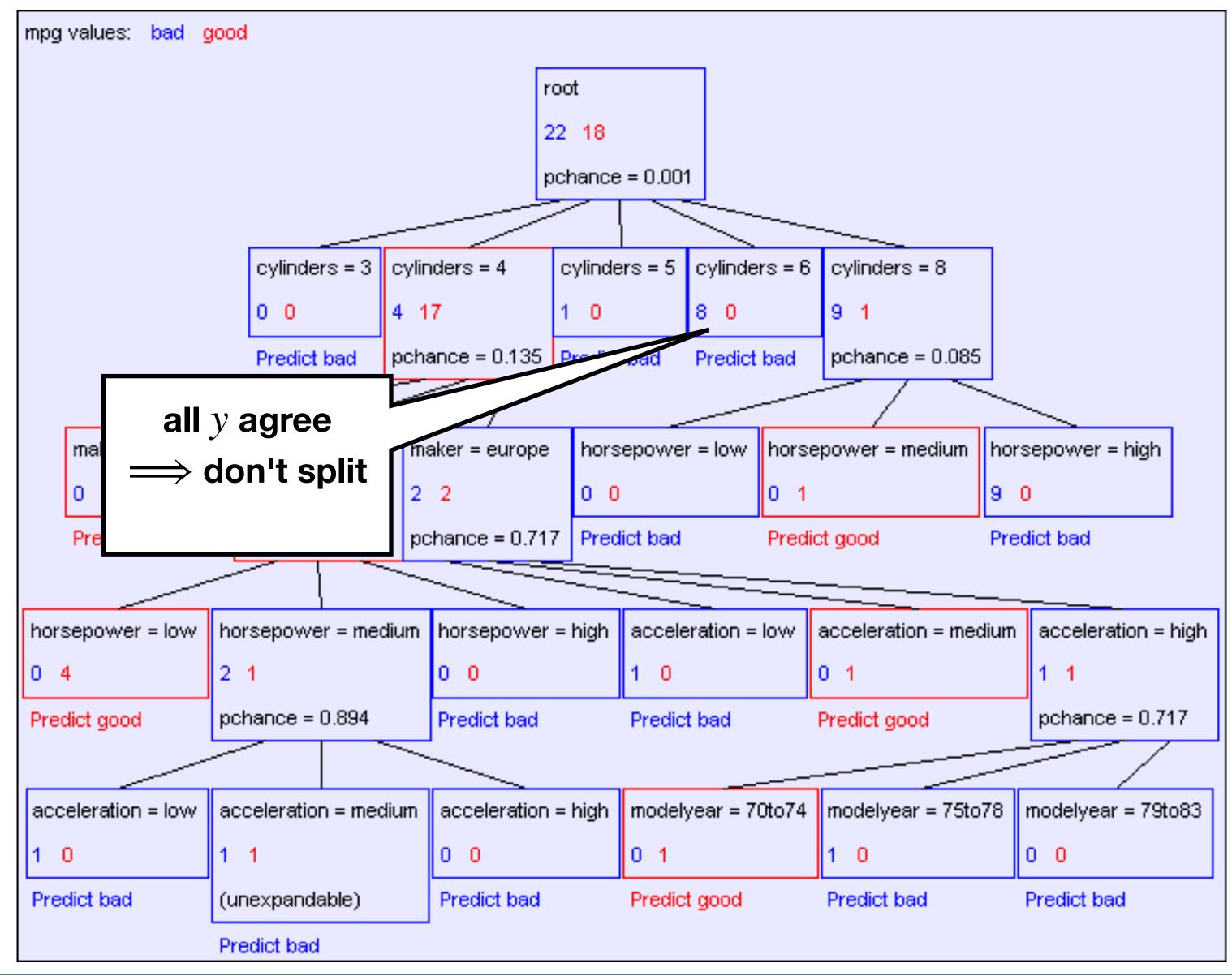
- 7 features are candidates for first split:
 - Cylinders, displacement, horsepower, …
- Each split involves a finite number of feature values
 - Data subset for each value has both blue and red examples
 - We want low (weighted) average entropies in these subsets
 - Cylinders seems a good split
 - Acceleration seems a bad split
- Information gain quantifies this intuition



