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Logistics

assignment 1 • Assignment 1 is due Thursday

resources • A list of great ML textbooks is on the website
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Today's lecture

Bayes classifiers

Naïve Bayes Classifiers

Bayes error
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Conditional probabilities
• Two events: headache ( ), flu ( )


• 


• 


• 


• You wake up with a headache


‣ What are the chances that you have the flu?

H F

p(H) =
1
10

p(F) =
1
40

p(H |F) =
1
2

    H

F

Example from Andrew Moore’s slides

p(F, H) = p(F)p(H |F)

=
1
40

⋅
1
2

=
1
80

p(F |H) =
p(F, H)

p(H)

=
1
80

⋅
10
1

=
1
8
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Probabilistic modeling of data
• Assume data with features  and discrete labels 


• Prior probability of each class: 


‣ Prior = before seeing the features


‣ E.g., fraction of applicants that have good credit


• Distribution of features given the class: 


‣ How likely are we to see  in applicants with good credit?


• Joint distribution: 


• Bayes' rule: posterior 

x y

p(y)

p(x |y = c)

x

p(x, y) = p(x)p(y |x) = p(y)p(x |y)

p(y |x) =
p(y)p(x |y)

p(x)
=

p(y)p(x |y)
∑c p(y = c)p(x |y = c)

x ⟶ y
y ⟶ x

models:

does not imply causality!
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• Learn a “class-conditional” model for the data


‣ Estimate the probability for each class 


‣ Split training data by class 


‣ Estimate from  the conditional distribution 


• For discrete , can represent as a contingency table


p(y = c)

𝒟c = {x( j) : y( j) = c}

𝒟c p(x |y = c)

x

Bayes classifiers

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5
p(y) 383/690 307/690

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250

p(x|y=0) p(x|y=1)

42/383 15/307

338/383 287/307

3/383 5/307
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• Learn a “class-conditional” model for the data


‣ Estimate the probability for each class 


‣ Split training data by class 


‣ Estimate from  the conditional distribution 


• For continuous , we need some other density model


‣ Histogram


‣ Gaussian


‣ others...

p(y = c)

𝒟c = {x( j) : y( j) = c}

𝒟c p(x |y = c)

x

Bayes classifiers
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Histograms

• Split training data by class 


• For each class, split  into  bins and count data points in each bin


• Normalize the -dimensional count vector to get 


• To use: given , find its bin, output probability for that bin


𝒟c = {x( j) : y( j) = c}

x k

k p(x |y = c)

x
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Gaussian models
• Model instances in each class with a Gaussian 


• Estimate parameters of each Gaussians from the data 


‣  where 


‣ 


‣ 


p(x |y = c) ∼ 𝒩(μc, σ2
c )

𝒟c

̂p(y = c) =
mc

m
mc = |𝒟c |

̂μc =
1

mc ∑
j: y( j)=c

x( j)

̂σ2
c =

1
mc ∑

j: y( j)=c

(x( j) − ̂μc)2
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• Multivariate Gaussian: 


• Estimation similar to univariate case:


‣ 


‣  (outer product)


• How many parameters?


‣ 


𝒩(x; μ, Σ) = (2π)− d
2 |Σ |− 1

2 exp (−
1
2

(x − μ)⊺Σ−1(x − μ))

̂μc =
1

mc ∑
j

x( j)

Σ̂c =
1

mc ∑
j

(x( j) − ̂μc)(x( j) − ̂μc)⊺

d + d2

Multivariate Gaussian models

-2 -1 0 1 2 3 4 5-2

-1

0

1

2

3

4

5

 = mean ( -dimensional vector) 
 = covariance (  matrix) 

 = precision (  matrix) 
 = determinant (scalar)

μ d
Σ d × d
Σ−1 d × d
| ⋅ |
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Gaussian Bayes: Iris example

• ; 


• Fit mean and covariance for each class, 


• How to use:


‣ 


‣ Maximum posterior (MAP): 

̂p(y = c) =
50

150
y ∼ Categorical ( 1

3
,

1
3

,
1
3 )

̂p(x |y = c) = 𝒩(x; ̂μc, Σ̂c)

̂p(y |x) =
̂p(y) ̂p(x |y)

̂p(x)
∝ ̂p(y) ̂p(x |y)

̂y(x) = arg max
y

̂p(y) ̂p(x |y)
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Today's lecture

Bayes classifiers

Naïve Bayes Classifiers

Bayes error
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Representing joint distributions

• Assume data with binary features


• How to represent ?


