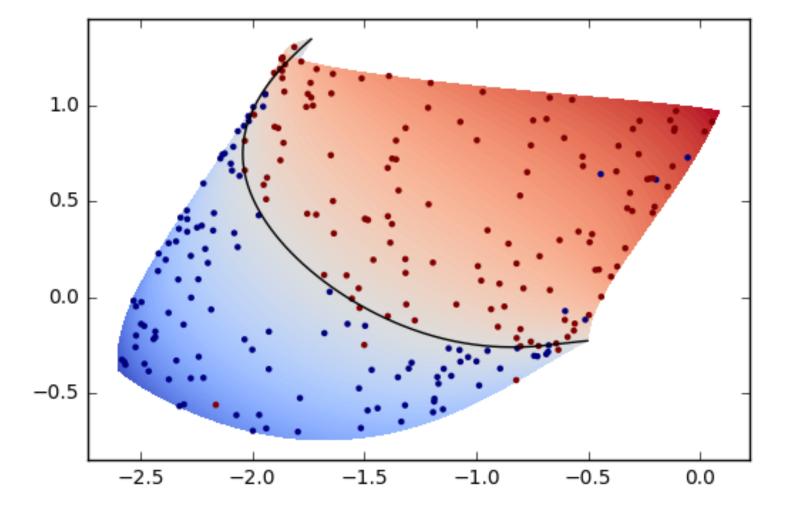
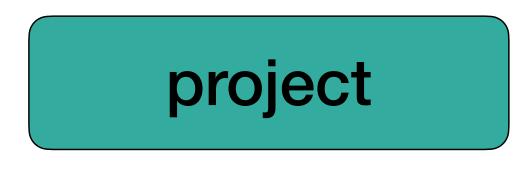
CS 273A: Machine Learning Winter 2021 Lecture 8: VC Dimension

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh





• Team rosters due Monday, Feb 1 on Canvas

Team-forming spreadsheet posted on piazza

Midterm exam on Feb 9, 2–4pm on Canvas

• We'll accommodate other timezones — let us know

Today's lecture

Logistic Regression

Multi-class classifiers

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

VC dimension

Perceptron

- Perceptron = linear classifier
 - Parameters θ = weights (also denoted w)
 - Response = weighted sum of the features $r = \theta^T x$
 - Prediction = thresholded response \hat{y}
 - Decision function: $\hat{y}(x) = \begin{cases} +1 & \text{if } \theta \\ -1 & \text{otherwise} \end{cases}$

Update rule: $\theta \leftarrow \theta - \alpha(y - \hat{y})x$ error

$$\hat{\psi}(x) = T(r) = T(\theta^{\mathsf{T}}x)$$

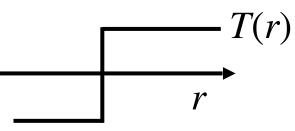
 $\theta^{\mathsf{T}}x > 0$
therwise
 $for T(r) = \operatorname{sign}(r)$

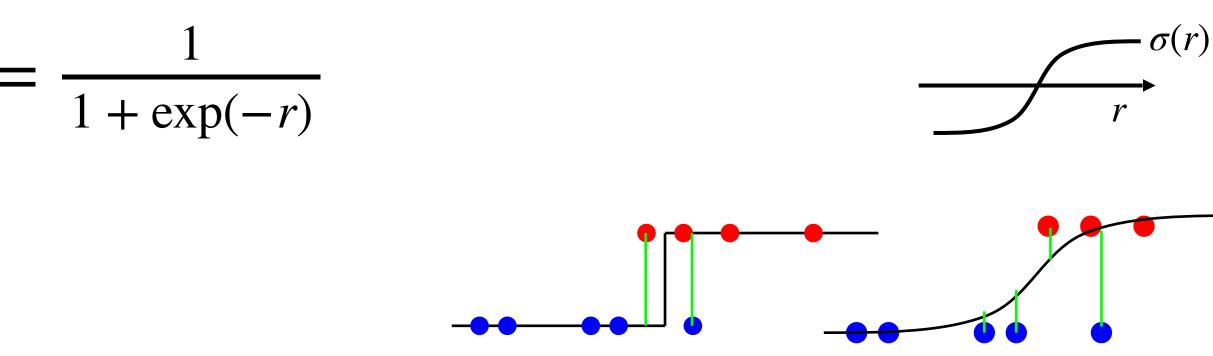
Surrogate loss functions

- Alternative: use differentiable loss function
 - E.g., approximate the step function with a smooth function
 - Popular choice: logistic / sigmoid function (sigmoid = "looks like s")

$$\sigma(r)$$
 =

- MSE loss: $\mathscr{L}_{\theta}(x, y) = (y \sigma(r(x)))^2$
 - Far from the boundary: $\sigma \approx 0$ or 1, loss approximates 0–1 loss
 - Near the boundary: $\sigma \approx \frac{1}{2}$, loss near $\frac{1}{4}$, but clear improvement direction