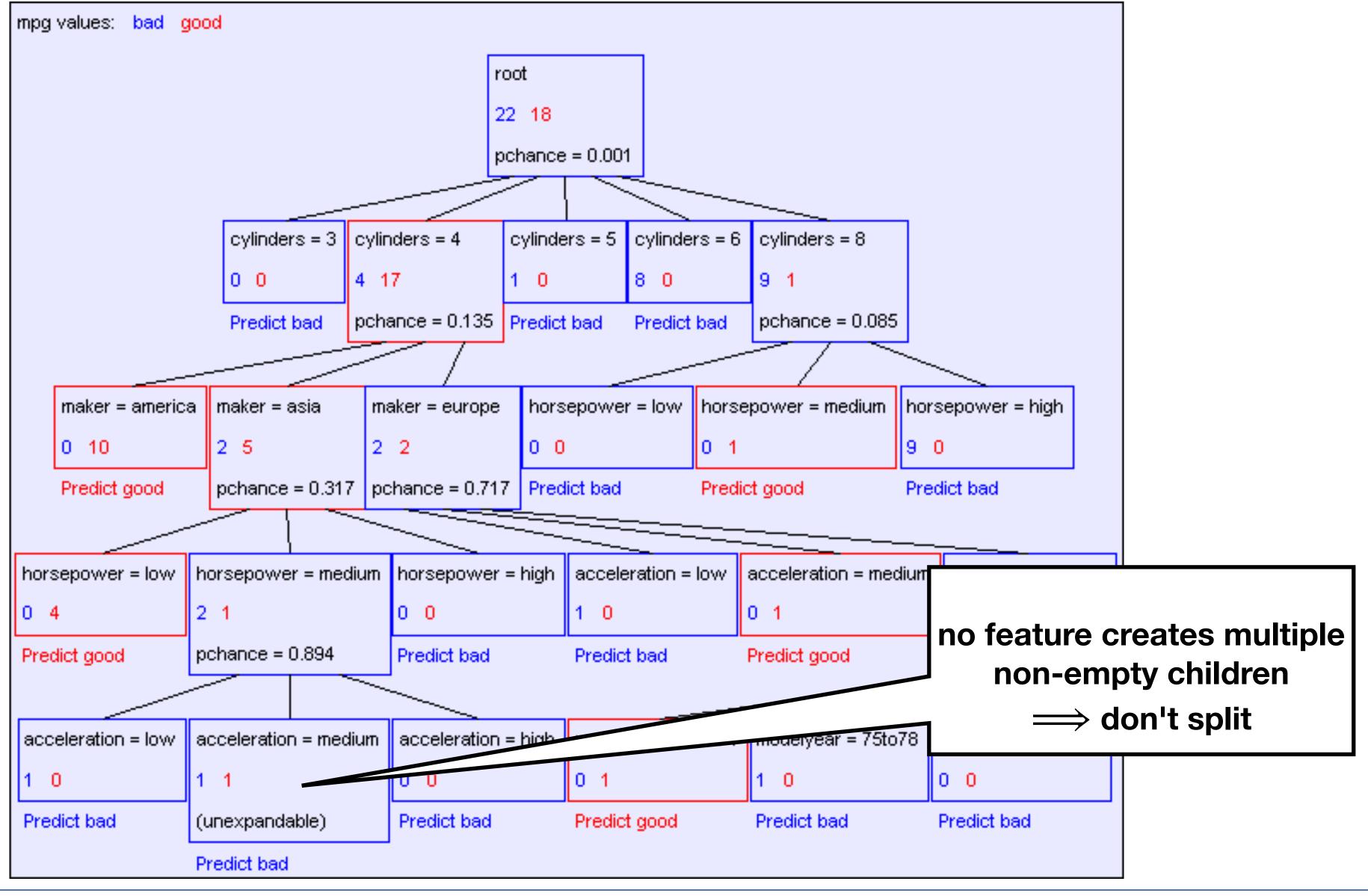
Growing a tree: stopping criteria



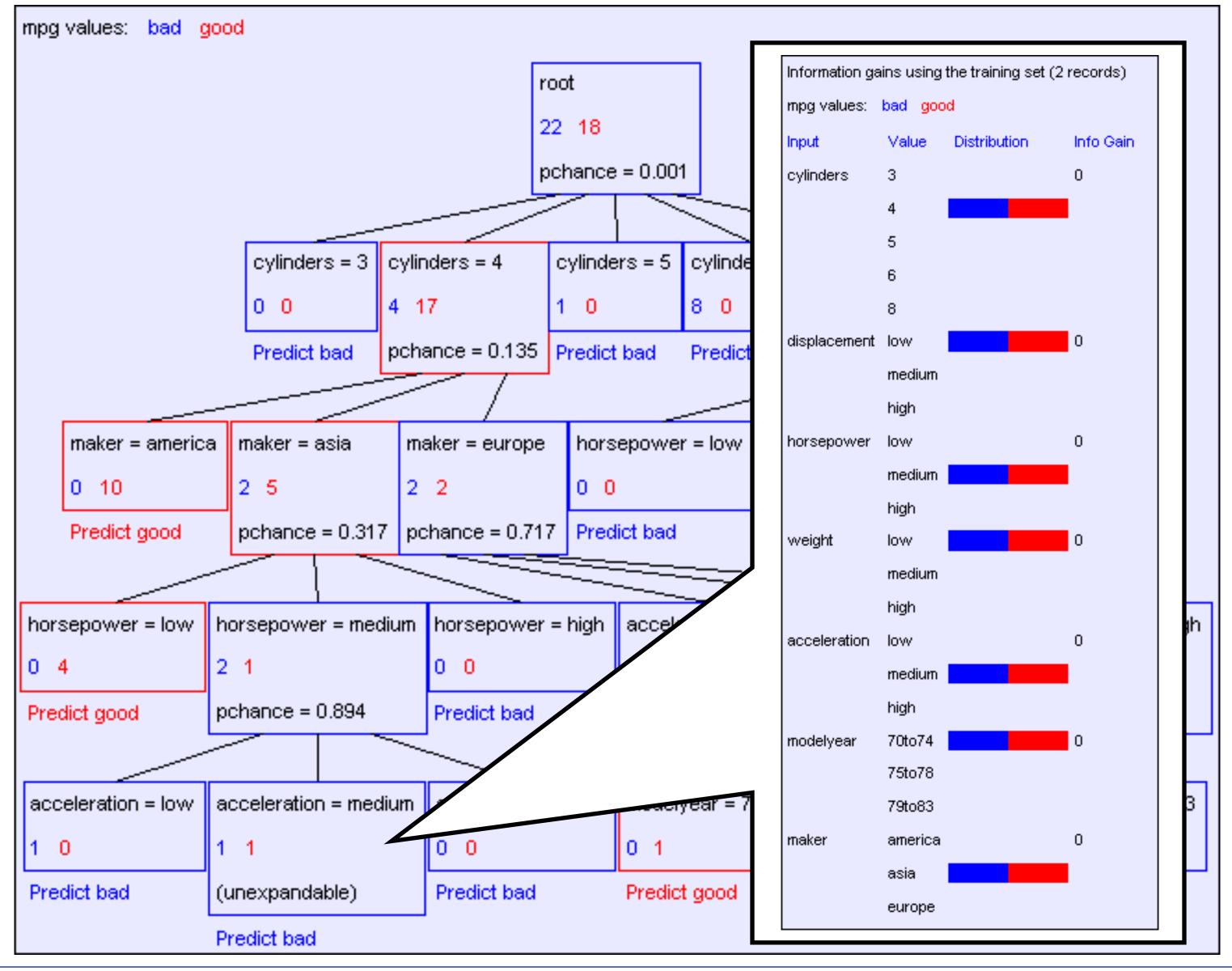
Case 1: stop on consensus



Case 2: stop on no useful features



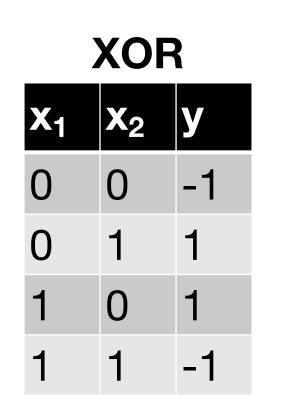
Case 2: stop on no useful features



Roy Fox | CS 273A | Winter 2021 | Lecture 9: Decision Trees

