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* Project guidelines on Canvas:

_  Assignment 2 due next Tuesday, Jan 26

e https://canvas.eee.uci.edu/courses/3449//pages/projects

 Team rosters due next Thursday, Jan 28 on Canvas
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Today's lecture

Inductive bias and regularization

Cross-validation

Linear classification
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Polynomial regression

 Some data cannot be explained by linear regression

> A higher-order polynomial may be a better fit
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Polynomial regression

e Consider a polynomial in a single feature x
5\7 — HO + 6’136 + (92)62 + 93)63 + e

 Can we reduce this to something we already know?

> Think of higher-order terms xz, x3, ... as new features

+ 2= (Y, y")} = {(xV, V)%, V)%, Ly
» Denote D(x) = [x,x%,x°, ...]

 Perform linear regression with y = 01®(x)
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Polynomial regression

* Fit the same way as linear regression
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Feature expansion

* In principle, can use any features we think are useful

* Instead of collecting more information per data point

> apply nonlinear transformation to x to get more “linear explainability” of y

 More examples:
~ Cross-terms between features: x;x;, x;X;x, ...

» Trigonometric functions: sin(wx + ¢)

1
» QOthers: ~ \/;

» Linear regression = linear in 6, the features can be as complex as we want
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How many features to add?

 The more features we add, the more complex the model class

» Learning can always fall back to simpler model with 6, = 05 = --- =0

 But generally it won't, it will overfit

> Better training data fit, worse test data fit
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Today's lecture

Polynomial regression

Cross-validation
Linear classification
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Inductive bias

* |Inductive bias = assumptions we make to generalize to data we haven't seen
> 10 data points suggest 9-degree polynomial, but we're “biased” towards linear
» Examples: polynomials, smooth functions, neural network architecture, etc.

* Without any assumptions, there is no generalization

> No Free Lunch Theorem = “Anything is possible” in the test data

« Occam's razor: prefer simpler explanations of the data
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Bias vs. variance

* Imagine 3 universes — 3 datasets

e A simple model:

> Poor prediction (on average across universes)

> Doesn't vary much between universes

A complex model:

- High variance

High bias

Low variance

Low bias
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Analyzing learning algorithms

 Learning algorithm (incl. model class): & : & — 6

 How good is a model?

» Testloss: £y = ‘x,y,vp[f (Vs Yo(X))]

 How good is an algorithm?

- Expected test loss over datasets: Eg[ £y

> We can estimate it with multiple datasets

> We can analyze it theoretically if we make some assumptions
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Bias—variance tradeoft

» For given test (x, y)

» Expected MSE over datasets decomposes into bias and variance:

—ol(y — ye(gz)(x))z] = (Egly] - Y)z — (biasg@[y])z
+Eg[(F — Eg[3])] +varg[V]

 Both components contribute equally to the quality of our algorithm

> We can generally improve one at the expense of the other

- Bias generally decreases with complexity

- Variance generally increases with complexity
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Variance and overfitting

* Prediction that varies much with dataset = overfits to noise in training data
> Rather than fitting the trend in the underlying distribution

> Will perform poorly on test data

 How to select model complexity?

» Model selection via validation
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Model selection

training time

validate

N

evaluate

execution time
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How to control model complexity?

A

* Jo Increase model complexity: Error on Test Data

Predictive
Error

» Add features, parameters :

Error on Training Data
>

—' Model Complexity
_ |deal Range
> More on this later for Model Complexity
tJnderfitting Overfitting "

* Jo decrease model complexity:
> Remove features (feature selection)
> Perform a part of training that attends less to noise (e.g. early stopping)

> Regularization (up next)

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization



Example: quadratic regression

 One linear model best fits two data points

« But infinitely many quadratic ones do

> How to choose among them?

* For polynomials: reduce degree

o Generally: regularize

> Add constraint / loss term to reduce sensitivity to noisy data

. Example: min £, s.t. |[0|| < C
0

. Equivalently: min &, + /|||
v,
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L, regularization

 Modify the loss function by adding a regularization term

. L, regularization (ridge regression) for MSE: &£, = %(Hy — 07X||” + a||0]?)

e Optimally: 87 = yXT(XXT + al)™!
» al moves XX away from singularity — inverse exists, better “conditioned”

» Shrinks @ towards 0 (as expected)

- At the expense of training MSE

. Regularization term a||0||? independent of data = prior?
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Regularization and Bayesian prediction

 Assume the data was generated using this process:

» Parameter vector 0 was sampled from a Gaussian: 8 ~ 4 (0,a~'1)

> Features X were sampled “somehow” (it won't matter)

> Labels y are linear in X, but with Gaussian noise: y = 01X + € e ~ N(0,])
» What is the joint distribution p(8, X, y)?

