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Gradient Descent

• Initialize 


• Do


‣ 


• While 


• Learning rate: 


‣ Can change in each iteration

θ

θ ← θ − α∇θℒθ

∥α∇θℒθ∥ ≤ ϵ

α

ℒθ

θ
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Gradient for the MSE loss

• MSE: 


• 


‣ 


‣ 


• 


• Can also be seen directly from


ℒθ = 1
m ∑

j

(ϵ( j))2 = 1
m ∑

j

(y( j) − θ⊺x( j))2

∂θi
ℒθ = 1

m ∑
j

∂θi
(ϵ( j))2 = 1

m ∑
j

2ϵ( j)∂θi
ϵ( j)

∂θi
(y( j) − θ⊺x( j)) = − ∂θi

θix
( j)
i + 0 in the other terms = x( j)

i

∂θi
ℒθ = − 2

m ∑
j

ϵ( j)x( j)
i = − 2

m (y − θ⊺X)X⊺
i

∇θℒθ = − 2
m (y − θ⊺X)X⊺

ℒθ = 1
m (y − θ⊺X)(y − θ⊺X)⊺ = 1

m (θ⊺XX⊺θ − 2yX⊺θ + yy⊺)

error

sensitivity to θ
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Gradient Descent — further considerations
• GD is a very general algorithm


‣ We'll use it often


‣ Much of the engine for recent advances in ML


• Issues:


‣ Can get stuck in local minima


- Worse — can get stuck in saddle points,  with improvement direction


‣ Can be slow to converge, sensitive to initialization


‣ How to choose step size / learning rate?


- Constant? 1/iteration? Line search? Newton's method?

∇θℒθ = 0

ℒθ
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Newton's method
• Given black-box , how to find a root ?


• Initialize some 


• Repeat:


‣ Evaluate  and  to find tangent to  at : 


‣ Update  to the root of : 


• Considerations:


‣ May not converge, sometimes unstable


‣ Usually converges quickly for nice, smooth, locally quadratic functions

f(z) f(z) = 0

z

f(z) ∂z f(z) f z f′￼(z′￼) = (z′￼− z)∂z f(z) + f(z)

z f′￼ z ← z −
f(z)

∂z f(z)
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Newton's method for gradient descent
• We want to find a (local) minimum 


• Initialize some 


• Repeat:


‣ Evaluate gradient  and Hessian 


‣ Update 


• Considerations:


‣ Update step may be too large for highly non-convex losses


‣ Computational complexity to invert : 

f(θ) = ∇θℒθ = 0

θ

g = ∇θℒθ H = ∇2
θℒθ

θ ← θ − H−1g

H O(n3)



Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Gradient Descant: complexity

• Assume 


‣ MSE: 


• Computing : usually 


‣ What if we use really large datasets? (“big data”)


‣ What if we learn from data streams? (more data keeps coming in...)

ℒθ(𝒟) = 1
m ∑

j

ℓθ(x( j), y( j))

ℓθ(x, y) = (y − θ⊺x)2

∇θℒθ = 1
m ∑

j

∇θℓ( j)
θ O(mn)
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Stochastic / Online Gradient Descent

• Estimate  fast on a sample of data points


• For each data point:


 


• This is an unbiased estimator of the gradient, i.e. in expectation


 


•  is already a noisy unbiased estimator of true gradient 


‣ SGD is even more noisy

∇θℒθ

∇θℒθ(x( j), y( j)) = ∇θ(y( j) − θ⊺x( j))2 = − 2(y( j) − θ⊺x( j))(x( j))⊺

𝔼j∼Uniform(1,…,m)[∇θℒ( j)
θ ] = 1

m ∑
j

∇θℒ( j)
θ = ∇θℒθ(𝒟)

∇θℒθ(𝒟) 𝔼x,y∼p[∇θℒθ(x, y)]
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-40

-30

-20

-10

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20
-20

-15

-10

-5

0

5

10

15

20



Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ
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θ
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ
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Stochastic Gradient Descent: considerations
• Benefits:


‣ Each gradient step is faster


‣ Don't wait for all data with same , improve  “early and often”


‣ Arguably the most important optimization algorithm nowadays


• Drawbacks:


‣ May not actually descend on training loss


‣ Stopping conditions may be harder to evaluate


• Mini-batch updates: draw  data points


‣ 


‣ Variance increases the smaller the batch size


- Generally bad, but can help overcome local minima / saddle points

θ θ

b ≪ m

var∇θℒθ(batch) = var 1
b ∑

j∈batch

∇θℒ( j)
θ = 1

b var∇θℒθ(point)
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Advanced gradient-based methods
• Momentum


‣ Gradient is like velocity in parameter space


- Previous gradients still carry momentum


‣ Smoothens SGD path


‣ Effectively averages gradients over steps, reduces variance


• Preconditioning


‣ Scale and rotate loss landscape to make it nicer


‣ E.g., multiply by inverse Hessian (as in Newton's method)
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Today's lecture

Stochastic Gradient Descent

Least Squares

Polynomial regression
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Minimizing MSE

• Consider a simple problem


‣ One feature, two data points 


‣ Two unknowns 


‣ Two equations: 