Learning smooth linear classifiers

• Use gradient-based optimizer on the

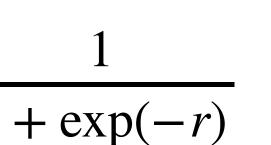
$$-\nabla_{\theta}\mathscr{L}_{\theta}(x,y) =$$

- Logistic / sigmoid function: $\sigma(r) = \frac{1}{1 + \exp(-r)}$
- It's derivative: $\sigma'(r) = \sigma(r)(1 \sigma(r))$
 - Saturates for both $r \to \infty, r \to -\infty$
- Confidently incorrect prediction: $\sigma(r) \approx 1 y \implies \nabla_{\theta} \mathscr{L}_{\theta} \approx 0$

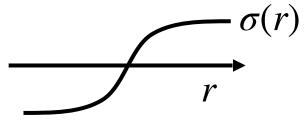
$$\log \mathscr{L}_{\theta}(x, y) = (y - \sigma(\theta^{\mathsf{T}} x))^2$$

sensitivity





error



• Confidently correct prediction: $\sigma(r) \approx y \in \{0,1\} \implies \nabla_{\theta} \mathscr{L}_{\theta} \approx 0 \longleftarrow \text{good}$

bad

Maximum likelihood

- What if we had a probabilistic predictor $p_{\theta}(y \mid x)$?
- The better the parameter θ , the more likely the training data:

$$p_{\theta}(y^{(1)}, \dots, y^{(m)} | x^{(1)}, \dots, x^{(m)}) = \prod_{j} p_{\theta}(y^{(j)} | x^{(j)})$$

Bayesian interpretation?

Maximum log-likelihood: $\max_{\theta} \frac{1}{m} \sum_{i} \log p_{\theta}(y^{(i)} | x^{(i)})$

except, often there's no uniform distribution over parameter space , MAP: $\arg\max_{\theta} p(\theta | \mathcal{D}) = \arg\max_{\theta} p(\theta) p(\mathcal{D}_x) p_{\theta}(\mathcal{D}_y | \mathcal{D}_x) = \arg\max_{\theta} p_{\theta}(\mathcal{D}_y | \mathcal{D}_x)$ average over training dataset

Logistic Regression

- Think of $\sigma(\theta^{\mathsf{T}} x) = p_{\theta}(y = 1 | x)$
- Negative Log-Likelihood (NLL) loss:

$$\mathscr{L}_{\theta}(x, y) = -\log p_{\theta}(y \mid x) = -y$$



• Can we turn a linear response into a probability? Sigmoid! $\sigma : \mathbb{R} \to [0,1]$

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

Logistic Regression: gradient

• Logistic NLL loss: $\mathscr{L}_{\theta}(x, y) = -y$

Gradient:

- Compare:
 - Perceptron: $(y \hat{y})x \leftarrow constant e$
 - Logistic MSE: $-\nabla_{\theta} \mathscr{L}_{\theta}(x, y) = 2(y y)$

$$\log \sigma(\theta^{\mathsf{T}} x) - (1 - y)\log(1 - \sigma(\theta^{\mathsf{T}} x))$$

$$r$$
 $\sigma(r)$

error (
$$\pm 2$$
), insensitive to margin

$$-\sigma(\theta^{\mathsf{T}}x))\sigma'(\theta^{\mathsf{T}}x)x$$

0 gradient for bad mistakes

– I (r)

Recap

- Linear classifiers: lacksquare
 - Perceptron
 - Logistic classifier
- Measuring decision quality: \bullet
 - Error rate / 0–1 loss
 - MSE loss
 - Negative log-likelihood (Logistic Regression)
- Learning the weights
 - Perceptron algorithm not quite gradient-based (or gradient of weird loss)
 - Gradient-based optimization of surrogate loss (MSE / NLL)

