CS 273A: Machine Learning Winter 2021 Lecture 7: Linear Classifiers

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Logistics

- - \bullet

Project guidelines on Canvas:

https://canvas.eee.uci.edu/courses/34497/pages/projects

• Team rosters due Thursday, Jan 28 on Canvas

Team-forming spreadsheet posted on piazza

Midterm exam on Feb 9, 2–4pm on Canvas

We'll accommodate other timezones — let us know

Today's lecture

Perceptrons

Separability

Learning perceptrons

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Smooth loss functions

Linear regression vs. classification

- Regression:
 - Continuous target y
 - Regressor $\hat{y} = \theta^{\mathsf{T}} x$
- Classification:
 - Discrete label y
 - Classifier $\hat{y} = ?$

Perceptron

r = theta.T @ X
$$= \frac{1}{2}$$

y_hat = (r > 0) $= \frac{1}{2}$
y_hat = 2*(r > 0) - 1 $= \frac{1}{2}$

Perceptron

Perceptron

- Perceptron = linear classifier
 - Parameters θ = weights (also denoted w)
 - Response = weighted sum of the features $r = \theta^T x$
 - Prediction = thresholded response $\hat{y}(x)$

Decision function: $\hat{y}(x) = \begin{cases} +1 & \text{if } \theta^{\mathsf{T}} x > 0 \\ -1 & \text{otherwise} \end{cases}$

- Perceptron: a simple (vastly inaccurate) model of human neurons
 - Weights = "synapses"
 - Prediction = "neural firing"

$$= T(r) = T(\theta^{\mathsf{T}} x)$$

>0 (for
$$T(r) = sign(r)$$
) $r^{T(r)}$

Adapted from Padhraic Smyth

Today's lecture

Perceptrons

Separability

Learning perceptrons

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Smooth loss functions

Separability

- Separable dataset = there's a model (in our class) with perfect prediction
- - Also called realizable
- Linearly separable = separable by a linear classifiers (hyperplanes)

• Separable problem = there's a model with 0 test loss $\mathbb{E}_{x,y\sim p}[\ell(y, \hat{y}(x))] = 0$

Linearly non-separable data

Why do classes overlap?

- Non-separable data means no model can perfectly predicted it
 - Feature ranges for different classes overlap
 - Given an instance in the overlap range we have uncertainty
- How to improve separation / reduce loss?
 - More complex model class may include a separating model
 - May need more features for that
- Realistically, we must live with some uncertainty / loss
 - But sometimes we can get less of it...

Example: linearly non-separable data

• Data is non-separable with linear classifier

Example: linearly non-separable data

- Data is non-separable with linear classifier
 - ...but separable with non-linear classifier

- Is this good? Probably high test loss (overfitting)

Problem may be separable by complex model, but no hope of finding a good one

Perceptron: representational power

- A perceptron can represent linearly separable data
- Which functions can a perceptron represent?
 - Those that are linearly separable over all x
- A family of functions that are easy to analyze: boolean functions
 - A perceptron can represent AND but not XOR

Adding features

- How to make the perceptron more expressive?
 - Add features recall linear \rightarrow polynomial regression
- Linearly non-separable:

• Linearly separable in quadratic features:

- Visualized in original feature space:
 - Decision boundary: $ax^2 + bx + c = 0$

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Adding features

- Which functions do we need to represent the decision boundary?
 - When linear functions aren't sufficiently expressive
 - Perhaps quadratic functions are

$$ax_1^2 + bx_1 + cx_2^2$$

$+ dx_2 + ex_1x_2 + f = 0$

Representing discrete features

- Example: classify poisonous mushroom
 - Surface \in {fibrous, grooves, scaly, smooth}
 - Represent as $\{1,2,3,4\}$? Is smooth fibrous = 3(scaly grooves)?
 - Better: one-hot representation: {[1000], [0100], [0010], [0001]}
 - Requires 4 binary features instead of 1 integer
 - Preserves the original <u>lack</u> of "topology"

• To define "linear" functions of discrete features: represent as real numbers

Separability in high dimension

- As we add more features \rightarrow dimensionality of instance x increases:
 - Separability becomes easier: more parameters, more models that could separate
 - Add enough (good) features, and even a linear classifier can separate
 - Given a decision boundary f(x) = 0: add f(x) as a feature \rightarrow linearly separable!
- However:
 - Do these features explain test data or just training data?
 - Increasing model complexity can lead to overfitting

Recap

- Perceptron = linear classifier
 - Linear response \rightarrow step decision function \rightarrow discrete class prediction
 - Linear decision boundary
- Separability = existence of a perfect model (in the class) lacksquare
 - Separable data: 0 loss on this data
 - Separable problem: 0 loss on the data <u>distribution</u>
 - Perceptron: linear separability
- Adding features:
 - Complex features: complex decision boundary, easier separability
 - Can lead to overfitting