• Can solve this system directly: 


• Generally,  may not have an inverse; e.g., 


• There may also be training loss, no  achieves equality of  to 

x(1), x(2)

θ0, θ1

θ0 + θ1x(1) = y(1) θ0 + θ1x(2) = y(2)

y = θ⊺X ⟹ θ⊺ = yX−1

X m > n

θ y θ⊺X
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Least Squares
• The minimum is achieved when the gradient is 0


 


•  is invertible when  has linearly independent rows = features


•  is the Moore-Penrose pseudo-inverse of 


‣  when the inverse exists


‣ Can define  via Singular Value Decomposition (SVD) when  isn't invertible


•  is the Least Squares fit of the data 

∇θℒθ = − 2
m (y − θ⊺X)X⊺ = 0

θ⊺XX⊺ = yX⊺

θ⊺ = yX⊺(XX⊺)−1

XX⊺ X

X† = X⊺(XX⊺)−1 X

X† = X−1

X† XX⊺

θ⊺ = yX† (X, y)
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Linear regression in NumPy

• Linear regression with MSE: 


 


• Least Squares: approximate  by 

min
θ

1
m ∥y − θ⊺X∥2

θ⊺ = yX(XX⊺)−1 = yX†

Az = b min
z

∥Az − b∥2

# Solution 1: the long way

theta = (y @ X @ np.linalg.inv(X @ X.T)).T


# Solution 2: pseudo-inverse

theta = (y @ np.linalg.pinv(X)).T


# Solution 3: Least Squares solver

theta = np.linalg.lstsq(a=X.T, b=y.T)



Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

MSE and outliers

• MSE is sensitive to outliers


• Square error  throws off entire optimization162
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Mean Absolute Error (MAE)

• MSE uses the  norm of the error 


• What if we use the  norm ?


‣ Mean Absolute Error (MAE): 


L2 ∥y − θ⊺X∥2
2 = ∑

j

(y − θ⊺X)2

L1 ∥y − θ⊺X∥1 = ∑
j

|y − θ⊺X |

1
m ∑

j

|y − θ⊺X |
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Minimizing MAE
• The absolute operator isn't differentiable


‣ But assume no data point has 0 error


 


• Can be solved with Linear Programming


• Without features (best constant fit for ): median


‣ With MSE: mean — more sensitive to outliers

∇θ
1
m ∑

j

|y − θ⊺X | = 1
m ∑

j: y( j)<θ⊺x( j)

x( j) − ∑
j: y( j)>θ⊺x( j)

x( j) = 0

∑
j: y( j)<θ⊺x( j)

x( j) = ∑
j: y( j)>θ⊺x( j)

x( j)

y

ℒθ
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Other loss functions

• MSE: 


• MAE: 


• Should loss of large errors saturate?


‣ 


• Most loss functions cannot be optimized in close form


‣ Gradient descent is a general algorithm for differentiable parametrization and loss

ℓ(y, ̂y) = (y − ̂y)2

ℓ(y, ̂y) = |y − ̂y |

ℓ(y, ̂y) = c − log(exp( − (y − ̂y)2) + c)
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Today's lecture

Stochastic Gradient Descent

Least Squares

Polynomial regression
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Polynomial regression

• Some data cannot be explained by linear regression


‣ A higher-order polynomial may be a better fit
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Polynomial regression

• Consider a polynomial in a single feature 


 


• Can we reduce this to something we already know?


‣ Think of higher-order terms  as new features


• 


‣ Denote 


• Perform linear regression with 

x

̂y = θ0 + θ1x + θ2x2 + θ3x3 + ⋯

x2, x3, …

𝒟 = {(x( j), y( j))} ⟹ {([x( j), (x( j))2, (x( j))3, …], y( j))}

Φ(x) = [x, x2, x3, …]

̂y = θ⊺Φ(x)
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Polynomial regression

• Fit the same way as linear regression


‣ With more features 
Φ(x)
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Feature expansion
• In principle, can use any features we think are useful


• Instead of collecting more information per data point


‣ apply nonlinear transformation to  to get more “linear explainability” of 


• More examples:


‣ Cross-terms between features: , , ...


‣ Trigonometric functions: 


‣ Others: , , ...


• Linear regression = linear in , the features can be as complex as we want

x y

xixj xixjxk

sin(ωx + ϕ)

1
x x

θ
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How many features to add?
• The more features we add, the more complex the model class


• Learning can always fall back to simpler model with 


• But generally it won't, it will overfit


‣ Better training data fit, worse test data fit


θ4 = θ5 = ⋯ = 0

underfitting overfitting
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Inductive bias

• Inductive bias = assumptions we make to generalize to data we haven't seen


‣ 10 data points suggest 9-degree polynomial, but we're “biased” towards linear


‣ Examples: polynomials, smooth functions, neural network architecture, etc.


• Without any assumptions, there is no generalization


‣ “Anything is possible” in the test data


• Occam's razor: prefer simpler explanations of the data
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Logistics

assignments • Assignment 2 to be published soon

project
• Project guidelines to be published soon


• Team rosters due next Thursday, Jan 28