Today's lecture

Logistic Regression

Multi-class classifiers

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

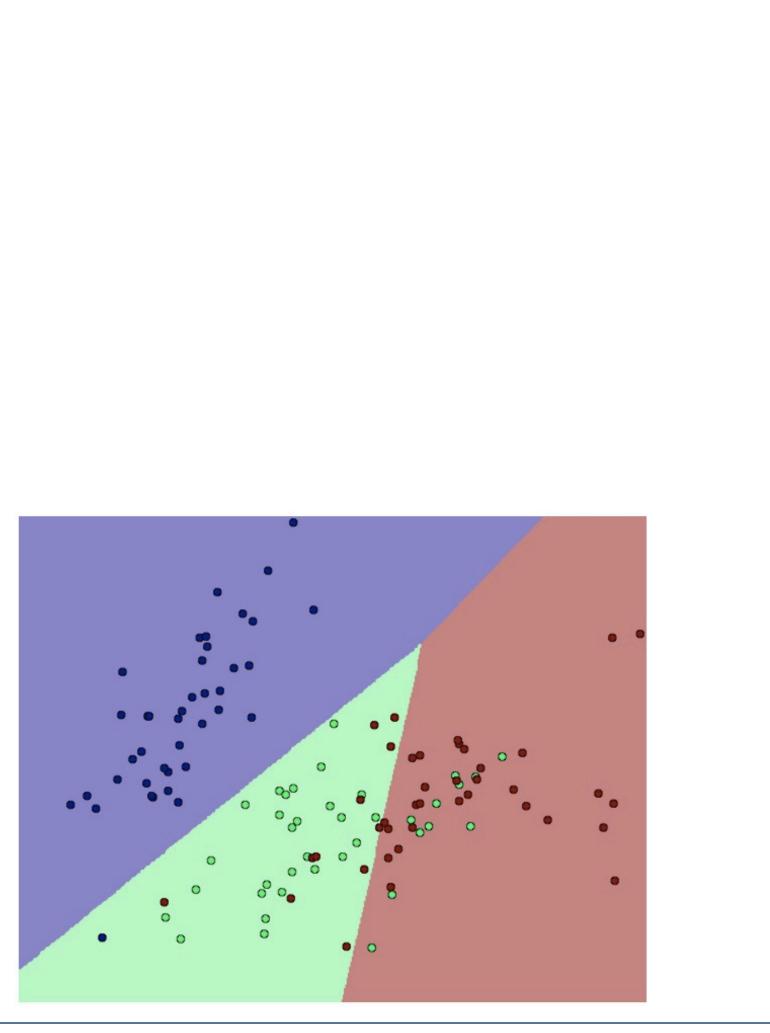
VC dimension

Multi-class linear models

- How to predict multiple classes?
- Idea: have a linear response per cla
 - Choose class with largest response: $f_{\theta}(x) = \arg \max \theta_c^T x$
- Linear boundary between classes c_1, c_2 :

•
$$\theta_{c_1}^{\mathsf{T}} x \leq \theta_{c_2}^{\mathsf{T}} x \iff (\theta_{c_1} - \theta_{c_2})^{\mathsf{T}} x \leq 0$$

ass
$$r_c = \theta_c^{\mathsf{T}} x$$



Multi-class linear models

- More generally: add features can even depend on y!

• Example: $y = \pm 1$

•
$$\Phi(x, y) = xy$$

$$\implies f_{\theta}(x) = \arg \max_{y} y \theta^{\mathsf{T}} x = \begin{cases} +1 & +\theta^{\mathsf{T}} x > -\theta^{\mathsf{T}} x \\ -1 & +\theta^{\mathsf{T}} x < -\theta^{\mathsf{T}} x \end{cases}$$
$$= \operatorname{sign}(\theta^{\mathsf{T}} x) \longleftarrow \operatorname{perceptron!}$$

 $f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$ \mathcal{V}

Multi-class linear models

More generally: add features — can even depend on y!

- Example: $y \in \{1, 2, ..., C\}$
 - $\Phi(x, y) = [0 \ 0 \ \cdots \ x \ \cdots \ 0] = \text{one-hot}(y) \otimes x$
 - $\bullet \ \theta = [\theta_1 \ \cdots \ \theta_C]$

 $\implies f_{\theta}(x) = \arg\max_{c} \theta_{c}^{\mathsf{T}} x \longleftarrow \text{ largest linear response}$

 $f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$

Multi-class perceptron algorithm

- While not done:
 - For each data point $(x, y) \in \mathcal{D}$:

Predict:
$$\hat{y} = \arg \max_{c} \theta_{c}^{\mathsf{T}} x$$

- Increase response for true class: $\theta_v \leftarrow \theta_v + \alpha x$
- Decrease response for predicted class: $\theta_{\hat{v}} \leftarrow \theta_{\hat{v}} \alpha x$
- More generally:

• Predict:
$$\hat{y} = \arg \max_{y} \theta^{\mathsf{T}} \Phi(x, y)$$

• Update: $\theta \leftarrow \theta + \alpha(\Phi(x, y) - \Phi(x, \hat{y}))$

Multilogit Regression

D

befine multi-class probabilities:
$$p_{\theta}(y \mid x) = \frac{\exp(\theta_{y}^{\mathsf{T}}x)}{\sum_{c} \exp(\theta_{c}^{\mathsf{T}}x)} = \operatorname{soft} \max_{c} \left. \theta_{c}^{\mathsf{T}}x \right|_{y}$$

 $p_{\theta}(y = 1 \mid x) = \frac{\exp(\theta_{1}^{\mathsf{T}}x)}{\exp(\theta_{1}^{\mathsf{T}}x) + \exp(\theta_{2}^{\mathsf{T}}x)}$
For binary y:
 $= \frac{1}{1 + \exp((\theta_{2} - \theta_{1})^{\mathsf{T}}x)} = \sigma((\theta_{1} - \theta_{2})^{\mathsf{T}}x)$

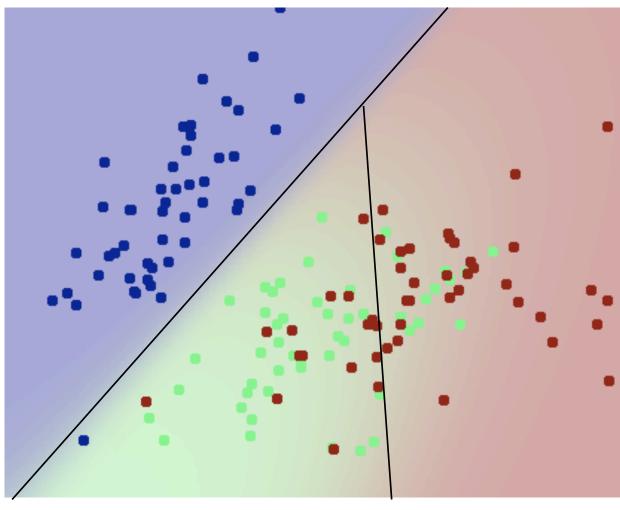
Benefits: \bullet

Probabilistic predictions: knows its confidence

Linear decision boundary: $\arg \max \exp(\theta_{y}^{T})$

NLL is convex

$$f(x) = \arg\max_{y} \theta_{y}^{\mathsf{T}} x$$



Multilogit Regression: gradient

• NLL loss: $\mathscr{L}_{\theta}(x, y) = -\log p_{\theta}(y \mid x)$

• Gradient:

 $-\nabla_{\theta_c} \mathscr{L}_{\theta}(x, y) = \delta(y)$

make true class more likely ~

• Compare to multi-class perceptron:

$$\theta = -\theta_y^{\mathsf{T}} x + \log \sum_c \exp(\theta_c^{\mathsf{T}} x))$$

$$= \delta(y = c)x - \frac{\nabla_{\theta_c} \sum_{c'} \exp(\theta_{c'}^{\mathsf{T}} x)}{\sum_{c'} \exp(\theta_{c'}^{\mathsf{T}} x)}$$
$$= \left(\delta(y = c) - \frac{\exp(\theta_c^{\mathsf{T}} x)}{\sum_{c'} \exp(\theta_{c'}^{\mathsf{T}} x)}\right)x$$

$$= (\delta(y = c) - p_{\theta}(c \mid x))x$$

make all other classes less likely

$$(\delta(y=c) - \delta(\hat{y}=c))x$$

Today's lecture

Logistic Regression

Multi-class classifiers

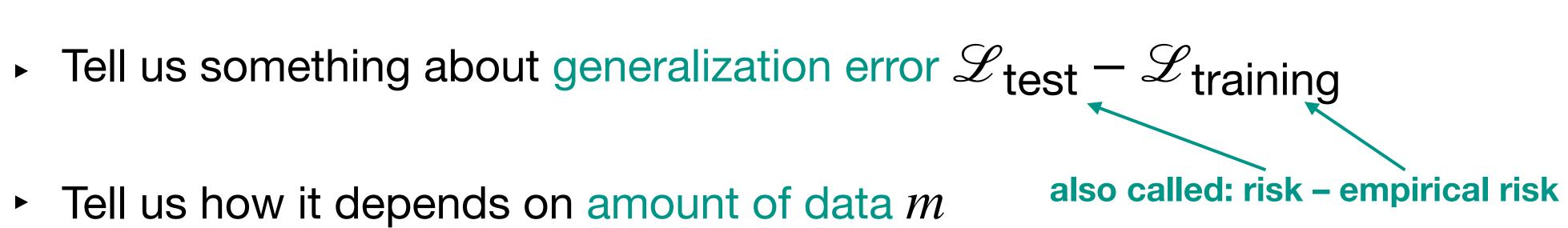
Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

VC dimension

Complexity measures

- What are we looking for in a measure of model class complexity?