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Today's lecture

Perceptrons

Separability

Learning perceptrons

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Smooth loss functions

Learning a perceptron

- What do we need to learn the parameters θ of a perceptron?
 - Training data \mathcal{D} = labeled instances
 - Loss function \mathscr{L}_{θ} = error rate on labeled data
 - Optimization algorithm = method for minimizing training loss

Error rate

• Error rate:
$$\mathscr{L}_{\theta} = \frac{1}{m} \sum_{i} \delta(y^{(i)} \neq f_{\theta}(x^{(i)}))$$

With the indicator $\delta(y \neq \hat{y}) = \begin{cases} 1\\ 0 \end{cases}$

$$y \neq \hat{y}$$

else

Use linear regression?

• Idea: find θ using linear regression

- Affected by large regression losses
 - We only care about the <u>classification</u> loss

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Perceptron: gradient-based learning

- Problem: loss function not differentiable $\mathscr{L}_{\theta}(x, y) = \delta(y \neq \operatorname{sign}(\theta^{\mathsf{T}} x))$
 - Write differently: $\mathscr{L}_{\theta}(x, y) = \frac{1}{4}(y \operatorname{sign}(\theta^{\mathsf{T}} x))^2$
 - $\nabla_{\theta} \operatorname{sign}(\theta^{\mathsf{T}} x) = 0$ almost everywhere
 - But we also don't want MSE = $\mathscr{L}_{\theta}(\mathcal{I})$
 - Compromise: $\mathscr{L}_{\theta}(x, y) = (y \operatorname{sign}(\theta^{\mathsf{T}} x))(y \theta^{\mathsf{T}} x)$
 - $\nabla_{\theta} \mathscr{L}_{\theta} = -(y \operatorname{sign}(\theta^{\mathsf{T}} x))x = -(y \hat{y})x$

$$(x, y) = \frac{1}{2}(y - \theta^{\mathsf{T}}x)^2$$

while \neg done: for each data point j: $\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$ $\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$

- Similar to linear regression with MSE loss
 - Except that \hat{y} is the class prediction, not the linear response
 - No update for correct predictions $y^{(j)} = \hat{y}^{(j)}$
 - For incorrect predictions: $y^{(j)} \hat{y}^{(j)} = \pm 2$

 \implies update towards x (for false negative) or -x (for false positive)

predict output for point j

gradient step on weird loss

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$

predict output for point j

gradient step on weird loss

incorrect prediction: update weights

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$

correct prediction: no update

predict output for point j

gradient step on weird loss

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$
$$\theta \leftarrow \theta + \alpha (y^{(j)} - \hat{y}^{(j)}) x^{(j)}$$

convergence: no more updates

predict output for point j

gradient step on weird loss

Today's lecture

Perceptrons

Separability

Learning perceptrons

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Smooth loss functions

Surrogate loss functions

- Alternative: use differentiable loss function
 - E.g., approximate the step function with a smooth function
 - Popular choice: logistic / sigmoid function (sigmoid = "looks like s")

$$\sigma(r)$$
 =

- MSE loss: $\mathscr{L}_{\theta}(x, y) = (y \sigma(r(x)))^2$
 - Far from the boundary: $\sigma \approx 0$ or 1, loss approximates 0–1 loss

• Near the boundary: $\sigma \approx \frac{1}{2}$, loss near $\frac{1}{4}$, but clear improvement direction

Widening the classification margin

- Which decision boundary is "better"?
 - Both have 0 training loss
 - But one seems more robust, expected to generalize better

- Benefit of smooth loss function: care about margin
 - Encourage distancing the boundary from data points

Roy Fox | CS 273A | Winter 2021 | Lecture 7: Linear Classifiers

Learning smooth linear classifiers

• With a smooth loss function with can use Stochastic Gradient Descent

 $\mathscr{L}_{\theta}(x, y) =$

$$= (y - \sigma(r(x)))^2$$

Learning smooth linear classifiers

• With a smooth loss function with can use Stochastic Gradient Descent

$$\mathscr{L}_{\theta}(x, y) = (y - \sigma(r(x)))^2$$

Learning smooth linear classifiers

With a smooth loss function with can use Stochastic Gradient Descent

 $\mathscr{L}_{\theta}(x, y) =$

$$= (y - \sigma(r(x)))^2$$

Minimum training MSE

Logistics

- - \bullet

Project guidelines on Canvas:

https://canvas.eee.uci.edu/courses/34497/pages/projects

• Team rosters due Thursday, Jan 28 on Canvas

Team-forming spreadsheet posted on piazza

Midterm exam on Feb 9, 2–4pm on Canvas

We'll accommodate other timezones — let us know

