CS 273A: Machine Learning Winter 2021 Lecture 6: Regularization

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

assignments

• Assignment 2 due next Tuesday, Jan 26

Project guidelines on Canvas:

https://canvas.eee.uci.edu/courses/34497/pages/projects

• Team rosters due next Thursday, Jan 28 on Canvas

Today's lecture

Polynomial regression

Inductive bias and regularization

Linear classification

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Cross-validation

Polynomial regression

- Some data cannot be explained by linear regression
 - A higher-order polynomial may be a better fit

Polynomial regression

• Consider a polynomial in a single feature *x*

$$\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \cdots$$

- Can we reduce this to something we already know?
 - Think of higher-order terms x^2, x^3, \dots as new features

•
$$\mathcal{D} = \{(x^{(j)}, y^{(j)})\} \implies \{([x^{(j)}, (x^{(j)})^2, (x^{(j)})^3, \dots], y^{(j)})\}$$

- Denote $\Phi(x) = [x, x^2, x^3, ...]$
- Perform linear regression with $\hat{y} =$

$$\theta^{\intercal} \Phi(x)$$

Polynomial regression

- Fit the same way as linear regression
 - With more features $\Phi(x)$

Feature expansion

- In principle, can use any features we think are useful
- Instead of collecting more information per data point
 - apply nonlinear transformation to x to get more "linear explainability" of y
- More examples:
 - Cross-terms between features: $x_i x_j$, $x_i x_j x_k$, ...
 - Trigonometric functions: $sin(\omega x + \phi)$

• Others:
$$\frac{1}{x}$$
, \sqrt{x} , ...

• Linear regression = linear in θ , the features can be as complex as we want

How many features to add?

- The more features we add, the more complex the model class
- Learning can always fall back to simpler model with $\theta_4 = \theta_5 = \cdots = 0$
- But generally it won't, it will overfit
 - Better training data fit, worse test data fit

Today's lecture

Polynomial regression

Inductive bias and regularization

Linear classification

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Cross-validation

Inductive bias

- Inductive bias = assumptions we make to generalize to data we haven't seen
 - 10 data points suggest 9-degree polynomial, but we're "biased" towards linear
 - Examples: polynomials, smooth functions, neural network architecture, etc.
- Without any assumptions, there is no generalization
 - No Free Lunch Theorem = "Anything is possible" in the test data
- Occam's razor: prefer simpler explanations of the data

Bias vs. variance

- Imagine 3 universes \rightarrow 3 datasets
- A simple model:
 - Poor prediction (on average across universes)
 - High bias
 - Doesn't vary much between universes
 - Low variance
- A complex model:
 - Low bias
 - High variance

Analyzing learning algorithms

- Learning algorithm (incl. model class): $\mathscr{A}:\mathscr{D}\to\theta$
- How good is a model?
 - Test loss: $\mathscr{L}_{\theta} = \mathbb{E}_{x, y \sim p}[\mathscr{E}(y, \hat{y}_{\theta}(x))]$
- How good is an algorithm?
 - Expected test loss over datasets: $\mathbb{E}_{\mathscr{D}}[\mathscr{L}_{\theta(\mathscr{D})}]$
 - We can estimate it with multiple datasets
 - We can analyze it theoretically if we make some assumptions

Bias-variance tradeoff

- For given test (x, y)
 - Expected MSE over datasets decomposes into bias and variance:

$$\mathbb{E}_{\mathscr{D}}[(y - \hat{y}_{\theta(\mathscr{D})}(x))^{2}] = (\mathbb{E}_{\mathscr{D}}[\hat{y}] - y)^{2} = (\text{bias}_{\mathscr{D}}[\hat{y}])^{2} \\ + \mathbb{E}_{\mathscr{D}}[(\hat{y} - \mathbb{E}_{\mathscr{D}}[\hat{y}])^{2}] + \text{var}_{\mathscr{D}}[\hat{y}]$$

- Both components contribute equally to the quality of our algorithm
 - We can generally improve one at the expense of the other
 - Bias generally decreases with complexity
 - Variance generally increases with complexity

Variance and overfitting

- - Rather than fitting the trend in the underlying distribution
 - Will perform poorly on test data
- How to select model complexity?
 - Model selection via validation

• Prediction that varies much with dataset = overfits to noise in training data

Model selection

How to control model complexity?

- To increase model complexity:
 - Add features, parameters
 - More on this later
- To decrease model complexity:
 - Remove features (feature selection)
 - Perform a part of training that attends less to noise (e.g. early stopping)
 - Regularization (up next)

Example: quadratic regression

- One linear model best fits two data points
- But infinitely many quadratic ones do
 - How to choose among them?
- For polynomials: reduce degree
- Generally: regularize
 - Add constraint / loss term to reduce sensitivity to noisy data
- Example: $\min \mathscr{L}_{\theta}$ s.t. $\|\theta\| \leq C$
 - Equivalently: $\min \mathscr{L}_{\theta} + \alpha \|\theta\|^2$ θ

L_2 regularization

- Modify the loss function by adding a regularization term
- L_2 regularization (ridge regression)
- Optimally: $\theta^{\intercal} = yX^{\intercal}(XX^{\intercal} + \alpha I)^{-1}$

 - Shrinks θ towards 0 (as expected)
 - At the expense of training MSE
 - Regularization term $\alpha \|\theta\|^2$ independent of data = prior?

for MSE:
$$\mathscr{L}_{\theta} = \frac{1}{2}(\|y - \theta^{\mathsf{T}}X\|^2 + \alpha \|\theta\|^2)$$

