CS 273A: Machine Learning Winter 2021
 Lecture 5: Linear Regression (cont.)

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler \& Sameer Singh

Logistics

assignments

- Assignment 2 to be published soon
- Project guidelines to be published soon
project
- Team rosters due next Thursday, Jan 28

Today's lecture

Gradient Descent

- Initialize θ
- Do
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}$
- While $\left\|\alpha \nabla_{\theta} \mathscr{L}_{\theta}\right\| \leq \epsilon$
- Learning rate: α

- Can change in each iteration

Gradient for the MSE loss

- MSE: $\mathscr{L}_{\theta}=\frac{1}{m} \sum_{j}\left(\epsilon^{(j)}\right)^{2}=\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)^{2}$
- $\partial_{\theta_{i}} \mathscr{L}_{\theta}=\frac{1}{m} \sum_{j} \partial_{\theta_{i}}\left(\epsilon^{(j)}\right)^{2}=\frac{1}{m} \sum_{j} 2 \epsilon^{(j)} \partial_{\theta_{i}} \epsilon^{(j)}$
- $\partial_{\theta_{i}}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)=-\partial_{\theta_{i}} \theta_{i} x_{i}^{(j)}+0$ in the other terms $=x_{i}^{(j)}$
- $\partial_{\theta_{i}} \mathscr{L}_{\theta}=-\frac{2}{m} \sum_{j} \epsilon^{(j)} x_{i}^{(j)}=-\frac{2}{m}\left(y-\theta^{\top} X\right) X_{i}^{\top}$

> error

- $\nabla_{\theta} \mathscr{L}_{\theta}=-\frac{2}{m}\left(y-\theta^{\top} X\right) X$
- Can also be seen directly from

$$
\mathscr{L}_{\theta}=\frac{1}{m}\left(y-\theta^{\top} X\right)\left(y-\theta^{\top} X\right)^{\top}=\frac{1}{m}\left(\theta^{\top} X X^{\top} \theta-2 y X^{\top} \theta+y y^{\top}\right)
$$

Gradient Descent - further considerations

- GD is a very general algorithm
- We'll use it often
- Much of the engine for recent advances in ML
- Issues:
- Can get stuck in local minima

- Worse - can get stuck in saddle points, $\nabla_{\theta} \mathscr{L}_{\theta}=0$ with improvement direction
- Can be slow to converge, sensitive to initialization
- How to choose step size / learning rate?
- Constant? 1/iteration? Line search? Newton's method?

Newton's method

- Given black-box $f(z)$, how to find a root $f(z)=0$?
- Initialize some z
- Repeat:
- Evaluate $f(z)$ and $\partial_{z} f(z)$ to find tangent to f at $z: f^{\prime}\left(z^{\prime}\right)=\left(z^{\prime}-z\right) \partial_{z} f(z)+f(z)$
- Update z to the root of $f^{\prime}: z \leftarrow z-\frac{f(z)}{\partial_{z} f(z)}$
- Considerations:
- May not converge, sometimes unstable
- Usually converges quickly for nice, smooth, locally quadratic functions

Newton's method for gradient descent

- We want to find a (local) minimum $f(\theta)=\nabla_{\theta} \mathscr{L}_{\theta}=0$
- Initialize some θ
- Repeat:
- Evaluate gradient $g=\nabla_{\theta} \mathscr{L}_{\theta}$ and Hessian $H=\nabla_{\theta}^{2} \mathscr{L}_{\theta}$
- Update $\theta \leftarrow \theta-H^{-1} g$
- Considerations:
- Update step may be too large for highly non-convex losses
- Computational complexity to invert $H: O\left(n^{3}\right)$

Gradient Descant: complexity

- Assume $\mathscr{L}_{\theta}(\mathscr{D})=\frac{1}{m} \sum_{j} \ell_{\theta}\left(x^{(j)}, y^{(j)}\right)$
- MSE: $\ell_{\theta}(x, y)=\left(y-\theta^{\top} x\right)^{2}$
. Computing $\nabla_{\theta} \mathscr{L}_{\theta}=\frac{1}{m} \sum_{j} \nabla_{\theta} \ell_{\theta}^{(j)}$: usually $O(m n)$
- What if we use really large datasets? ("big data")
- What if we learn from data streams? (more data keeps coming in...)

