CS 273A: Machine Learning **Winter 2021** Lecture 5: Linear Regression (cont.)

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

assignments

Assignment 2 to be published soon

Project guidelines to be published soon

• Team rosters due next Thursday, Jan 28

Today's lecture

Stochastic Gradient Descent

Polynomial regression

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Least Squares

Gradient Descent

- Initialize θ
- Do

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}$$

• While $\|\alpha \nabla_{\theta} \mathscr{L}_{\theta}\| \leq \epsilon$

- Learning rate: α
 - Can change in each iteration

Gradient for the MSE loss

• MSE:
$$\mathscr{L}_{\theta} = \frac{1}{m} \sum_{j} (\epsilon^{(j)})^2 = \frac{1}{m} \sum_{j} (y^{(j)} - \frac{1}{m})^2 = \frac{1}{m} \sum_{j} (y^{(j)}$$

$$\partial_{\theta_i} \mathscr{L}_{\theta} = \frac{1}{m} \sum_{j} \partial_{\theta_i} (\epsilon^{(j)})^2 = \frac{1}{m} \sum_{j} 2\epsilon^{(j)} \partial_{\theta_i} \epsilon^{j}$$

•
$$\partial_{\theta_i}(y^{(j)} - \theta^{\mathsf{T}} x^{(j)}) = -\partial_{\theta_i} \theta_i x_i^{(j)} + 0$$
 in the other

$$\partial_{\theta_{i}} \mathscr{L}_{\theta} = -\frac{2}{m} \sum_{j} e^{(j)} x_{i}^{(j)} = -\frac{2}{m} (y - \theta^{\mathsf{T}} X) X_{i}^{\mathsf{T}}$$
error
$$\nabla_{\theta} \mathscr{L}_{\theta} = -\frac{2}{m} (y - \theta^{\mathsf{T}} X) X_{i}^{\mathsf{T}}$$
sensitivity to θ

• Can also be seen directly from

$$\mathscr{L}_{\theta} = \frac{1}{m} (y - \theta^{\mathsf{T}} X) (y - \theta^{\mathsf{T}} X)$$

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

 $\theta^{\intercal} x^{(j)})^2$

(j)

ther terms $= x_i^{(j)}$

 X_i^{T}

 $[X]^{\mathsf{T}} = \frac{1}{m} (\theta^{\mathsf{T}} X X^{\mathsf{T}} \theta - 2y X^{\mathsf{T}} \theta + y y^{\mathsf{T}})$

Gradient Descent — further considerations

- GD is a very general algorithm
 - We'll use it often
 - Much of the engine for recent advances in ML
- Issues:
 - Can get stuck in local minima
 - Worse can get stuck in saddle points, $\nabla_{\theta} \mathscr{L}_{\theta} = 0$ with improvement direction
 - Can be slow to converge, sensitive to initialization
 - How to choose step size / learning rate?
 - Constant? 1/iteration? Line search? Newton's method?

Newton's method

- Given black-box f(z), how to find a root f(z) = 0?
- Initialize some z
- Repeat:
 - Evaluate f(z) and $\partial_z f(z)$ to find tangent to f at $z: f'(z') = (z' z)\partial_z f(z) + f(z)$

► Update *z* to the root of $f': z \leftarrow z - \frac{f(z)}{\partial_z f(z)}$

- Considerations:
 - May not converge, sometimes unstable
 - Usually converges quickly for nice, smooth, locally quadratic functions

Newton's method for gradient descent

- We want to find a (local) minimum $f(\theta) = \nabla_{\theta} \mathscr{L}_{\theta} = 0$
- Initialize some θ
- Repeat:
 - Evaluate gradient $g = \nabla_{\theta} \mathscr{L}_{\theta}$ and Hessian $H = \nabla_{\theta}^2 \mathscr{L}_{\theta}$
 - Update $\theta \leftarrow \theta H^{-1}g$
- Considerations:
 - Update step may be too large for highly non-convex losses
 - Computational complexity to invert H: $O(n^3)$

Gradient Descant: complexity

Assume
$$\mathscr{L}_{\theta}(\mathscr{D}) = \frac{1}{m} \sum_{j} \mathscr{L}_{\theta}(x^{(j)}, y)$$

• MSE:
$$\ell_{\theta}(x, y) = (y - \theta^{\mathsf{T}}x)^2$$

Computing
$$\nabla_{\theta} \mathscr{L}_{\theta} = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

- What if we use really large datasets? ("big data")
- What if we learn from data streams? (more data keeps coming in...)