 - Tell us how it depends on amount of data m
 - Be easy to find for a given model class haha jk not gonna happen (more later)
- Ideally: a way to select model complexity (other than validation) \bullet
 - Akaike Information Criterion (AIC) roughly: loss + #parameters
 - Bayesian Information Criterion (BIC) roughly: loss + #parameters · log m
 - But what's the #parameters, effectively



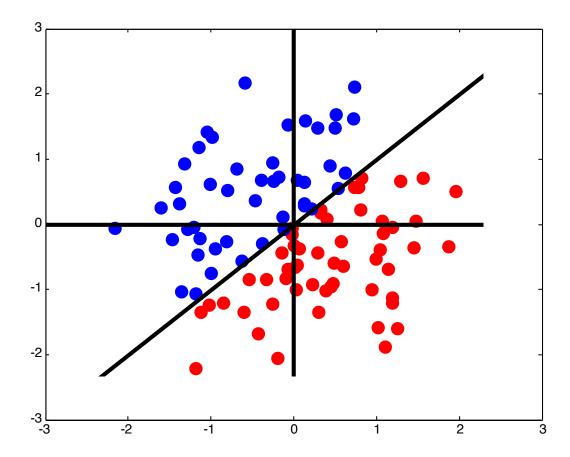
y? Should
$$f_{\theta_1,\theta_2} = g_{\theta=h(\theta_1,\theta_2)}$$
 change the complexity?

Model expressiveness

- Tradeoff:
 - More expressive \implies can reduce error, but may also overfit to training data
 - Less expressive \implies may not be able to represent true pattern / trend

• Example: $sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$

Model complexity also measures expressiveness / representational power

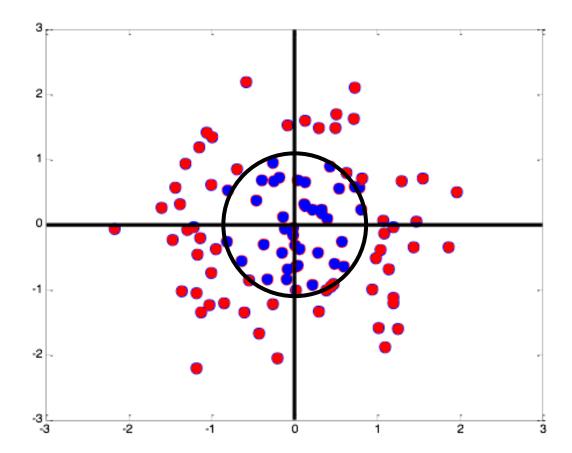


Model expressiveness

- Tradeoff:
 - More expressive \implies can reduce error, but may also overfit to training data
 - Less expressive \implies may not be able to represent true pattern / trend

• Example: $\operatorname{sign}(x_1^2 + x_2^2 - \theta)$

Model complexity also measures expressiveness / representational power



Shattering

- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points y

if for <u>any</u> labeling $y^{(1)}, \ldots, y^{(h)}$

- there <u>exists</u> a model that classifies all of them correctly
- The model class must have at least as many models as labelings C^h

• Separability / realizability: there's a model that classifies all points correctly