Stochastic / Online Gradient Descent

- Estimate $\nabla_{\theta} \mathscr{L}_{\theta}$ fast on a sample of data points
- For each data point:

$$
\nabla_{\theta} \mathscr{L}_{\theta}\left(x^{(j)}, y^{(j)}\right)=\nabla_{\theta}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)^{2}=-2\left(y^{(j)}-\theta^{\top} x^{(j)}\right)\left(x^{(j)}\right)^{\top}
$$

- This is an unbiased estimator of the gradient, i.e. in expectation

$$
\mathbb{E}_{j \sim \operatorname{Uniform}(1, \ldots, m)}\left[\nabla_{\theta} \mathscr{L}_{\theta}^{(j)}\right]=\frac{1}{m} \sum_{j} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}=\nabla_{\theta} \mathscr{L}_{\theta}(\mathscr{D})
$$

- $\nabla_{\theta} \mathscr{L}_{\theta}(\mathscr{D})$ is already a noisy unbiased estimator of true gradient $\mathbb{E}_{x, y \sim p}\left[\nabla_{\theta} \mathscr{L}_{\theta}(x, y)\right]$
- SGD is even more noisy

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent

- Initialize θ

- Repeat:
- Sample $j \sim \operatorname{Uniform}(1, \ldots, m)$
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no average improvement in $\mathscr{L}_{\theta}^{(j)}$ for a while

Stochastic Gradient Descent: considerations

- Benefits:
- Each gradient step is faster
- Don't wait for all data with same θ, improve θ "early and often"
- Arguably the most important optimization algorithm nowadays
- Drawbacks:
- May not actually descend on training loss
- Stopping conditions may be harder to evaluate
- Mini-batch updates: draw $b \ll m$ data points
- $\operatorname{var} \nabla_{\theta} \mathscr{L}_{\theta}($ batch $)=\operatorname{var} \frac{1}{b} \sum_{j \in \text { batch }} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}=\frac{1}{b} \operatorname{var} \nabla_{\theta} \mathscr{L}_{\theta}($ point $)$
- Variance increases the smaller the batch size
- Generally bad, but can help overcome local minima / saddle points

Advanced gradient-based methods

- Momentum
- Gradient is like velocity in parameter space
- Previous gradients still carry momentum
- Smoothens SGD path

- Effectively averages gradients over steps, reduces variance
- Preconditioning
- Scale and rotate loss landscape to make it nicer
- E.g., multiply by inverse Hessian (as in Newton's method)

Today's lecture

Stochastic Gradient Descent

Least Squares

Polynomial regression

Minimizing MSE

- Consider a simple problem
- One feature, two data points $x^{(1)}, x^{(2)}$

- Two unknowns θ_{0}, θ_{1}
- Two equations: $\theta_{0}+\theta_{1} x^{(1)}=y^{(1)} \quad \theta_{0}+\theta_{1} x^{(2)}=y^{(2)}$
- Can solve this system directly: $y=\theta^{\top} X \Longrightarrow \theta^{\top}=y X^{-1}$
- Generally, X may not have an inverse; e.g., $m>n$
- There may also be training loss, no θ achieves equality of y to $\theta^{\top} X$

Least Squares

- The minimum is achieved when the gradient is 0

$$
\begin{aligned}
\nabla_{\theta} \mathscr{L}_{\theta}=-\frac{2}{m}\left(y-\theta^{\top} X\right) X^{\top} & =0 \\
\theta^{\top} X X^{\top} & =y X^{\top} \\
\theta^{\top} & =y X^{\top}\left(X X^{\top}\right)^{-1}
\end{aligned}
$$

- $X X^{\top}$ is invertible when X has linearly independent rows = features
- $X^{\dagger}=X^{\top}\left(X X^{\top}\right)^{-1}$ is the Moore-Penrose pseudo-inverse of X
- $X^{\dagger}=X^{-1}$ when the inverse exists
- Can define X^{\dagger} via Singular Value Decomposition (SVD) when $X X^{\top}$ isn't invertible
- $\theta^{\top}=y X^{\dagger}$ is the Least Squares fit of the data (X, y)

Linear regression in NumPy

- Linear regression with MSE: $\min _{\theta} \frac{1}{m}\left\|y-\theta^{\top} X\right\|^{2}$

$$
\begin{aligned}
& \qquad \theta^{\top}=y X\left(X X^{\top}\right)^{-1}=y X^{\dagger} \\
& \begin{array}{l}
\text { \# Solution 1: the long way } \\
\text { theta }=(y ~ @ ~ x ~ @ ~ n p . l i n a l g . i n v(X ~ @ ~ X . T)) . T ~
\end{array} \\
& \text { \# Solution 2: pseudo-inverse } \\
& \text { theta = (y @ np.linalg.pinv(X)).T } \\
& \text { \# Solution 3: Least Squares solver } \\
& \text { theta = np.linalg.lstsq(a=X.T, b=y.T) }
\end{aligned}
$$

