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Logistics

assignments • Assignment 2 due next Tuesday, Jan 26

project

• Project guidelines on Canvas:


• https://canvas.eee.uci.edu/courses/34497/pages/projects


• Team rosters due next Thursday, Jan 28 on Canvas

https://canvas.eee.uci.edu/courses/34497/pages/projects
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Today's lecture

Polynomial regression

Inductive bias and regularization

Cross-validation

Linear classification
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Polynomial regression

• Some data cannot be explained by linear regression


‣ A higher-order polynomial may be a better fit
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Polynomial regression

• Consider a polynomial in a single feature 


 


• Can we reduce this to something we already know?


‣ Think of higher-order terms  as new features


• 


‣ Denote 


• Perform linear regression with 

x

̂y = θ0 + θ1x + θ2x2 + θ3x3 + ⋯

x2, x3, …

𝒟 = {(x( j), y( j))} ⟹ {([x( j), (x( j))2, (x( j))3, …], y( j))}

Φ(x) = [x, x2, x3, …]

̂y = θ⊺Φ(x)
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Polynomial regression

• Fit the same way as linear regression


‣ With more features 
Φ(x)
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Feature expansion
• In principle, can use any features we think are useful


• Instead of collecting more information per data point


‣ apply nonlinear transformation to  to get more “linear explainability” of 


• More examples:


‣ Cross-terms between features: , , ...


‣ Trigonometric functions: 


‣ Others: , , ...


• Linear regression = linear in , the features can be as complex as we want

x y

xixj xixjxk

sin(ωx + ϕ)

1
x x

θ
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How many features to add?
• The more features we add, the more complex the model class


• Learning can always fall back to simpler model with 


• But generally it won't, it will overfit


‣ Better training data fit, worse test data fit


θ4 = θ5 = ⋯ = 0

underfitting overfitting
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Inductive bias

• Inductive bias = assumptions we make to generalize to data we haven't seen


‣ 10 data points suggest 9-degree polynomial, but we're “biased” towards linear


‣ Examples: polynomials, smooth functions, neural network architecture, etc.


• Without any assumptions, there is no generalization


‣ No Free Lunch Theorem = “Anything is possible” in the test data


• Occam's razor: prefer simpler explanations of the data
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Bias vs. variance
• Imagine 3 universes → 3 datasets


• A simple model:


‣ Poor prediction (on average across universes)


- High bias


‣ Doesn't vary much between universes


- Low variance


• A complex model:


- Low bias


- High variance

all data observed data
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Analyzing learning algorithms

• Learning algorithm (incl. model class): 


• How good is a model?


‣ Test loss: 


• How good is an algorithm?


‣ Expected test loss over datasets: 


‣ We can estimate it with multiple datasets


‣ We can analyze it theoretically if we make some assumptions

𝒜 : 𝒟 → θ

ℒθ = 𝔼x,y∼p[ℓ(y, ̂yθ(x))]

𝔼𝒟[ℒθ(𝒟)]



Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Bias–variance tradeoff
• For given test 


‣ Expected MSE over datasets decomposes into bias and variance:


 


• Both components contribute equally to the quality of our algorithm


‣ We can generally improve one at the expense of the other


- Bias generally decreases with complexity


- Variance generally increases with complexity

(x, y)

𝔼𝒟[(y − ̂yθ(𝒟)(x))2] = (𝔼𝒟[ ̂y] − y)2 = (bias𝒟[ ̂y])2

+𝔼𝒟[( ̂y − 𝔼𝒟[ ̂y])2] +var𝒟[ ̂y]
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Variance and overfitting

• Prediction that varies much with dataset = overfits to noise in training data


‣ Rather than fitting the trend in the underlying distribution


‣ Will perform poorly on test data


• How to select model complexity?


‣ Model selection via validation
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Learning 
algorithm 

Model selection

Model 

            fθθ

Training 
data

Model 
selection

Score / 
Loss

predict

Test 
data

evaluate

k

Validation
data

validate

train

training time {
execution time
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How to control model complexity?

• To increase model complexity:


‣ Add features, parameters


‣ More on this later


• To decrease model complexity:


‣ Remove features (feature selection)


‣ Perform a part of training that attends less to noise (e.g. early stopping)


‣ Regularization (up next)

Predictive 
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range 
for Model Complexity

OverfittingUnderfitting



Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Example: quadratic regression
• One linear model best fits two data points


• But infinitely many quadratic ones do


‣ How to choose among them?


• For polynomials: reduce degree


• Generally: regularize


‣ Add constraint / loss term to reduce sensitivity to noisy data


• Example: 


‣ Equivalently: 

min
θ

ℒθ s.t. ∥θ∥ ≤ C

min
θ

ℒθ + α∥θ∥2
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 regularizationL2

• Modify the loss function by adding a regularization term


•  regularization (ridge regression) for MSE: 


• Optimally: 


‣  moves  away from singularity → inverse exists, better “conditioned”


‣ Shrinks  towards 0 (as expected)


- At the expense of training MSE


• Regularization term  independent of data = prior?

L2 ℒθ = 1
2 (∥y − θ⊺X∥2 + α∥θ∥2)

θ⊺ = yX⊺(XX⊺ + αI)−1

αI XX⊺

θ

α∥θ∥2
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Regularization and Bayesian prediction
• Assume the data was generated using this process:


‣ Parameter vector  was sampled from a Gaussian: 


‣ Features  were sampled “somehow” (it won't matter)


‣ Labels  are linear in , but with Gaussian noise: 


• What is the joint distribution ?