- p(6,X,y) = pOpX)p(y|6,X) = #(0;0,a~ Dp(X)AN (y = 67X; 0,])

- logp(6,X.y) = log p(X)—5a*[|6]1” =5 |ly = 0"X||* + const
MAP 0

- p(01X,y) = V(O yXT(XXT + al)™, (XXT + al)™")
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Regularization

 Comparing unregularized and regularized regression:
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L, regularization

1

p
_ Other popular regularizers are L, norm: ||| , = Z 161"
i
+ Isosurfaces: (||6]|, = const)
90
Hl
Lasso ridge

Ly=lim Lp: number of nonzero parameters, natural notion of model complexity
p—0

. L, = lim L;: maximum parameter value
p—0C0
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Regularization: L, vs. L,

@ estimate balances training loss and regularization

» Lasso (L) tends to generate sparser solutions than ridge (L,) regularizer

without regularization

some parameters may be 0

T~

Lasso (L) ridge (L) K — regularized solution
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Today's lecture

Polynomial regression

Inductive bias and regularization

Linear classification
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Validation

» To select model class / model hyper-parameters ¢ (e.g. polynomial degree)

> Train models on training dataset: 0 = & (<

training)

- Evaluate models on validation dataset: Z =, g  [£y(x,¥)]

 What if we don't get a validation set?

> Split training set into training + validation
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Hold-out method

 Hold out some data for validation; e.g., random 30% of the data

> Don't just sample training + validation with repetitions — they must be disjoint

e How to split?

» Too few training data points — poor training, bad € X0 |y
88 79
. : : : . . 32 -2
> Too few validation data points — poor validation, bad loss estimate =
68 /3
e Can we use more splits? o 7 -16
daining aata 70 43
53 77

1 validation data 17 16
87 94

MSE = 331.8
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k-fold cross-validation method

» Randomly split the data into k disjoint sets

e For each of the k sets:

» Hold it, train on the other k — 1 sets

» Validate on the held-out set

» Use average validation loss to select model hyper-parameters ¢

» Train with selected ¢ on full data

g I:l Test . Train
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k-fold cross-validation method

e Benefits:
» Use all data for validation
o 1 Split 1:
» Use all data to train final model { MSE = 331.8
| Split 2: 88 /3
1 MSE = 361.2 32 -2
‘ 27 30
68 73
7  -16
U 20 43
1 Split 3:
1 MSE = 669.8 >3 77
: 17 16
_ o _
e, . . . . . . I3-FoldX-Val MSE 87 | 94
= 464.1
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k-fold cross-validation method

e Benefits:

» Use all data for validation

| split 1:

» Use all data to train final model | MSE = 2805

e Drawbacks:

EINETE

> Trains k (+1) models | Split 2: 88 79
| MSE =3081.3 32 -2

> Each model still gets noisy 27 30
68 73

validation from — data points I

k : 20 43

| Split 3: 3 -

> No validation for the final model | MSE =1640.1 —
3-Fold X-Val MSE (87411194

e When k = m: Leave-One-Out (LOO) - = 1667.3
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Cross-validation: considerations

* Trade off model training time with loss estimation accuracy

» Single held-out set: train on m’ < m data points, estimate loss on the rest

> m must be large enough for both training and validation

> We have an estimate of the final model performance

« k-fold XVal: split data into k disjoint sets, train on all but one used for validation
» Computationally more expensive: training k models

» Each validated model may be worse: trained on m—% data points

> But: estimate loss on more data, output model trained on all data

OO XVal: train on all but one data point, validate it, average this over all data points
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Learning curves

* Plot performance (higher = better) as a function of training size
> Assess impact of fewer data on performance
> E.g., MSEO — MSE for regression, or 1 — error rate for classification
* Performance (properly measured) should increase with training size

> Should improve quickly when data is scarce, saturate when there's “enough”

> May need to average over multiple experiments / trials / runs

1/ MSE

Training data size
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Today's lecture

Polynomial regression

Inductive bias and regularization

Cross-validation
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Linear regression vs. classification

* Regression:
> Continuous target y

> Predictory = 0x

e (Classification:

> Discrete label y

> Classifier y = ?
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Perceptron

classifier f,(x) T(r)
< . >
HO
1
0, > class decision y = f,(x)
X1
(92
X2
r = theta. T @ X # compute linear response
y hat = (r > 9) # predict class 1 vs. ©
y hat = 2*(r > 0) - 1 # predict class 1 vs. -1
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Perceptron

e Perceptron = linear classifier
» Parameters 0 = weights (also denoted w)
» Response = weighted sum of the features r = @'x
> Prediction = thresholded response y(x) = T(r) = T(0'x)

+1 if@'x >0

for T(r) = si
—1 otherwise (for 1(r) = sign(r)

Decision function: y(x) = {

* Perceptron: a simple (vastly inaccurate) model of human neurons
> Weights = “synapses”

> Prediction = “neural firing”
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