CS 273A: Machine Learning Winter 2021
 Lecture 4: Linear Regression

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

Logistics

- Emad Naeini is joining the course staff

staff

- Emad's office hours:
- https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour
- Assignment 1 due today
assignments
- Assignment 2 to be published next week

Today's lecture

ROC curves

Linear regression

Gradient descent

Terminology

- Class prior probabilities: $p(y)$
- Prior = before seeing any features
- Class-conditional probabilities: $p(x \mid y)$
- Class posterior probabilities: $p(y \mid x)$
- Bayes' rule: $p(y \mid x)=\frac{p(y) p(x \mid y)}{p(x)}$
. Law of total probability: $p(x)=\sum_{y} p(x, y)=\sum_{y} p(y) p(x \mid y)$

Measuring error

- Confusion matrix: all possible values of (y, \hat{y})
- Binary case: true / false (correct or not) positive / negative (prediction)
- Accuracy: $\frac{T P+T N}{T P+T N+F P+F N}=1$ - error rate

	Predict 0		Predict 1	
$\mathrm{Y}=0$	380	TN	5	
$\mathrm{Y}=1$	338	FN	3	

- True positive rate (TPR): $\hat{p}(\hat{y}=1 \mid y=1)=\frac{\#(y=1, \hat{y}=1)}{\#(y=1)}$ (aka, sensitivity)
- False negative rate (FNR): $\hat{p}(\hat{y}=0 \mid y=1)=\frac{\#(y=1, \hat{y}=0)}{\#(y=1)}$
- False positive rate (FPR): $\hat{p}(\hat{y}=1 \mid y=0)=\frac{\#(y=0, \hat{y}=1)}{\#(y=0)}$
- True negative rate (TNR): $\hat{p}(\hat{y}=0 \mid y=0)=\frac{\#(y=0, \hat{y}=0)}{\#(y=0)}$ (aka, specificity)

Types of error

- Not all errors are equally bad
- Do some cost more? (e.g. red / green light, diseased / healthy)

- False negative rate: $\frac{p(y=1, \hat{y}=0)}{p(y=1)}$; false positive rate: $\frac{p(y=0, \hat{y}=1)}{p(y=0)}$

Cost of error

- Weight different costs differently
- $\alpha \cdot p(y=0) p(x \mid y=0) \lessgtr p(y=1) p(x \mid y=1)$

- Increase α to prefer class 0 - increase FNR, decrease FPR

Cost of error

- Weight different costs differently
- $\alpha \cdot p(y=0) p(x \mid y=0) \lessgtr p(y=1) p(x \mid y=1)$

- Decrease α to prefer class 1 - decrease FNR, increase FPR

Bayes-optimal decision

- Maximum posterior decision: $\hat{p}(y=0 \mid x) \lessgtr \hat{p}(y=1 \mid x)$
- Optimal for the error-rate (0-1) loss: $\mathbb{E}_{x, y \sim p}[\hat{y}(x) \neq y]$
- What if we have different cost for different errors? $\alpha_{\mathrm{FP}}, \alpha_{\mathrm{FN}}$
- $\mathscr{L}=\mathbb{E}_{x, y \sim p}\left[\alpha_{\mathrm{FP}} \cdot \#(y=0, \hat{y}(x)=1)+\alpha_{\mathrm{FN}} \cdot \#(y=1, \hat{y}(x)=0)\right]$
- Bayes-optimal decision: $\alpha_{\mathrm{FP}} \cdot \hat{p}(y=0 \mid x) \lessgtr \alpha_{\mathrm{FN}} \cdot \hat{p}(y=1 \mid x)$
- Log probability ratio: $\log \frac{\hat{p}(y=1 \mid x)}{\hat{p}(y=0 \mid x)} \lessgtr \log \frac{\alpha_{\mathrm{FP}}}{\alpha_{\mathrm{FN}}}=\alpha$

ROC curve

- Often models have a "knob" for tuning preference over classes (e.g. α)
- Changing the decision boundary to include more instances in preferred class
- Characteristic performance curve:

$$
\log \frac{\hat{p}(y=1 \mid x)}{\hat{p}(y=0 \mid x)} \lessgtr \alpha
$$

small α

Demonstration

- http://www.navan.name/roc

Comparing classifiers

- Which classifier performs "better"?
- A is better for high specificity
- B is better for high sensitivity
- Need single performance measure
- Area Under Curve (AUC)
- $0.5 \leq \mathrm{AUC} \leq 1$
- $\mathrm{AUC}=0.5$: random guess
- $A U C=1$: no errors
large α always $\hat{y}=0$

Discriminative vs. probabilistic predictions

probabilistic predictions $p(y \mid x)$

- Probabilistic learning gives more nuanced prediction
- Can use $p(y \mid x)$ to find $\hat{y}(x)=\arg \max p(y \mid x)$ (if argmax is feasible)
\square
- Express confidence in predicting \hat{y}
- Conditional models: $p(y \mid x)$; vs. generative models: $p(x, y)$
- Can be used to generate x
- Bayes classifiers, Naïve Bayes classifiers are generative

