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Logistics

project
• Team rosters due Monday, Feb 1 on Canvas


• Team-forming spreadsheet posted on piazza

midterm
• Midterm exam on Feb 9, 2–4pm on Canvas


• We'll accommodate other timezones — let us know
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Today's lecture

Logistic Regression

Multi-class classifiers

VC dimension
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Perceptron

• Perceptron = linear classifier


‣ Parameters  = weights (also denoted )


‣ Response = weighted sum of the features 


‣ Prediction = thresholded response 


‣ Decision function: 


• Update rule: 

θ w

r = θ⊺x

̂y(x) = T(r) = T(θ⊺x)

̂y(x) = {+1 if θ⊺x > 0
−1 otherwise

(for T(r) = sign(r))

θ ← θ − α( y − ̂y
⏟

)x

T(r)

r

error
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Surrogate loss functions

• Alternative: use differentiable loss function


‣ E.g., approximate the step function with a smooth function


‣ Popular choice: logistic / sigmoid function (sigmoid = ”looks like s”)


 


• MSE loss: 


‣ Far from the boundary: , loss approximates 0–1 loss


‣ Near the boundary: , loss near , but clear improvement direction

σ(r) = 1
1 + exp(−r)

ℒθ(x, y) = (y − σ(r(x)))2

σ ≈ 0 or 1

σ ≈ 1
2

1
4

T(r)

r

σ(r)

r
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Learning smooth linear classifiers
• Use gradient-based optimizer on the loss 


 


• Logistic / sigmoid function: 


• It's derivative: 


‣ Saturates for both , 


• Confidently correct prediction: 


• Confidently incorrect prediction: 

ℒθ(x, y) = (y − σ(θ⊺x))2

−∇θℒθ(x, y) = 2(y − σ(θ⊺x))σ′￼(θ⊺x) x

σ(r) = 1
1 + exp(−r)

σ′￼(r) = σ(r)(1 − σ(r))

r → ∞ r → − ∞

σ(r) ≈ y ∈ {0,1} ⟹ ∇θℒθ ≈ 0

σ(r) ≈ 1 − y ⟹ ∇θℒθ ≈ 0

error

σ(r)

r

sensitivity

good

bad
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Maximum likelihood
• What if we had a probabilistic predictor ?


• The better the parameter , the more likely the training data:


 


• Bayesian interpretation?


‣ MAP: 


• Maximum log-likelihood: 

pθ(y |x)

θ

pθ(y(1), …, y(m) |x(1), …, x(m)) = ∏
j

pθ(y( j) |x( j))

arg max
θ

p(θ |𝒟) = arg max
θ

p(θ)p(𝒟x)pθ(𝒟y |𝒟x) = arg max
θ

pθ(𝒟y |𝒟x)

max
θ

1
m ∑

j

log pθ(y( j) |x( j))

except, often there's no uniform distribution over parameter space

average over training dataset
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Logistic Regression

• Can we turn a linear response into a probability? Sigmoid! 


• Think of 


• Negative Log-Likelihood (NLL) loss:


 


σ : ℝ → [0,1]

σ(θ⊺x) = pθ(y = 1 |x)

ℒθ(x, y) = − log pθ(y |x) = − y log σ(θ⊺x) − (1 − y)log(1 − σ(θ⊺x))
for y = 1 for y = 0

−log 0.99

−log 0.7 −log 0.98

−log 0.1−log 0.7−log 0.99
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Logistic Regression: gradient
• Logistic NLL loss: 


•
Gradient: 


• Compare:


‣ Perceptron: 


‣ Logistic MSE: 

ℒθ(x, y) = − y log σ(θ⊺x) − (1 − y)log(1 − σ(θ⊺x))

−∇θℒθ(x, y) = (y
σ′￼(θ⊺x)
σ(θ⊺x)

− (1 − y)
σ′￼(θ⊺x)