‣ 


‣ 


‣

θ θ ∼ 𝒩(0,α−1I)

X

y X y = θ⊺X + ϵ ϵ ∼ 𝒩(0,I)

p(θ, X, y)

p(θ, X, y) = p(θ)p(X)p(y |θ, X) = 𝒩(θ; 0,α−1I)p(X)𝒩(y − θ⊺X; 0,I)

log p(θ, X, y) = log p(X)− 1
2 α2∥θ∥2 − 1

2 ∥y − θ⊺X∥2 + const

p(θ |X, y) = 𝒩(θ; yX⊺(XX⊺ + αI)−1, (XX⊺ + αI)−1)
MAP θ
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Regularization

• Comparing unregularized and regularized regression:


• 


(Unreg.)


• 


α = 0

α = 1
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 regularizationLp

• Other popular regularizers are  norm: 


• Isosurfaces: ( )


•  = : number of nonzero parameters, natural notion of model complexity


• : maximum parameter value

Lp ∥θ∥p = (∑
i

|θi |
p )

1
p

∥θ∥p = const

L0 lim
p→0

Lp

L∞ = lim
p→∞

Lp

p = 0.5 p = 1 p = 2 p = 4
Lasso ridge

θ0

θ1



Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Regularization:  vs. L1 L2

•  estimate balances training loss and regularization


• Lasso ( ) tends to generate sparser solutions than ridge ( ) regularizer


θ

L1 L2

Lasso ( )L1 ridge ( )L2

without regularization

regularized solution

some parameters may be 0
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Validation

• To select model class / model hyper-parameters  (e.g. polynomial degree)


‣ Train models on training dataset: 


‣ Evaluate models on validation dataset: 


• What if we don't get a validation set?


‣ Split training set into training + validation

ϕ

θ = 𝒜ϕ(𝒟training)

ℒ = 𝔼x,y∼𝒟validation
[ℓθ(x, y)]
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Hold-out method
• Hold out some data for validation; e.g., random 30% of the data


‣ Don't just sample training + validation with repetitions — they must be disjoint


• How to split?


‣ Too few training data points → poor training, bad 


‣ Too few validation data points → poor validation, bad loss estimate


• Can we use more splits?


θ x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94

MSE = 331.8

training data

validation data
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-fold cross-validation methodk
• Randomly split the data into  disjoint sets


• For each of the  sets:


‣ Hold it, train on the other  sets


‣ Validate on the held-out set


• Use average validation loss to select model hyper-parameters 


• Train with selected  on full data


k

k

k − 1

ϕ

ϕ
k = 8
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-fold cross-validation methodk
• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 331.8

Split 2:

MSE = 361.2

Split 3:

MSE = 669.8

3-Fold X-Val MSE 

       = 464.1

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94
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• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 280.5

Split 2:

MSE = 3081.3

Split 3:

MSE = 1640.1

3-Fold X-Val MSE 

       = 1667.3

-fold cross-validation methodk

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94
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Cross-validation: considerations
• Trade off model training time with loss estimation accuracy


• Single held-out set: train on  data points, estimate loss on the rest


‣  must be large enough for both training and validation


‣ We have an estimate of the final model performance


• -fold XVal: split data into  disjoint sets, train on all but one used for validation


‣ Computationally more expensive: training  models


‣ Each validated model may be worse: trained on  data points


‣ But: estimate loss on more data, output model trained on all data


• LOO XVal: train on all but one data point, validate it, average this over all data points

m′ < m

m

k k

k

m− m
k



Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Learning curves
• Plot performance (higher = better) as a function of training size


‣ Assess impact of fewer data on performance


‣ E.g., MSE0 – MSE for regression, or 1 – error rate for classification


• Performance (properly measured) should increase with training size


‣ Should improve quickly when data is scarce, saturate when there's “enough”


‣ May need to average over multiple experiments / trials / runs


1 
/ M

SE

Training data size 
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Linear regression vs. classification

• Regression:


‣ Continuous target 


‣ Predictor 


• Classification:


‣ Discrete label 


‣ Classifier 

y

̂y = θ⊺x

y

̂y = ?

0 10 20
0

20

40

Ta
rg

et
  y

Feature x
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Perceptron

linear response 

r = θ0 + θ1x1 + θ2x2

T(r)

classifier fθ(x)

weighted sum of features threshold 
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

r = theta.T @ X      # compute linear response 

y_hat = (r > 0)       # predict class 1 vs. 0 

y_hat = 2*(r > 0) – 1  # predict class 1 vs. -1

T(r)

r
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Perceptron
• Perceptron = linear classifier


‣ Parameters  = weights (also denoted )


‣ Response = weighted sum of the features 


‣ Prediction = thresholded response 


‣ Decision function: 


• Perceptron: a simple (vastly inaccurate) model of human neurons


‣ Weights = “synapses”


‣ Prediction = “neural firing”

θ w

r = θ⊺x

̂y(x) = T(r) = T(θ⊺x)

̂y(x) = {+1 if θ⊺x > 0
−1 otherwise

(for T(r) = sign(r))
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Example

x1

x2
θ = [1, 1

2 ,− 1
2 ]

θ⊺x > 0 ⟹ ̂y(x) = + 1

θ⊺x < 0 ⟹ ̂y(x) = − 1



Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Logistics

assignments • Assignment 2 due next Tuesday, Jan 26

project

• Project guidelines on Canvas:


• https://canvas.eee.uci.edu/courses/34497/pages/projects


• Team rosters due next Thursday, Jan 28 on Canvas

https://canvas.eee.uci.edu/courses/34497/pages/projects