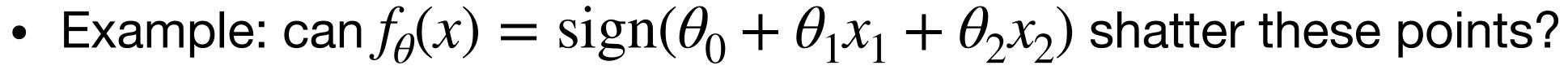
$$x^{(1)},\ldots,x^{(h)}$$

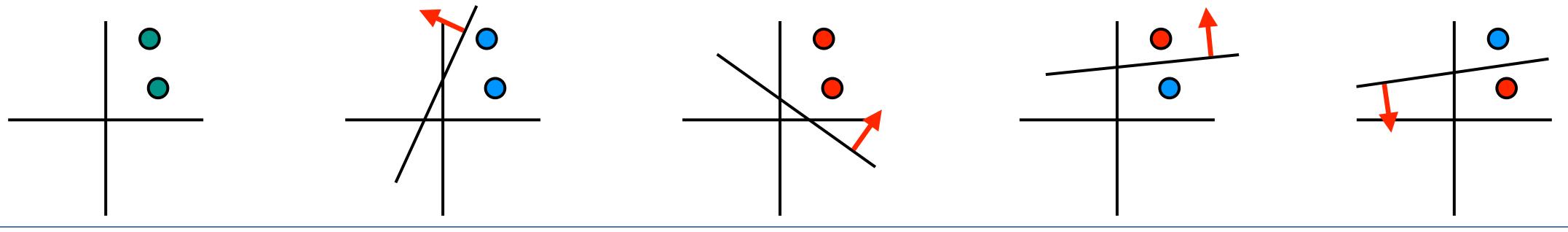
Shattering

- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, \ldots, x^{(h)}$

if for <u>any</u> labeling $y^{(1)}, \ldots, y^{(h)}$

there <u>exists</u> a model that classifies all of them correctly





• Separability / realizability: there's a model that classifies all points correctly

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

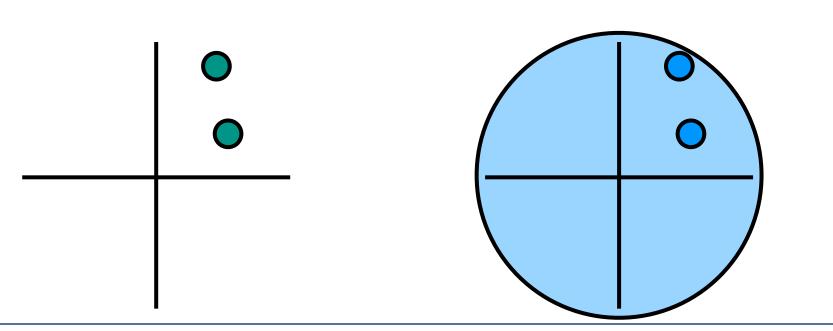
Shattering

- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, \ldots, x^{(h)}$

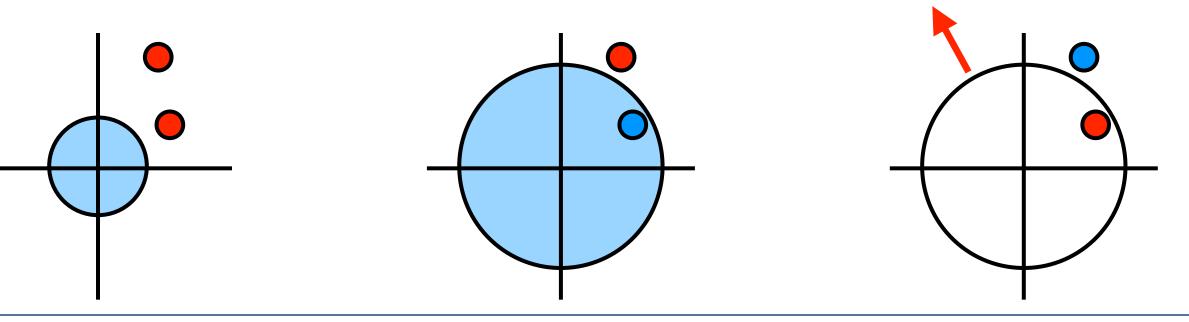
if for <u>any</u> labeling $y^{(1)}, \ldots, y^{(h)}$

there <u>exists</u> a model that classifies all of them correctly

• Example: $\operatorname{can} f_{\theta}(x) = \operatorname{sign}(x_1^2 + x_2^2 - \theta)$ shatter these points?



• Separability / realizability: there's a model that classifies all points correctly



Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

Vapnik–Chervonenkis (VC) dimension

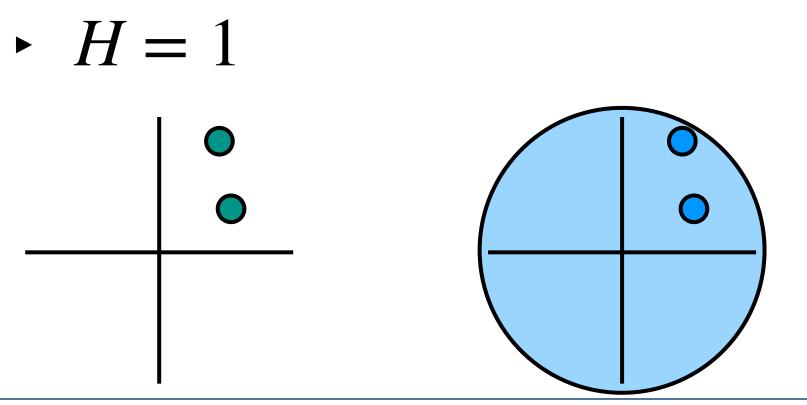
- A game:
 - Fix a model class $f_{\theta} : x \to y \quad \theta \in \Theta$
 - Player 1: choose h points $x^{(1)}, \ldots, x^{(h)}$
 - Player 2: choose labels $y^{(1)}, \ldots, y^{(h)}$
 - Player 1: choose model θ
- $h \leq H \implies$ Player 1 can win, otherwise cannot win

