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Logistics

* Project guidelines on Canvas:

_ e https://canvas.eee.uci.edu/courses/34497/pages/projects

 Team rosters due Thursday, Jan 28 on Canvas
 Team-forming spreadsheet posted on piazza

 Midterm exam on Feb 9, 2-4pm on Canvas

e \We'll accommodate other timezones — let us know
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https://canvas.eee.uci.edu/courses/34497/pages/projects

Today's lecture

Separability

Learning perceptrons

Smooth loss functions
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Linear regression vs. classification

* Regression:
> Continuous target y

» Regressory = 0x

e (Classification:

> Discrete label y

> Classifier y = ?
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Perceptron

classifier f,(x) T(r)
HO
1
0, > class decision y = f,(x)
X1
(92
X2
r = theta. T @ X # compute linear response
y hat = (r > 9) # predict class 1 vs. ©
y hat = 2*(r > 0) - 1 # predict class 1 vs. -1
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Perceptron
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Perceptron

e Perceptron = linear classifier
» Parameters 0 = weights (also denoted w)
» Response = weighted sum of the features r = @'x
> Prediction = thresholded response y(x) = T(r) = T(0'x)

+1 if@'x >0

| (for T(r) = si1gn(r))
—1 otherwise

Decision function: y(x) = {

* Perceptron: a simple (vastly inaccurate) model of human neurons
> Weights = “synapses”

> Prediction = “neural firing”

T(r)
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Adapted from Padhraic Smyth
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Today's lecture

Learning perceptrons

Smooth loss functions
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Separability

e Separable dataset = there's a model (in our class) with perfect prediction

» Separable problem = there's a model with O test loss [ |, [£(y, y(x))] = 0

» Also called realizable

* Linearly separable = separable by a linear classifiers (hyperplanes)

Linearly separable data Linearly non-separable data
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Why do classes overlap?

 Non-separable data means no model can perfectly predicted it
> Feature ranges for different classes overlap
> @Given an instance in the overlap range — we have uncertainty
 How to improve separation / reduce loss?
> More complex model class may include a separating model
> May need more features for that
* Realistically, we must live with some uncertainty / loss

> But sometimes we can get less of it...
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Example: linearly non-separable data

e Data is non-separable with linear classifier

> ...but separable with non-linear classifier
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* |s this good”? Probably high test loss (overfitting)

> Problem may be separable by complex model, but no hope of finding a good one
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Perceptron: representational power

* A perceptron can represent linearly separable data

* Which functions can a perceptron represent?

> Those that are linearly separable over all x

o A family of functions that are easy to analyze: boolean functions

> A perceptron can represent AND but not XOR
AND

11111111

XOR

xi X2
0 O
0 1
1 0
1 1

y
-1
1
1
-1
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Adding features

« How to make the perceptron more expressive?

> Add features — recall linear = polynomial regression

* Linearly non-separable: o0 o 00 0 o o

X—>

* Linearly separable in quadratic features:

* Visualized in original feature space:

> Decision boundary: ax*+bx+c=0
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Adding features

* Which functions do we need to represent the decision boundary?
> When linear functions aren't sufficiently expressive

» Perhaps quadratic functions are

axi + bx, + cx; + dx, + ex;x, +f =0

AND XOR
X1 X y xi %o y
0 0 -1 0 0 -1
0 1 -1 0 1 1
1 0 -1 I O 1 0 1
T 1 1 e e T 1 -
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Representing discrete features

* To define “linear” functions of discrete features: represent as real numbers

 Example: classify poisonous mushroom

» Surface € {fibrous, grooves, scaly, smooth }
» Represent as {1,2,3,4}? Is smooth — fibrous = 3(scaly — grooves)?

> Better: one-hot representation: {[1000], [0100], [0010], [0001]}

- Requires 4 binary features instead of 1 integer

- Preserves the original lack of “topology”
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Separability in high dimension

 As we add more features — dimensionality of instance x increases:
» Separability becomes easier: more parameters, more models that could separate
> Add enough (good) features, and even a linear classifier can separate
- Given a decision boundary f(x) = 0: add f(x) as a feature — linearly separable!
* However:

> Do these features explain test data or just training data”?

> Increasing model complexity can lead to overfitting
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Recap

 Perceptron = linear classifier
> Linear response — step decision function — discrete class prediction
> Linear decision boundary

o Separability = existence of a perfect model (in the class)
> Separable data: 0 loss on this data

> Separable problem: 0 loss on the data distribution

> Perceptron: linear separability
* Adding features:
> Complex features: complex decision boundary, easier separability

> Can lead to overfitting
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Today's lecture

Separability

Smooth loss functions
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Learning a perceptron

« What do we need to learn the parameters 6 of a perceptron?
> Training data & = labeled instances

» Loss function £, = error rate on labeled data

> Optimization algorithm = method for minimizing training loss
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Error rate

Error rate: £y = % Z S(y\ # fo(x'))

>

With the indicator o(y # y) = {
0 else

<>
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Use linear regression?

o |dea: find @ using linear regression

« Affected by large regression losses

> We only care about the classification loss
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Perceptron: gradient-based learning

» Problem: loss function not differentiable £ y(x, y) = o(y # sign(f'x))

»  Write differently: &£ 9()6, y) = %(y — sign(ﬁTX))z

- Vysign(f'x) = 0 almost everywhere
» But we also don't want MSE = £ y(x, y) = %(y — OTx)?

» Compromise: Z£y(x,y) = (y — sign(f'x))(y — 0'x)

- VoZyg=—(y—sign@'x))x =—(y -y

T(r)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign (6 - aj(j)) predict output for point j

6 < 0+ oz(y(j) — g:/(j))a;’(j) gradient step on weird loss

e Similar to linear regression with MSE loss
~ Except that y is the class prediction, not the linear response
» No update for correct predictions y) = )
> For incorrect predictions: y") — ) = + 2

- — update towards x (for false negative) or —x (for false positive)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

incorrect prediction: update weights
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Perceptron training algorithm

while — done:

for each data point j:
gV = sign(f - V)
O« O+ oz(y(j) _ A(j))m(j)

predict output for point ;

gradient step on weird loss

correct prediction: no update
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

convergence: no more updates
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Today's lecture

Separability

Learning perceptrons
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Surrogate loss functions

e Alternative: use differentiable loss function

> E.g., approximate the step function with a smooth function

> Popular choice: logistic / sigmoid function (sigmoid = "looks like s”)

1 o(r)
o) = Treetn ——
e MSE loss: Zy(x,y) = (y — a(r(x)))2 ﬂ| T ;

» Far from the boundary: ¢ ~ 0 or 1, loss approximates 0-1 loss

1 1

» Near the boundary: o ~ > lOoSS near T but clear improvement direction
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Widening the classification margin

* \Which decision boundary is “better”?
> Both have 0 training loss

> But one seems more robust, expected to generalize better
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* Benefit of smooth loss function: care about margin

> Encourage distancing the boundary from data points
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

©
=1.9
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

&

Minimum training MSE
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Logistics

* Project guidelines on Canvas:

_ e https://canvas.eee.uci.edu/courses/34497/pages/projects

 Team rosters due Thursday, Jan 28 on Canvas
 Team-forming spreadsheet posted on piazza

 Midterm exam on Feb 9, 2-4pm on Canvas

e \We'll accommodate other timezones — let us know

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers


https://canvas.eee.uci.edu/courses/34497/pages/projects