Gaussian models

- Bayes-optimal decision:
- Scale each Gaussian by prior $p(y)$ and relative cost of error
- Choose the larger scaled probability density

- Decision boundary = where scaled probabilities equal

Gaussian models

- Consider binary classifier with Gaussian conditionals
- $p(x \mid y=c)=\mathscr{N}\left(x ; \mu_{c}, \Sigma_{c}\right)=(2 \pi)^{-\frac{d}{2}}\left|\Sigma_{c}\right|^{\left.\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(x-\mu_{c}\right)^{\top} \Sigma_{c}^{-1}\left(x-\mu_{c}\right)\right)$

- Assume same covariance $\Sigma_{0}=\Sigma_{1}$
-What is the shape of the decision boundary $p(y=0 \mid x)=p(y=1 \mid x)$?

$$
\begin{aligned}
\alpha \lessgtr & \log \frac{p(y=1) p(x \mid y=1)}{p(y=0) p(x \mid y=0)}=\frac{p(y=1)}{p(y=0)}+\mathrm{const} \\
& +\frac{1}{2}\left(x^{\top} \Sigma^{-1} x-2 \mu_{0}^{\top} \Sigma^{-1} x+\mu_{0}^{\top} \Sigma^{-1} \mu_{0}\right) \\
& -\frac{1}{2}\left(x^{\top} \Sigma^{-1} x-2 \mu_{1}^{\top} \Sigma^{-1} x+\mu_{1}^{\top} \Sigma^{-1} \mu_{1}\right) \\
= & \frac{1}{2}\left(\mu_{1}-\mu_{0}\right)^{\top} \Sigma^{-1} x+\mathrm{const}
\end{aligned}
$$

Gaussian models

- Isotropic covariance: $\Sigma=\sigma^{2} I_{d}$
- Decision: $\left(\mu_{1}-\mu_{0}\right)^{\top} x \lessgtr \alpha$

- Decision boundary perpendicular to segment between means
- General (but equal) covariance:
- Decision boundary linear, but

$$
\Sigma=\left[\begin{array}{cc}
3 & 0 \\
0 & .25
\end{array}\right]
$$

- scaled, if Σ has different eigenvalues

- rotated, if \sum is not diagonal

Today's lecture

ROC curves

Linear regression

Gradient descent

Machine learning

Linear regression

- Decision function $f: x \mapsto y$ is linear, $f(x)=\theta_{0}+\theta_{1} x$
- f is stored by its parameters $\theta=\left[\begin{array}{ll}\theta_{0} & \theta_{1}\end{array}\right]$

Linear regression

- More generally: $\hat{y}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots \theta_{n} x_{n}$
- Define dummy feature $x_{0}=1$ for the shift / bias θ_{0}

$$
\hat{y}(x)=\theta^{\top} x \text {; where } \quad x=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \theta=\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{n}
\end{array}\right] \in \mathbb{R}^{n+1}
$$

Machine learning

Measuring error

- Error / residual: $\epsilon=y-\hat{y}$
- Mean square error (MSE): $\frac{1}{m} \sum_{j}\left(\epsilon^{(j)}\right)^{2}=\frac{1}{m} \sum_{j}\left(y^{(j)}-\hat{y}^{(j)}\right)^{2}$

Mean square error

. $\mathscr{L}_{\theta}=\frac{1}{m} \sum_{j}\left(y^{(j)}-\hat{y}\left(x^{(j)}\right)\right)^{2}=\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)^{2}$

- Why MSE?
- Mathematically and computationally convenient (we'll see why)
- Estimates the variance of the residuals
- Corresponds to log-likelihood under Gaussian noise model

$$
\log p(y \mid x)=\log \mathscr{N}\left(y ; \theta^{\top} x, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}}\left(y-\theta^{\top} x\right)^{2}+\mathrm{const}
$$

MSE of training data

Training data matrix: $X=\left[\begin{array}{ccc}x_{0}^{(1)} & \cdots & x_{0}^{(m)} \\ x_{1}^{(1)} & \cdots & x_{1}^{(m)} \\ \vdots & & \vdots \\ x_{n}^{(1)} & \cdots & x_{n}^{(m)}\end{array}\right] \in \mathbb{R}^{(n+1) \times m}$

- Training labels vector: $y=\left[\begin{array}{lll}y^{(1)} & \cdots & y^{(m)}\end{array}\right]$
- Prediction: $\hat{y}=\left[\begin{array}{lll}\hat{y}^{(1)} & \cdots & \hat{y}^{(m)}\end{array}\right]=\theta^{\top} X$
\# Python / NumPy:
e = y - theta.T @ X
loss = (e @ e.T) / m \# == np.mean(e ** 2)
. Training MSE: $\mathscr{L}_{\theta}(\mathscr{D})=\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)^{2}=\frac{1}{m}\left(y-\theta^{\top} X\right)\left(y-\theta^{\top} X\right)^{\top}$