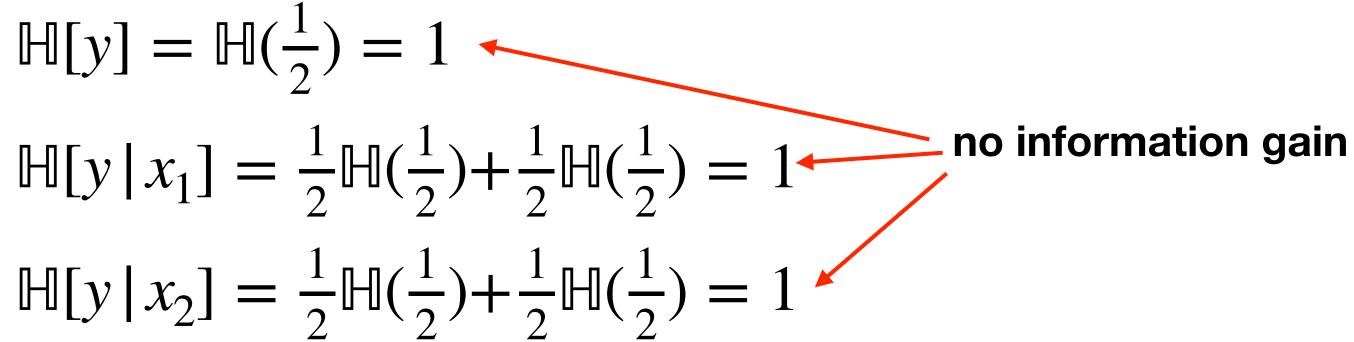
Stopping criteria

- Stopping criterion 2: no useful features = all data points agree on x
- Consider stopping criterion 3: no feature gives positive information gain
 - Is this always good?



but consider splitting by both!

• Stopping criterion 1: consensus = all data points in the branch agree on y