• VC dimension: maximum number H of points that can be shattered by a class

• Are all $y^{(j)} = f_{\theta}(x^{(j)})$? \Longrightarrow Player 1 wins $\exists x^{(1)}, \dots, x^{(h)}: \forall y^{(1)}, \dots, y^{(h)}: \exists \theta: \forall j: y^{(j)} = f_{\theta}(x^{(j)})$

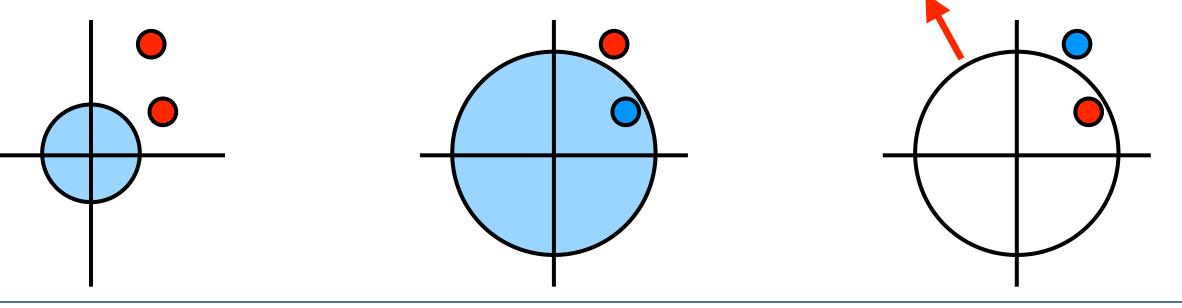
VC dimension: example (1)

- To find H, think like the winning player: 1 for $h \leq H$, 2 for h > H
- Example: $f_{\theta}(x) = \text{sign}(x_1^2 + x_2^2 \theta)$
 - We can place one point and "shatter" it
 - We can prevent shattering <u>any two points</u>: make the distant one blue



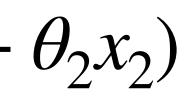
Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

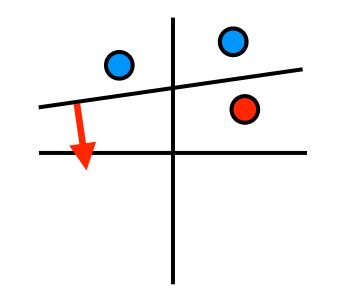
• VC dimension: maximum number H of points that can be shattered by a class

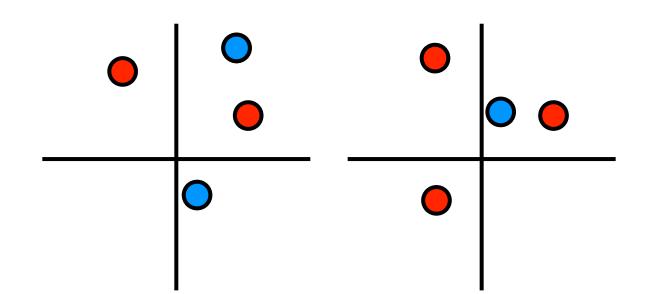


VC dimension: example (2)

- Example: $f_{\theta}(x) = \operatorname{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - We can place 3 points and shatter them
 - We can prevent shattering <u>any 4 points</u>:
 - If they form a convex shape, alternate labels
 - Otherwise, label differently the point in the triangle
 - H = 3
- Linear classifiers (perceptrons) of d features have VC-dim d + 1
 - But VC-dim is generally not #parameters







VC Generalization bound

- VC-dim of a model class can be used to bound generalization loss:
 - With probability at least 1η , we will get a "good" dataset, for which

test loss – training loss $\leq \sqrt{\frac{H lc}{-1}}$

generalization loss

- We need larger training size *m*:
 - The better generalization we need
 - The more complex (higher VC-dim) our model class
 - The more likely we want to get a good training sample