• αI moves XX^{\dagger} away from singularity \rightarrow inverse exists, better "conditioned"

Regularization and Bayesian prediction

- Assume the data was generated using this process:
 - Parameter vector θ was sampled from a Gaussian: $\theta \sim \mathcal{N}(0, \alpha^{-1}I)$
 - Features X were sampled "somehow" (it won't matter)
 - Labels y are linear in X, but with Gaussian noise: $y = \theta^{T}X + \epsilon$ $\epsilon \sim \mathcal{N}(0,I)$
- What is the joint distribution $p(\theta, X, y)$?
 - $p(\theta, X, y) = p(\theta)p(X)p(y | \theta, X) = \mathcal{N}$
 - $\log p(\theta, X, y) = \log p(X) \frac{1}{2}\alpha^2 \|\theta\|^2$ -
 - $p(\theta | X, y) = \mathcal{N}(\theta; yX^{\mathsf{T}}(XX^{\mathsf{T}} + \alpha I)^{-1}),$

$$C(\theta; 0, \alpha^{-1}I)p(X)\mathcal{N}(y - \theta^{\mathsf{T}}X; 0, I)$$

$$-\frac{1}{2}||y - \theta^{\mathsf{T}}X||^{2} + \text{const}$$

$$MAP \theta$$

$$(XX^{\mathsf{T}} + \alpha I)^{-1})$$

Regularization

Comparing unregularized and regularized regression:

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

L_p regularization

- $L_0 = \lim_{n \to \infty} L_p$: number of nonzero parameters, natural notion of model complexity $p \rightarrow 0$
- $L_{\infty} = \lim_{p \to \infty} L_p$: maximum parameter value

Regularization: L_1 vs. L_2

- θ estimate balances training loss and regularization

• Lasso (L_1) tends to generate sparser solutions than ridge (L_2) regularizer

Today's lecture

Polynomial regression

Inductive bias and regularization

Linear classification

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Cross-validation

Validation

- - Train models on training dataset: $\theta = \mathscr{A}_{\phi}(\mathscr{D}_{\text{training}})$
 - Evaluate models on validation dataset: $\mathscr{L} = \mathbb{E}_{x, y \sim \mathscr{D}_{validation}}[\ell_{\theta}(x, y)]$
- What if we don't get a validation set?
 - Split training set into training + validation

• To select model class / model hyper-parameters ϕ (e.g. polynomial degree)

Hold-out method

- Hold out some data for validation; e.g., random 30% of the data
 - Don't just sample training + validation with repetitions they must be disjoint
- How to split?
 - Too few training data points \rightarrow poor training, bad θ
 - Too few validation data points \rightarrow poor validation, bad loss estimate
- Can we use more splits?

k-fold cross-validation method

- Randomly split the data into k disjoint sets
- For each of the k sets:
 - Hold it, train on the other k-1 sets
 - Validate on the held-out set
- Use average validation loss to select model hyper-parameters ϕ
- Train with selected ϕ on full data

k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model

k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model
- Drawbacks:
 - Trains k (+1) models
 - Each model still gets noisy

validation from $\frac{m}{k}$ data points

- No validation for the final model
- When k = m: Leave-One-Out (LOO)

Cross-validation: considerations

- Trade off model training time with loss estimation accuracy
- Single held-out set: train on m' < m data points, estimate loss on the rest
 - m must be large enough for both training and validation
 - We have an estimate of the final model performance
- k-fold XVaI: split data into k disjoint sets, train on all but one used for validation
 - Computationally more expensive: training k models
 - Each validated model may be worse: trained on $m \frac{m}{k}$ data points
 - But: estimate loss on more data, output model trained on all data
- LOO XVal: train on all but one data point, validate it, average this over all data points

Learning curves

- Plot performance (higher = better) as a function of training size
 - Assess impact of fewer data on performance
 - E.g., MSE0 MSE for regression, or 1 error rate for classification
- Performance (properly measured) should increase with training size
 - Should improve quickly when data is scarce, saturate when there's "enough"
 - May need to average over multiple experiments / trials / runs

Today's lecture

Polynomial regression

Inductive bias and regularization

Linear classification

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Cross-validation

Linear regression vs. classification

- Regression:
 - Continuous target y
 - Predictor $\hat{y} = \theta^{\mathsf{T}} x$
- Classification:
 - Discrete label y
 - Classifier $\hat{y} = ?$

Perceptron

r = theta.T @ X #
y_hat =
$$(r > 0)$$
 #
y_hat = $2*(r > 0) - 1$ #

Perceptron

- Perceptron = linear classifier
 - Parameters θ = weights (also denoted w)
 - Response = weighted sum of the features $r = \theta^T x$
 - Prediction = thresholded response $\hat{y}(x)$

Decision function: $\hat{y}(x) = \begin{cases} +1 & \text{if } \theta^{\mathsf{T}}x > \\ -1 & \text{otherwise} \end{cases}$

- Perceptron: a simple (vastly inaccurate) model of human neurons
 - Weights = "synapses"
 - Prediction = "neural firing"

$$= T(r) = T(\theta^{\mathsf{T}} x)$$

$$t > 0$$

(for $T(r) = sign(r)$)
(wise

assignments

• Assignment 2 due next Tuesday, Jan 26

Project guidelines on Canvas:

https://canvas.eee.uci.edu/courses/34497/pages/projects

• Team rosters due next Thursday, Jan 28 on Canvas