Today's lecture

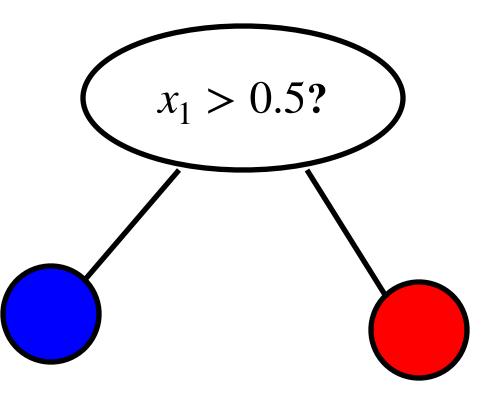
Decision Trees

Learning Decision Trees

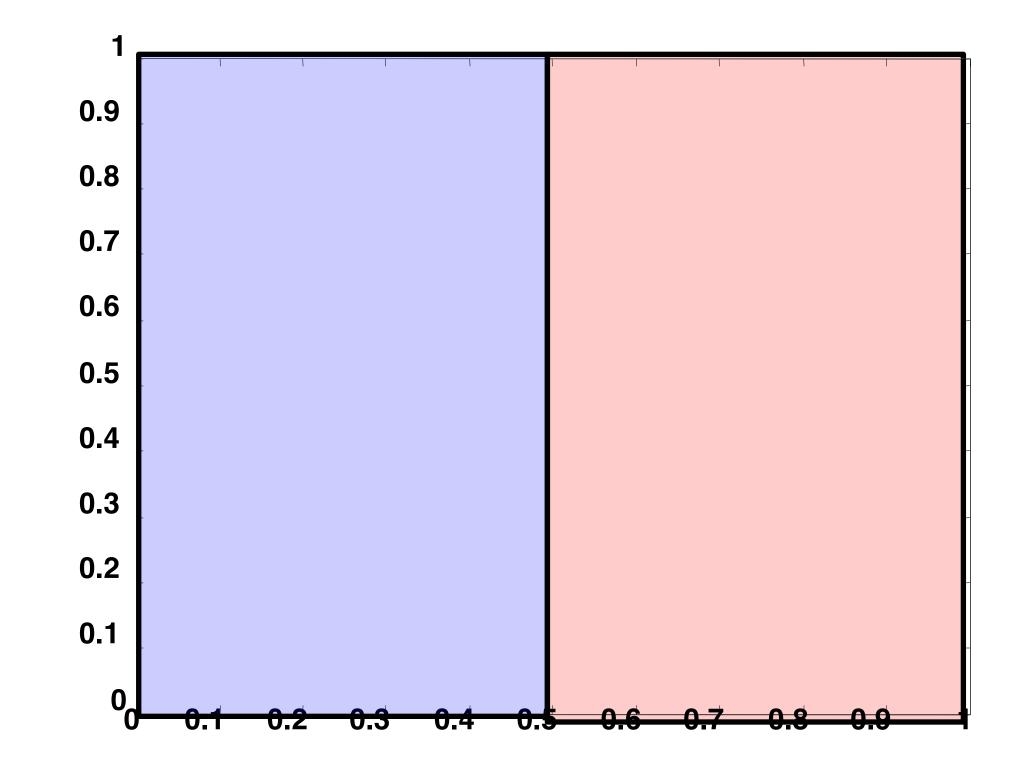
Complexity of Decision Trees

Continuous features

- How can we split on continuous features?
 - Add binary features $T(x_i c) = \delta[x_i > c]$
- **Decision Stump:** lacksquare