1 − σ(θ⊺x) ) x

= (y (1 − σ(θ⊺x)) − (1 − y)σ(θ⊺x))x

= (y − pθ(y = 1 |x))x

(y − ̂y)x

−∇θℒθ(x, y) = 2(y − σ(θ⊺x))σ′￼(θ⊺x)x

error for y = 1 error for y = 0

but update toward −x

constant error ( ), insensitive to margin±2

0 gradient for bad mistakes

T(r)

r

σ(r)

r
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Recap
• Linear classifiers:


‣ Perceptron


‣ Logistic classifier


• Measuring decision quality:


‣ Error rate / 0–1 loss


‣ MSE loss


‣ Negative log-likelihood (Logistic Regression)


• Learning the weights


‣ Perceptron algorithm — not quite gradient-based (or gradient of weird loss)


‣ Gradient-based optimization of surrogate loss (MSE / NLL)
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Logistic Regression

Multi-class classifiers

VC dimension
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Multi-class linear models

• How to predict multiple classes?


• Idea: have a linear response per class 


‣ Choose class with largest response: 


• Linear boundary between classes , :


‣

rc = θ⊺
c x

fθ(x) = arg max
c

θ⊺
c x

c1 c2

θ⊺
c1

x ≶ θ⊺
c2

x ⟺ (θc1
− θc2

)⊺x ≶ 0
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Multi-class linear models

• More generally: add features — can even depend on !


 


• Example: 


‣ 


 

y

fθ(x) = arg max
y

θ⊺Φ(x, y)

y = ± 1

Φ(x, y) = xy

⟹ fθ(x) = arg max
y

yθ⊺x = {+1 +θ⊺x > − θ⊺x
−1 +θ⊺x < − θ⊺x

= sign(θ⊺x) perceptron!
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Multi-class linear models

• More generally: add features — can even depend on !


 


• Example: 


‣ 


‣ 


 

y

fθ(x) = arg max
y

θ⊺Φ(x, y)

y ∈ {1,2,…, C}

Φ(x, y) = [0 0 ⋯ x ⋯ 0] = one-hot(y) ⊗ x

θ = [θ1 ⋯ θC]

⟹ fθ(x) = arg max
c

θ⊺
c x largest linear response
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Multi-class perceptron algorithm
• While not done:


‣ For each data point :


- Predict: 


- Increase response for true class: 


- Decrease response for predicted class: 


• More generally:


‣ Predict: 


‣ Update: 

(x, y) ∈ 𝒟

̂y = arg max
c

θ⊺
c x

θy ← θy + αx

θ ̂y ← θ ̂y − αx

̂y = arg max
y

θ⊺Φ(x, y)

θ ← θ + α(Φ(x, y) − Φ(x, ̂y))
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Multilogit Regression

• Define multi-class probabilities: 


‣
For binary : 


• Benefits:


‣ Probabilistic predictions: knows its confidence


‣ Linear decision boundary: 


‣ NLL is convex

pθ(y |x) =
exp(θ⊺

y x)
∑c exp(θ⊺

c x)
= soft max

c
θ⊺

c x
y

y
pθ(y = 1 |x) =

exp(θ⊺
1x)

exp(θ⊺
1x) + exp(θ⊺

2x)

=
1

1 + exp((θ2 − θ1)⊺x)
= σ((θ1 − θ2)⊺x)

arg max
y

exp(θ⊺
y x) = arg max

y
θ⊺

y x

Logistic Regression with θ = θ1 − θ2
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Multilogit Regression: gradient

• NLL loss: 


• Gradient:


 


• Compare to multi-class perceptron: 

ℒθ(x, y) = − log pθ(y |x) = − θ⊺
y x + log∑

c

exp(θ⊺
c x)

−∇θc
ℒθ(x, y) = δ(y = c)x −

∇θc
∑c′￼

exp(θ⊺
c′￼

x)

∑c′￼

exp(θ⊺
c′￼

x)

= (δ(y = c) −
exp(θ⊺

c x)
∑c′￼

exp(θ⊺
c′￼

x) ) x

= (δ(y = c) − pθ(c |x))x

(δ(y = c) − δ( ̂y = c))x
make true class more likely make all other classes less likely
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Complexity measures
• What are we looking for in a measure of model class complexity?