 $v^{(j)}$

): usually O(mn)

Stochastic / Online Gradient Descent

- Estimate $\nabla_{\theta} \mathscr{L}_{\theta}$ fast on a sample of data points
- For each data point:

$$\nabla_{\theta} \mathscr{L}_{\theta}(x^{(j)}, y^{(j)}) = \nabla_{\theta}(y^{(j)} - \theta^{\mathsf{T}} x^{(j)})^2 = -2(y^{(j)} - \theta^{\mathsf{T}} x^{(j)})(x^{(j)})^{\mathsf{T}}$$

• This is an unbiased estimator of the gradient, i.e. in expectation

$$\mathbb{E}_{j \sim \text{Uniform}(1,...,m)} [\nabla_{\theta} \mathscr{L}_{\theta}^{(j)}] = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)} = \nabla_{\theta} \mathscr{L}_{\theta}^{(j)} (\mathscr{D})$$

- - SGD is even more noisy

• $\nabla_{\theta} \mathscr{L}_{\theta}(\mathscr{D})$ is already a noisy unbiased estimator of true gradient $\mathbb{E}_{x,y\sim p}[\nabla_{\theta} \mathscr{L}_{\theta}(x,y)]$

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

Stochastic Gradient Descent: considerations

- Benefits:
 - Each gradient step is faster
 - Don't wait for all data with same θ , improve θ "early and often"
 - Arguably the most important optimization algorithm nowadays
- Drawbacks:
 - May not actually descend on training loss
 - Stopping conditions may be harder to evaluate
- Mini-batch updates: draw $b \ll m$ data points

$$\operatorname{var} \nabla_{\theta} \mathscr{L}_{\theta}(\operatorname{batch}) = \operatorname{var} \frac{1}{b} \sum_{j \in \operatorname{batch}} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)} = \frac{1}{b} \operatorname{var} \nabla_{\theta}$$

- Variance increases the smaller the batch size
 - Generally bad, but can help overcome local minima / saddle points

 $\mathscr{L}_{\theta}(\text{point})$

Advanced gradient-based methods

- Momentum
 - Gradient is like velocity in parameter space
 - Previous gradients still carry momentum
 - Smoothens SGD path
 - Effectively averages gradients over steps, reduces variance
- Preconditioning
 - Scale and rotate loss landscape to make it nicer
 - E.g., multiply by inverse Hessian (as in Newton's method)

Today's lecture

Stochastic Gradient Descent

Least Squares

Polynomial regression

Minimizing MSE

- Consider a simple problem
 - One feature, two data points $x^{(1)}, x^{(2)}$
 - Two unknowns θ_0, θ_1
 - Two equations: $\theta_0 + \theta_1 x^{(1)} = y^{(1)}$
- Can solve this system directly: $y = \theta^{\intercal} X \implies \theta^{\intercal} = y X^{-1}$
- Generally, X may not have an inverse; e.g., m > n
- There may also be training loss, no θ achieves equality of y to $\theta^{\intercal}X$

$$\theta_0 + \theta_1 x^{(2)} = y^{(2)}$$
$$\theta^{\mathsf{T}} X \implies \theta^{\mathsf{T}} = v X^-$$

 $(\mathbf{1})$

Least Squares

• The minimum is achieved when the gradient is 0

$$\nabla_{\theta} \mathscr{L}_{\theta} = -\frac{2}{m} (y - \theta^{\mathsf{T}} X) X^{\mathsf{T}} = 0$$
$$\theta^{\mathsf{T}} X X^{\mathsf{T}} = y X^{\mathsf{T}}$$
$$\theta^{\mathsf{T}} = y X^{\mathsf{T}} (X X^{\mathsf{T}})^{-1}$$

- XX^{\dagger} is invertible when X has linearly independent rows = features
- $X^{\dagger} = X^{\dagger}(XX^{\dagger})^{-1}$ is the Moore-Penrose pseudo-inverse of X
 - $X^{\dagger} = X^{-1}$ when the inverse exists
 - Can define X^{\dagger} via Singular Value Decomposition (SVD) when XX^{\dagger} isn't invertible
- $\theta^{\intercal} = yX^{\dagger}$ is the Least Squares fit of the data (X, y)