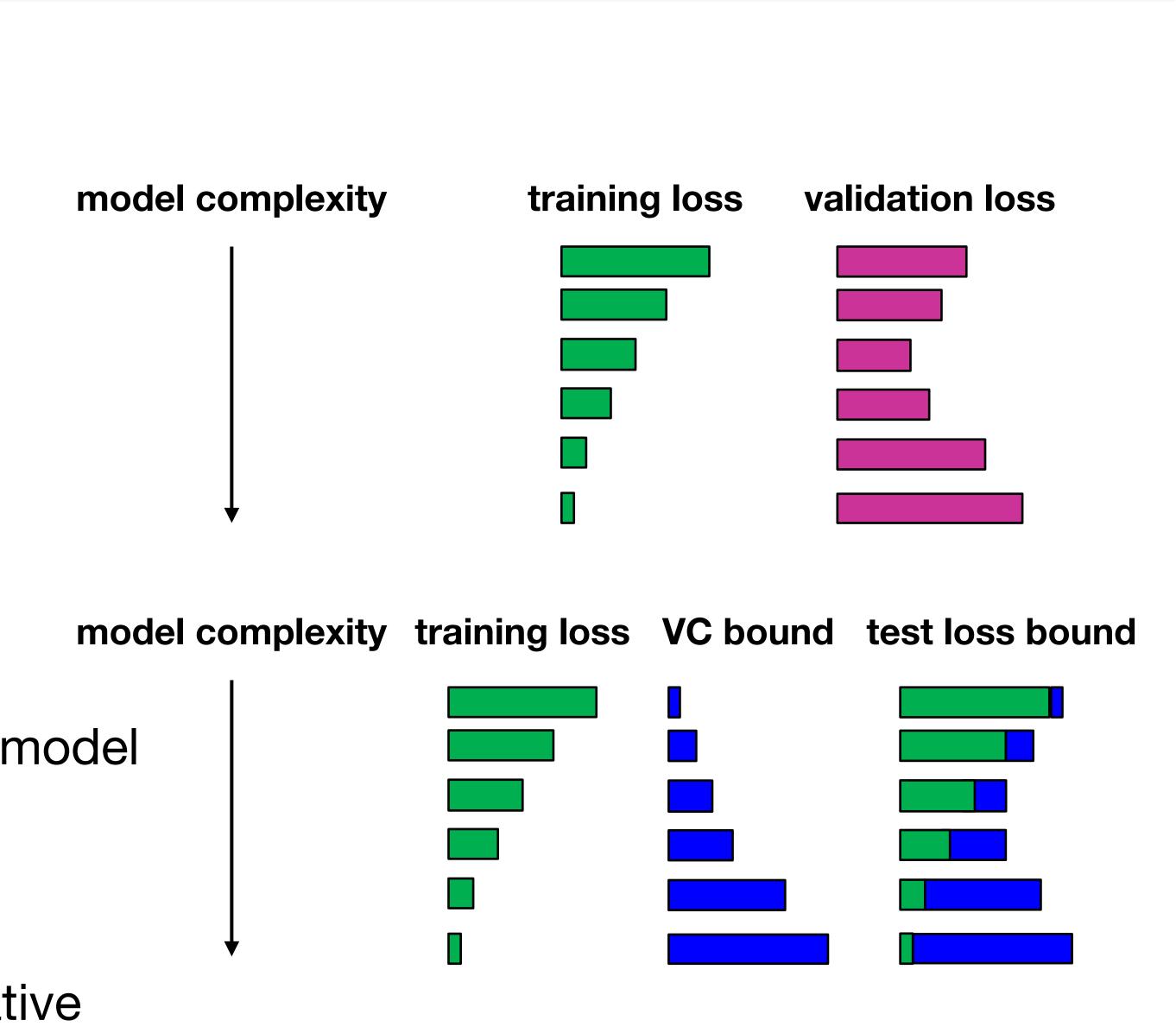
$$\log(2m/H) + H - \log(\eta/4)$$

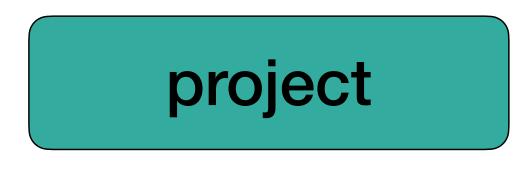
M

Model selection with VC-dim

- Using validation / cross-validation:
 - Estimate loss on held out set
 - Use validation loss to select model

- Using VC dimension:
 - Use generalization bound to select model
 - Structural Risk Minimization (SRM)
 - Bound not tight, must too conservative





• Team rosters due Monday, Feb 1 on Canvas

Team-forming spreadsheet posted on piazza

Midterm exam on Feb 9, 2–4pm on Canvas

• We'll accommodate other timezones — let us know