‣ Tell us something about generalization error 


‣ Tell us how it depends on amount of data 


‣ Be easy to find for a given model class — haha jk not gonna happen (more later)


• Ideally: a way to select model complexity (other than validation)


‣ Akaike Information Criterion (AIC) — roughly: loss + #parameters


‣ Bayesian Information Criterion (BIC) — roughly: loss + #parameters 


- But what's the #parameters, effectively? Should  change the complexity?

ℒtest − ℒtraining

m

⋅ log m

fθ1,θ2
= gθ=h(θ1,θ2)

also called: risk – empirical risk
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Model expressiveness
• Model complexity also measures expressiveness / representational power


• Tradeoff:


‣ More expressive  can reduce error, but may also overfit to training data


‣ Less expressive  may not be able to represent true pattern / trend


• Example: 


⟹

⟹

sign(θ0 + θ1x1 + θ2x2)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Model expressiveness
• Model complexity also measures expressiveness / representational power


• Tradeoff:


‣ More expressive  can reduce error, but may also overfit to training data


‣ Less expressive  may not be able to represent true pattern / trend


• Example: 


⟹

⟹

sign(x2
1 + x2

2 − θ)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


- The model class must have at least as many models as labelings 


x(1), …, x(h)

y(1), …, y(h)

Ch
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


• Example: can  shatter these points?


x(1), …, x(h)

y(1), …, y(h)

fθ(x) = sign(θ0 + θ1x1 + θ2x2)
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


• Example: can  shatter these points?


x(1), …, x(h)

y(1), …, y(h)

fθ(x) = sign(x2
1 + x2

2 − θ)
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Vapnik–Chervonenkis (VC) dimension
• VC dimension: maximum number  of points that can be shattered by a class


• A game:


‣ Fix a model class 


‣ Player 1: choose  points 


‣ Player 2: choose labels 


‣ Player 1: choose model 


‣ Are all ?  Player 1 wins


• Player 1 can win, otherwise cannot win

H

fθ : x → y θ ∈ Θ

h x(1), …, x(h)

y(1), …, y(h)

θ

y( j) = fθ(x( j)) ⟹

h ≤ H ⟹

∃x(1), …, x(h) : ∀y(1), …, y(h) : ∃θ : ∀j : y( j) = fθ(x( j))
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VC dimension: example (1)
• VC dimension: maximum number  of points that can be shattered by a class


• To find , think like the winning player: 1 for , 2 for 


• Example: 


‣ We can place one point and ”shatter” it


‣ We can prevent shattering any two points: make the distant one blue


‣ 


H

H h ≤ H h > H

fθ(x) = sign(x2
1 + x2

2 − θ)

H = 1
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VC dimension: example (2)
• Example: 


‣ We can place 3 points and shatter them


‣ We can prevent shattering any 4 points:


- If they form a convex shape, alternate labels


- Otherwise, label differently the point in the triangle


‣ 


• Linear classifiers (perceptrons) of  features have VC-dim 


‣ But VC-dim is generally not #parameters

fθ(x) = sign(θ0 + θ1x1 + θ2x2)

H = 3

d d + 1
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VC Generalization bound
• VC-dim of a model class can be used to bound generalization loss:


‣ With probability at least , we will get a ”good” dataset, for which


• 


• We need larger training size :


‣ The better generalization we need


‣ The more complex (higher VC-dim) our model class


‣ The more likely we want to get a good training sample

1 − η

test loss  −  training loss ≤
H log(2m/H) + H − log(η/4)

m

m
generalization loss
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Model selection with VC-dim
• Using validation / cross-validation:


‣ Estimate loss on held out set


‣ Use validation loss to select model


• Using VC dimension:


‣ Use generalization bound to select model


‣ Structural Risk Minimization (SRM)


‣ Bound not tight, must too conservative

training loss validation lossmodel complexity

training loss VC bound test loss boundmodel complexity
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Logistics

project
• Team rosters due Monday, Feb 1 on Canvas


• Team-forming spreadsheet posted on piazza

midterm
• Midterm exam on Feb 9, 2–4pm on Canvas


• We'll accommodate other timezones — let us know