Linear regression in NumPy

• Linear regression with MSE: \min^{-1} т θ

 $\theta^{\intercal} = yX(X)$

Solution 1: the long way theta = (y @ X @ np.linalg.inv(X @ X.T)).T # Solution 2: pseudo-inverse theta = (y @ np.linalg.pinv(X)).T # Solution 3: Least Squares solver

theta = np.linalg.lstsq(a=X.T, b=y.T)

• Least Squares: approximate Az =

$$\|y - \theta^{\mathsf{T}} X\|^2$$

$$XX^{\intercal})^{-1} = yX^{\dagger}$$

$$b \operatorname{by} \min_{z} ||Az - b||^2$$

MSE and outliers

• MSE is sensitive to outliers

• Square error 16^2 throws off entire optimization

Mean Absolute Error (MAE)

What if we use the L_1 norm $||y - \theta|$

$$\|y - \theta^{\mathsf{T}} X\|_2^2 = \sum_j (y - \theta^{\mathsf{T}} X)^2$$

$$\|Y\|_{1} = \sum_{j} |y - \theta^{\mathsf{T}}X|?$$

$$y - \theta^{\intercal} X |$$

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Minimizing MAE

- The absolute operator isn't differentiable
 - But assume no data point has 0 error

$$\nabla_{\theta} \frac{1}{m} \sum_{j} |y - \theta^{\mathsf{T}} X| = \frac{1}{m} \left(\int_{j} \sum_{j: y^{(j)} < \theta^{\mathsf{T}} x^{(j)}} x^{(j)} = \sum_{j: y^{(j)} > j} \sum_{j: y^{(j)} \sum_{j: y^{(j)} > j} \sum_{j: y^{(j)} > j} \sum_{j: y^{(j)} \sum_{j: y^{(j)} > j} \sum_{j: y^{(j)} \sum_{j: y^{(j)} \sum_{j: y^{(j)} \sum_{j: y^{(j)} > j} \sum_{j: y^{(j)} \sum_{j: y^$$

- Can be solved with Linear Programming
- Without features (best constant fit for y): median
 - With MSE: mean more sensitive to outliers

Other loss functions

- MSE: $\ell(y, \hat{y}) = (y \hat{y})^2$
- MAE: $\ell(y, \hat{y}) = |y \hat{y}|$
- Should loss of large errors saturate?
 - $\ell(y, \hat{y}) = c \log(\exp(-(y \hat{y})^2) + c)$
- Most loss functions cannot be optimized in close form

Gradient descent is a general algorithm for differentiable parametrization and loss

Today's lecture

Stochastic Gradient Descent

Polynomial regression

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Least Squares

Polynomial regression

- Some data cannot be explained by linear regression
 - A higher-order polynomial may be a better fit

Polynomial regression

• Consider a polynomial in a single feature *x*

$$\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \cdots$$

- Can we reduce this to something we already know?
 - Think of higher-order terms x^2, x^3, \dots as new features

•
$$\mathcal{D} = \{(x^{(j)}, y^{(j)})\} \implies \{([x^{(j)}, (x^{(j)})^2, (x^{(j)})^3, \dots], y^{(j)})\}$$

- Denote $\Phi(x) = [x, x^2, x^3, ...]$
- Perform linear regression with $\hat{y} =$

$$\theta^{\intercal} \Phi(x)$$

Polynomial regression

- Fit the same way as linear regression
 - With more features $\Phi(x)$

Feature expansion

- In principle, can use any features we think are useful
- Instead of collecting more information per data point
 - apply nonlinear transformation to x to get more "linear explainability" of y
- More examples:
 - Cross-terms between features: $x_i x_j$, $x_i x_j x_k$, ...
 - Trigonometric functions: $sin(\omega x + \phi)$

• Others:
$$\frac{1}{x}$$
, \sqrt{x} , ...

• Linear regression = linear in θ , the features can be as complex as we want

How many features to add?

- The more features we add, the more complex the model class
- Learning can always fall back to simpler model with $\theta_4 = \theta_5 = \cdots = 0$
- But generally it won't, it will overfit
 - Better training data fit, worse test data fit

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Inductive bias

- Inductive bias = assumptions we make to generalize to data we haven't seen
 - 10 data points suggest 9-degree polynomial, but we're "biased" towards linear
 - Examples: polynomials, smooth functions, neural network architecture, etc.
- Without any assumptions, there is no generalization
 - Anything is possible in the test data
- Occam's razor: prefer simpler explanations of the data lacksquare

assignments

Assignment 2 to be published soon

Project guidelines to be published soon

• Team rosters due next Thursday, Jan 28