U CI University of
California, Irvine

CS 273A: Machine Learning
Winter 2021

Lecture 5: Linear Regression (cont.)

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Logistics

* Project guidelines to be published soon

- * Assignment 2 to be published soon

 Team rosters due next Thursday, Jan 28

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Today's lecture

Least Squares

Polynomial regression

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Gradient Descent

e |nitialize @
e Do

e Learning rate:

> Can change in each iteration

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Gradient for the MSE loss

MSE: Zy= — ¥ (eD)? = =) (y — 9TxD)?

J J

0pLy =~ Y 0p(eV) = L) 2609,
J J

" aei(y(j '~ OTxV)) = — agﬂixi(j) + 0 in the other terms = xl.(j)

> m m

J
error
2 4/

2 N (j 2
0gLp=—— Z eNxD = —Z(y — TX)XT

T mEg = ™
~—— sensitivity to &

* Can also be seen directly from

o= (v = 0X)(y = 0TX)T = —(O"XXT0 — 2yX10 + yyT)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Gradient Descent — further considerations

 GD is a very general algorithm
> We'll use it often
> Much of the engine for recent advances in ML
* |ssues:
» Can get stuck in local minima
- Worse — can get stuck in saddle points, V£, = 0 with improvement direction

> (Can be slow to converge, sensitive to initialization

> How to choose step size / learning rate?

- Constant? 1/iteration? Line search? Newton's method?

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Newton's method

» Given black-box f(z), how to find a root f(z) = 07

e [nitialize some 7
* Repeat:

~ Evaluate f(z) and 0, f(z) to find tangent to f at z: f'(z') = (z' — 2)0,f(2) + f(2)

<
Update z to the root of f: 7 « 7 — /@)

] 0.f(z)

e Considerations:
> May not converge, sometimes unstable

> Usually converges quickly for nice, smooth, locally quadratic functions

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Newton's method for gradient descent
» We want to find a (local) minimum f(6) = V,&£, = 0
* |nitialize some @
+ Repeat:
- Evaluate gradient g = V, % and Hessian H = V; %,
» Update @ <« § — H g

e Considerations:

> Update step may be too large for highly non-convex losses

» Computational complexity to invert H: O(n°)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Gradient Descant: complexity

 Assume Zy(PD) = % 2 ox, y)

J

» MSE: £y(x,y) = (y — OTx)?

- Computing VyZy = % 2 ng/”e(j): usually O(mn)
J

> What if we use really large datasets? (“big data”)

> What if we learn from data streams”? (more data keeps coming in...)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic / Online Gradient Descent

. Estimate V,Z, fast on a sample of data points

 For each data point:
Vege(x(j),y(j)) — Vg(y(j) — @TxV)? = —2(yV) — GTxD)(x)T

 This is an unbiased estimator of the gradient, I.e. in expectation

. i .
_jNUniform(l,...,m)[Veg((gj)] — Z V@g(g]) — VHSZH(QZ)
J

. V,Z(9) is already a noisy unbiased estimator of true gradient -x,pr[VoL y(x,y)]

> SGD is even more noisy

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Stochastic Gradient Descent: considerations

e Benefits:

» Each gradient step is faster

» Don't wait for all data with same &, improve 6 “early and often”

> Arguably the most important optimization algorithm nowadays

 Drawbacks:
> May not actually descend on training loss

> Stopping conditions may be harder to evaluate
« Mini-batch updates: draw b < m data points

var V,Z »(batch) = Var% Z VQSZ(QJ) = %Var V< 4(point)

>

jE€batch
» Variance increases the smaller the batch size

- Generally bad, but can help overcome local minima / saddle points

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Advanced gradient-based methods

SGD ¥
Momentum F
NAG -
Adagrad
= Adadelta
— — Rmsprop

e Momentum

> Gradient is like velocity in parameter space

- Previous gradients still carry momentum

> Smoothens SGD path

> Effectively averages gradients over steps, reduces variance

* Preconditioning
» Scale and rotate loss landscape to make it nicer

> E.g., multiply by inverse Hessian (as in Newton's method)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Today's lecture

Stochastic Gradient Descent

Polynomial regression

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Minimizing MSE

e Consider a simple problem

> One feature, two data points x(l), x®

> Two unknowns 6, 0,

» Two equations: 6, + ;x'!) = y1) O + 0,x2 =y
. Can solve this system directly: y = 01X —> 0T = yX~!
» Generally, X may not have an inverse; e.g., m > n

« There may also be training loss, no @ achieves equality of y to 81X

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

L east Squares

 The minimum is achieved when the gradient is O

VoLp=—=(y—0TX)XT =0
OTXXT = yXT

AT = yXT(XXT)™!
« XX is invertible when X has linearly independent rows = features

e X" = XT(XXT)~!is the Moore-Penrose pseudo-inverse of X

» X" = X~ when the inverse exists

> Can define X via Singular Value Decomposition (SVD) when XX isn't invertible

e AT = yXJf is the Least Squares fit of the data (X, y)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Linear regression in NumPy