Machine learning

Loss landscape

- $\mathscr{L}_{\theta}(\mathscr{D})=\frac{1}{m}\left(y-\theta^{\top} X\right)\left(y-\theta^{\top} X\right)^{\top}=\frac{1}{m}\left(\theta^{\top} X X^{\top} \theta-2 y X^{\top} \theta+y y^{\top}\right)$

θ_{0}

[^0]
Today's lecture

ROC curves

Linear regression

Gradient descent

Gradient descent

- How to vary $\theta \in \mathbb{R}^{n+1}$ to improve the loss \mathscr{L}_{θ} ?
- Find a direction in parameter space in which \mathscr{L}_{θ} is decreasing

Gradient descent

- How to vary $\theta \in \mathbb{R}^{n+1}$ to improve the loss \mathscr{L}_{θ} ?
- Find a direction in parameter space in which \mathscr{L}_{θ} is decreasing
. Derivative $\partial_{\theta} \mathscr{L}_{\theta}=\lim _{\delta \theta \rightarrow 0} \frac{\mathscr{L}_{\theta+\delta \theta}-\mathscr{L}_{\theta}}{\delta \theta}$
- Positive $=$ loss increases with θ
- Negative = loss decreases with θ

Gradient descent in higher dimension

- Gradient vector: $\nabla_{\theta} \mathscr{L}_{\theta}=\left[\begin{array}{lll}\partial_{\theta_{0}} \mathscr{L}_{\theta} & \cdots & \partial_{\theta_{n}} \mathscr{L}_{\theta}\end{array}\right]$
- Taylor expansion: $\mathscr{L}(\theta+\delta \theta)=\mathscr{L}(\theta)+(\delta \theta)^{\top} \nabla_{\theta} \mathscr{L}_{\theta}+o\left(\|\delta \theta\|^{2}\right)$
- If we take a small step $\delta \theta$, the best one is in direction $\nabla_{\theta} \mathscr{L}_{\theta}$
- Gradient = direction of steepest ascent (negative = steepest descent)

Gradient Descent

- Initialize θ
- Do
- $\theta \leftarrow \theta-\alpha \nabla_{\theta} \mathscr{L}_{\theta}$
- While $\left\|\alpha \nabla_{\theta} \mathscr{L}_{\theta}\right\| \leq \epsilon$
- Learning rate: α

- Can change in each iteration

Gradient for the MSE loss

- MSE: $\mathscr{L}_{\theta}=\frac{1}{m} \sum_{j}\left(\epsilon^{(j)}\right)^{2}=\frac{1}{m} \sum_{j}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)^{2}$
- $\partial_{\theta_{i}} \mathscr{L}_{\theta}=\frac{1}{m} \sum_{j} \partial_{\theta_{i}}\left(\epsilon^{(j)}\right)^{2}=\frac{1}{m} \sum_{j} 2 \epsilon^{(j)} \partial_{\theta_{i}} \epsilon^{(j)}$
- $\partial_{\theta_{i}}\left(y^{(j)}-\theta^{\top} x^{(j)}\right)=-\partial_{\theta_{i}} \theta_{i} x_{i}^{(j)}+0$ in the other terms $=x_{i}^{(j)}$
- $\partial_{\theta_{i}} \mathscr{L}_{\theta}=-\frac{2}{m} \sum_{j} \epsilon^{(j)} x_{i}^{(j)}=-\frac{2}{m}\left(y-\theta^{\top} X\right) X_{i}^{\top}$

> error

- $\nabla_{\theta} \mathscr{L}_{\theta}=-\frac{2}{m}\left(y-\theta^{\top} X\right) X$
- Can also be seen directly from

$$
\mathscr{L}_{\theta}=\frac{1}{m}\left(y-\theta^{\top} X\right)\left(y-\theta^{\top} X\right)^{\top}=\frac{1}{m}\left(\theta^{\top} X X^{\top} \theta-2 y X^{\top} \theta+y y^{\top}\right)
$$

Gradient Descent - further considerations

- GD is a very general algorithm
- We'll use it often
- Much of the engine for recent advances in ML
- Issues:
- Can get stuck in local minima

- Worse - can get stuck in saddle points, $\nabla_{\theta} \mathscr{L}_{\theta}=0$ with improvement direction
- Can be slow to converge, sensitive to initialization
- How to choose step size / learning rate?
- Constant? 1/iteration? Line search? Newton's method?

Logistics

- Emad Naeini is joining the course staff

staff

- Emad's office hours:
- https://calendly.com/ekasaeya/cs-273a-emad-s-office-hour
- Assignment 1 due today
assignments
- Assignment 2 to be published next week

[^0]: Roy Fox | CS 273A | Winter 2021 | Lecture 4: Linear Regression