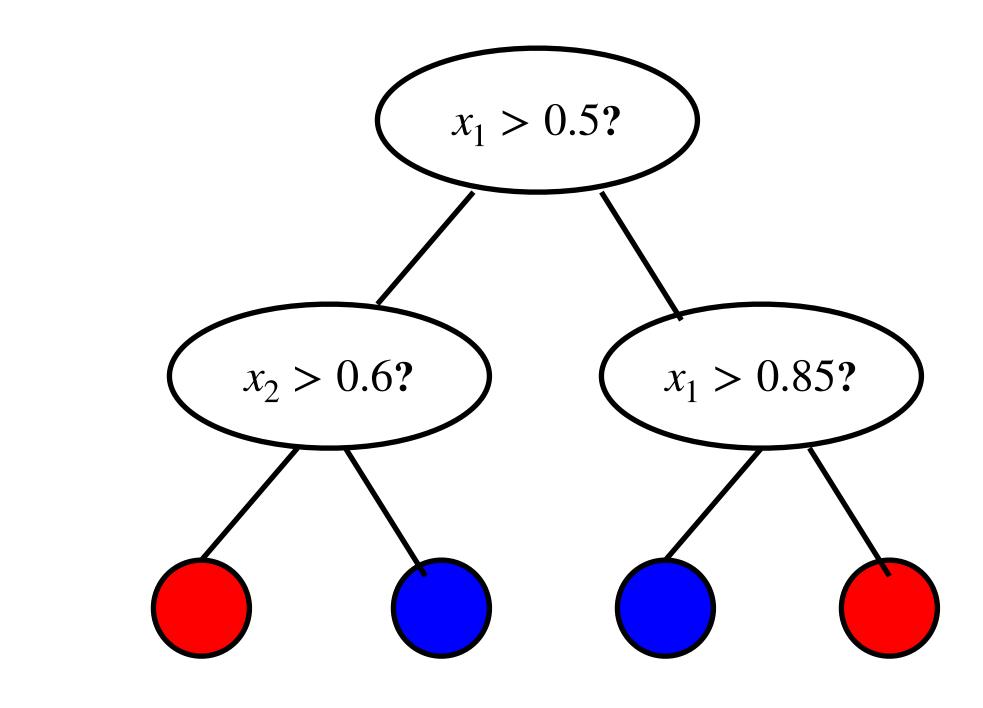


Simpler than linear classifier

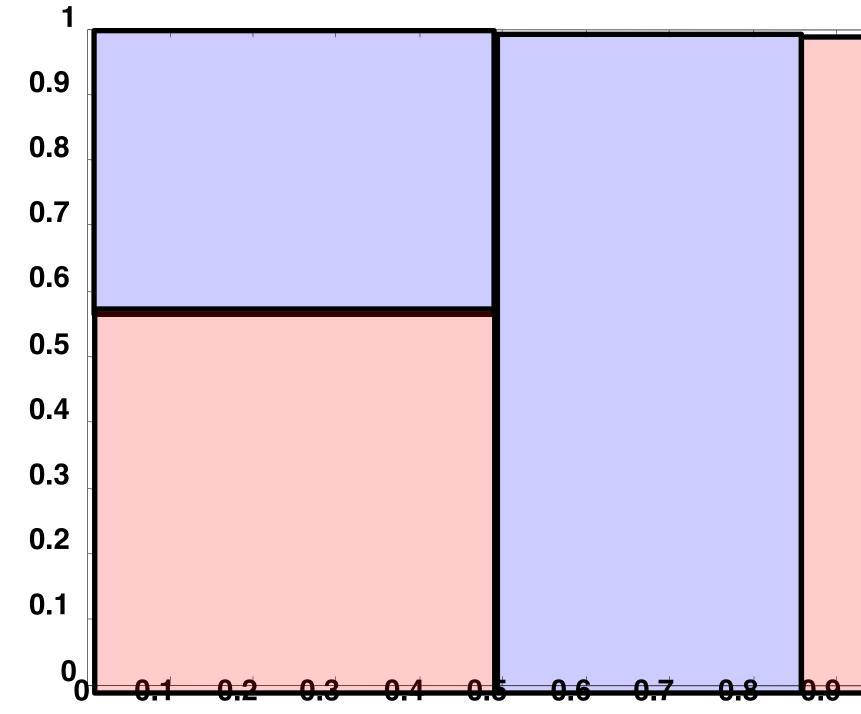


Decision trees & complexity