. Linear regression with MSE: min%”y — 07X||?
%

0T = yX(XXT)~ ! = yX*

Solution 1: the long way
theta = (y @ X @ np.linalg.inv(X @ X.T)).T

Solution 2: pseudo-inverse
theta = (y @ np.linalg.pinv(X)).T

Solution 3: Least Squares solver
theta = np.linalg.lstsq(a=X.T, b=y.T)

. Least Squares: approximate Az = b by min ||Az — b||?
<

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

MSE and outliers

e MSE is sensitive to outliers

5 ‘ . ‘

al i
3l i
2+ i
1+ i
0 - !

-20 -15 -10 -5 0 5

e Square error 167 throws off entire optimization

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Mean Absolute Error (MAE)

MSE uses the L, norm of the error ||y — HTX||% = Z (y — 07X)?

J

What if we use the L, norm ||y — 01X]|, = Z |y —01X]|?

J

>

Mean Absolute Error (MAE): -) |y — 67X

L2, original data

L1, original data

L1, outlier data

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Minimizing MAE
 The absolute operator isn't differentiable

> But assume no data point has O error

Yo=Y a0

it yD<@Tx) it y(D> 1)

1 1
VQZZ\y—HTX\ = —
J

e Can be solved with Linear Programming

« Without features (best constant fit for y): median

» With MSE: mean — more sensitive to outliers

DIRE U YU

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Other loss functions

+ MSE: £(y,9) = (y — $)*

* MAE: Z(y,)) = |y =)|

 Should loss of large errors saturate?

A4

> £(y,9) = ¢ — log(exp(— (y = $)°) +¢)
 Most loss functions cannot be optimized in close form

> Gradient descent is a general algorithm for differentiable parametrization and loss

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Today's lecture

Stochastic Gradient Descent

Least Squares

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Polynomial regression

 Some data cannot be explained by linear regression

> A higher-order polynomial may be a better fit

18 : : : : : : . . . 18

16} 16|

141 141

12¢
12¢

10}
10}

N o N IN o fo's

8
6
4l
2
0

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Polynomial regression

e Consider a polynomial in a single feature x
5\7 — HO + 6’136 + (92)62 + 93)63 + e

 Can we reduce this to something we already know?

> Think of higher-order terms xz, x3, ... as new features

+ 2= (Y, y")} = {(xV, V)%, V)%, Ly
» Denote D(x) = [x,x%,x°, ...]

 Perform linear regression with y = 01®(x)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Polynomial regression

* Fit the same way as linear regression

8l
. 6l
> With more features ®(x) |
2
0 - @
0 2 4 6 8 10 12 14 16 18 20
18 18
o0 D(x) = [1,x,x%] C o) D(x) = [1,x,x% x°] o
14} 14]
2 12
10}
10}
sl
8
61l
6
41
2 41
Ot 2
2 - - - - - - 0 , N I
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

- D(x) = [1,x] ®

Roy Fox | CS 273A | Winter 2021 | Lecture 5:

Linear Regression (cont.)

Feature expansion

* In principle, can use any features we think are useful

* Instead of collecting more information per data point

> apply nonlinear transformation to x to get more “linear explainability” of y

 More examples:
~ Cross-terms between features: x;x;, x;X;x, ...

» Trigonometric functions: sin(wx + ¢)

1
» QOthers: ~ \/;

» Linear regression = linear in 6, the features can be as complex as we want

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

How many features to add?

 The more features we add, the more complex the model class

» Learning can always fall back to simpler model with 6, = 05 = --- =0

 But generally it won't, it will overfit

> Better training data fit, worse test data fit

40

i 1
I |
| + 250 -
35 4 l
I
|
30 - 200 -
25 -
150 -
(W8]
> 20 - g
100 -
15 -
10 A 0 -
1
+ .
I
5 - [
I
I 0 -
0 1 1 1 1 1 1 1 0 I 1 1 1 1 1 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.

0 2 i i - 6 8 _ }0
<— underfitting royremiadeaeed gyerfitting —

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Inductive bias

* |Inductive bias = assumptions we make to generalize to data we haven't seen
> 10 data points suggest 9-degree polynomial, but we're “biased” towards linear
» Examples: polynomials, smooth functions, neural network architecture, etc.

* Without any assumptions, there is no generalization
> “Anything is possible” in the test data

« Occam's razor: prefer simpler explanations of the data

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Logistics

* Project guidelines to be published soon

- * Assignment 2 to be published soon

 Team rosters due next Thursday, Jan 28

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