. Least Squares: approximate $A z=b$ by $\min \|A z-b\|^{2}$

MSE and outliers

- MSE is sensitive to outliers

- Square error 16^{2} throws off entire optimization

Mean Absolute Error (MAE)

MSE uses the L_{2} norm of the error $\left\|y-\theta^{\top} X\right\|_{2}^{2}=\sum\left(y-\theta^{\top} X\right)^{2}$

What if we use the L_{1} norm $\left\|y-\theta^{\top} X\right\|_{1}=\sum_{j}\left|y-\theta^{\top} X\right|$?

- Mean Absolute Error (MAE): $\frac{1}{m} \sum_{j}\left|y-\theta^{\top} X\right|$

Minimizing MAE

- The absolute operator isn't differentiable
- But assume no data point has 0 error

$$
\begin{aligned}
\nabla_{\theta^{\prime}} \frac{1}{m} \sum_{j}\left|y-\theta^{\top} X\right| & =\frac{1}{m}\left(\sum_{j: y^{(j)}<\theta^{\top} x^{(j)}} x^{(j)}-\sum_{j: y^{(j)}>\theta^{\top} x^{(j)}} x^{(j)}\right)=0 \\
\sum_{j: y^{(j)}<\theta^{\top} x^{(j)}} x^{(j)} & =\sum_{j: y^{(j)}>\theta^{\top} x^{(j)}} x^{(j)}
\end{aligned}
$$

- Can be solved with Linear Programming
- Without features (best constant fit for y): median
- With MSE: mean - more sensitive to outliers

Other loss functions

- MSE: $\ell(y, \hat{y})=(y-\hat{y})^{2}$
- MAE: $\ell(y, \hat{y})=|y-\hat{y}|$
- Should loss of large errors saturate?
- $\ell(y, \hat{y})=c-\log \left(\exp \left(-(y-\hat{y})^{2}\right)+c\right)$

- Most loss functions cannot be optimized in close form
- Gradient descent is a general algorithm for differentiable parametrization and loss

Today's lecture

Stochastic Gradient Descent

Least Squares

Polynomial regression

Polynomial regression

- Some data cannot be explained by linear regression
- A higher-order polynomial may be a better fit

Polynomial regression

- Consider a polynomial in a single feature x

$$
\hat{y}=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}+\theta_{3} x^{3}+\cdots
$$

- Can we reduce this to something we already know?
- Think of higher-order terms x^{2}, x^{3}, \ldots as new features
- $\mathscr{D}=\left\{\left(x^{(j)}, y^{(j)}\right)\right\} \Longrightarrow\left\{\left(\left[x^{(j)},\left(x^{(j)}\right)^{2},\left(x^{(j)}\right)^{3}, \ldots\right], y^{(j)}\right)\right\}$
- Denote $\Phi(x)=\left[x, x^{2}, x^{3}, \ldots\right]$
- Perform linear regression with $\hat{y}=\theta^{\top} \Phi(x)$

Polynomial regression

- Fit the same way as linear regression
- With more features $\Phi(x)$

Feature expansion

- In principle, can use any features we think are useful
- Instead of collecting more information per data point
- apply nonlinear transformation to x to get more "linear explainability" of y
- More examples:
- Cross-terms between features: $x_{i} x_{j}, x_{i} x_{j} x_{k}, \ldots$
- Trigonometric functions: $\sin (\omega x+\phi)$
- Others: $\frac{1}{x}, \sqrt{x}, \ldots$
- Linear regression $=$ linear in θ, the features can be as complex as we want

How many features to add?

- The more features we add, the more complex the model class
- Learning can always fall back to simpler model with $\theta_{4}=\theta_{5}=\cdots=0$
- But generally it won't, it will overfit
- Better training data fit, worse test data fit

[^0]
Inductive bias

- Inductive bias = assumptions we make to generalize to data we haven't seen
- 10 data points suggest 9-degree polynomial, but we're "biased" towards linear
- Examples: polynomials, smooth functions, neural network architecture, etc.
- Without any assumptions, there is no generalization
- "Anything is possible" in the test data
- Occam's razor: prefer simpler explanations of the data

Logistics

assignments

- Assignment 2 to be published soon
- Project guidelines to be published soon
project
- Team rosters due next Thursday, Jan 28

[^0]: Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