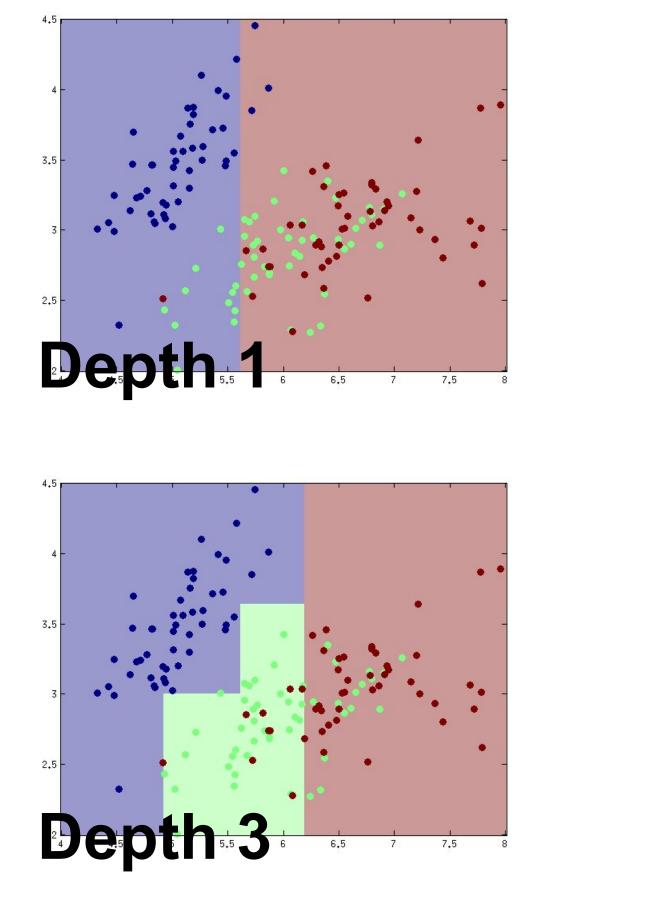
- Complexity of class grows with depth
 - More splits allow finer-grained partitioning

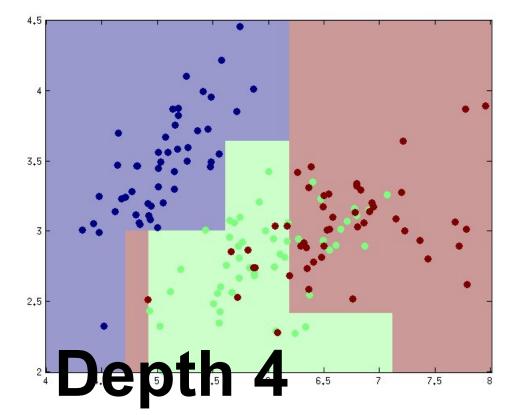


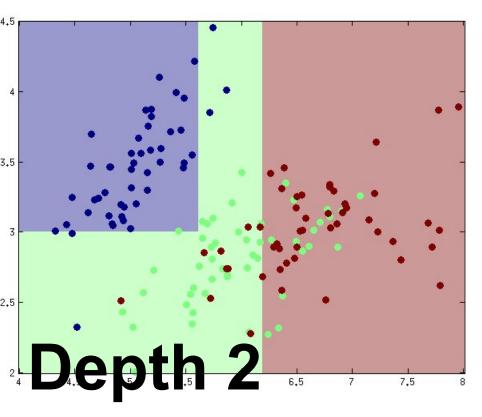
• up to 2^d regions = leaves

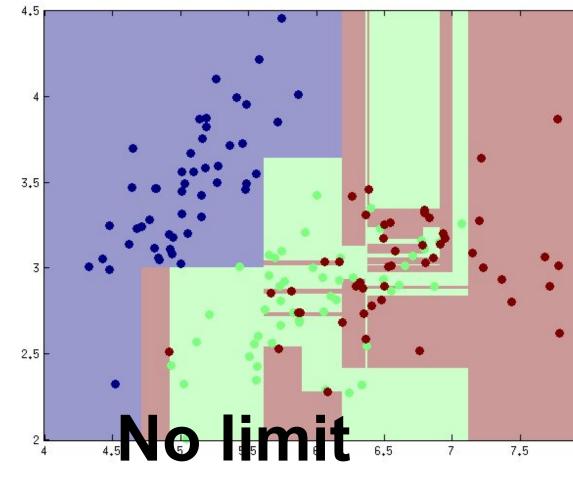


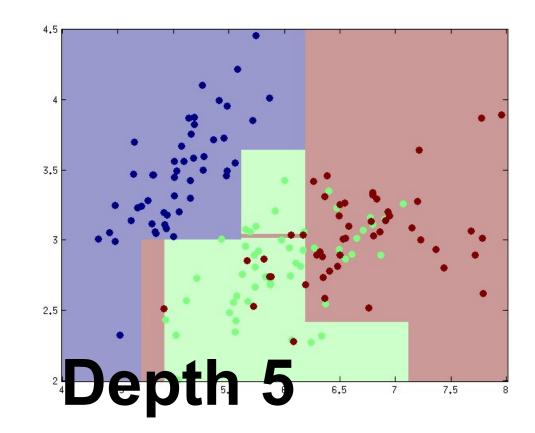
Controlling complexity









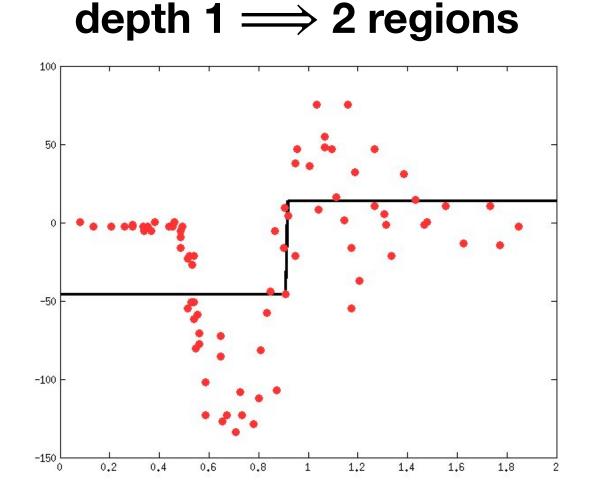


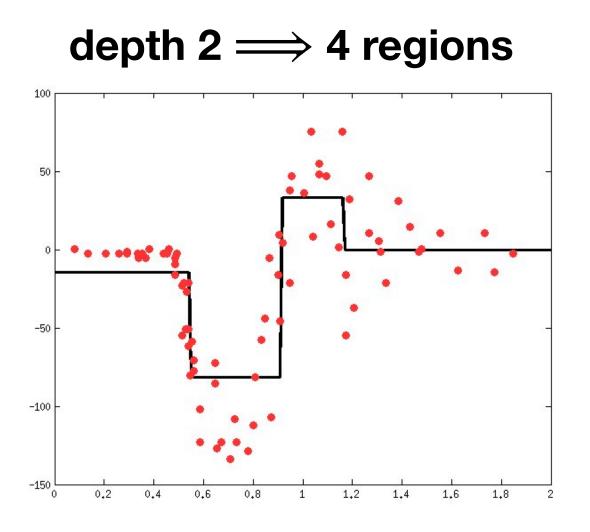
Decision trees will overfit

- Standard decision trees have no inductive bias
 - Training error is always 0, if there is no label noise = $x \rightarrow y$ is 1-to-1
 - Danger: high variance! Will overfit if left unstopped!
 - Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter...

Decision trees for regression

- How to make a prediction of continuous y?
 - Average value of y in a leaf node
- How to compute information gain?
 - Need model of y distribution at node; e.g., Gaussian





- **Decision trees**
 - Flexible functional form
 - At each node, pick a feature (for continuous: also pick threshold)
 - At leaves, predict a value
- Learning decision trees \bullet
 - Score all splits, maximize information gain
 - Apply stopping criteria
- Complexity depends on depth
 - Decision Stumps (aka 1-rule): simpler than linear classifiers

project

midterm

Independent project this week

• Midterm exam next Tue, Feb 9, 2–4pm on Canvas

• We'll accommodate other timezones — let us know

Review during lecture this Thu