• Create a truth table of all  values


• Specify  for each entry


• How many parameters?


‣

p(x |y)

x

p(x |y)

2n − 1

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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Representing joint distributions

• Assume data with binary features


• How to represent ?


• Create a truth table of all  values


• Specify  for each cell


• How many parameters?


‣

p(x |y)

x

p(x |y)

2n − 1

A B C p(A,B,C | y=1)

0 0 0 0.50

0 0 1 0.05

0 1 0 0.01

0 1 1 0.10

1 0 0 0.04

1 0 1 0.15

1 1 0 0.05

1 1 1 0.10
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Estimating joint distributions

• Can we estimate  from data?


• Count how many data points for each ?


• If , most instances never occur


‣ Do we predict that missing instances are impossible?


- What if they occur in test data?


• Difficulty to represent and estimate go hand in hand


‣ Model complexity → overfitting!

p(x |y)

x

m ≪ 2n

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10
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Regularization

• Reduce effective size of model class


‣ Hope to avoid overfitting


• One way: make the model more “regular”, less sensitive to data quirks


• Example: add small “pseudo-count” to the counts (before normalizing)


‣ 


‣ Not a huge help here, most cells will be uninformative 

̂p(x |y = c) =
#c(x) + α

mc + α ⋅ 2n

α
mc + α ⋅ 2n
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Simplifying the model
• Another way: reduce model complexity


• Example: assume features are independent of one another (in each class)


‣ 


• Now we only need to represent / estimate each  individually


p(x1, x2, …, xn |y) = p(x1 |y)p(x2 |y)⋯p(xn |y)

p(xi |y)

y ⟶ x

⟶
⟶
⟶y

x1
x2

xn

⋮

A p(A |y=1)

0 .4

1 .6

A B C p(A,B,C | y=1)

0 0 0 .4 * .7 * .1

0 0 1 .4 * .7 * .9

0 1 0 .4 * .3 * .1

0 1 1 …

1 0 0

1 0 1

1 1 0

1 1 1

B p(B |y=1)

0 .7

1 .3

C p(C |y=1)

0 .1

1 .9
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Naïve Bayes models
• We want to predict some value , e.g. auto accident next year


• We have many known indicators for  (covariates) 


‣ E.g., age, income, education, zip code, ...


‣ Learn  — but cannot represent / estimate  values


• Naïve Bayes


‣ Estimate prior distribution 


‣ Assume , estimate covariates independently 


‣ Model: 

y

y x = x1, …, xn

p(y |x1, …, xn) O(2n)

̂p(y)

p(x1, …, xn |y) = ∏
i

p(xi |y) ̂p(xi |y)

̂p(y |x) ∝ ̂p(y)∏
i

̂p(xi |y)

causal structure wrong! 
(but useful...)

y ⟶ x

⟶
⟶
⟶y

x1
x2

xn

⋮
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Naïve Bayes models: example
• 


•  = observed words in email


‣ E.g., [“the” ... “probabilistic” ... “lottery” ...]


‣  (  = word appears;  = otherwise)


• Representing  directly would require  parameters


• Represent each word indicator as independent (given class)


‣ Reducing model complexity to thousands of parameters


• Words more likely in spam pull towards higher , and v.v.

y ∈ {spam, not spam}

x

x = [0,1,0,0,…,0,1] 1 0

p(x |y) 2thousands

p(spam |x)
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Numeric example

• 


• 


• 


• 


• What to predict for ?


‣

̂p(y = 1) =
4
8

= 1 − ̂p(y = 0)

̂p(x1, x2 |y) = ̂p(x1 |y) ̂p(x2 |y)

̂p(x1 = 1 |y = 0) =
3
4

̂p(x1 = 1 |y = 1) =
2
4

̂p(x2 = 1 |y = 0) =
2
4

̂p(x2 = 1 |y = 1) =
1
4

x1, x2 = 1,1

̂p(y = 0) ̂p(x = 1,1 |y = 0) =
4
8

⋅
3
4

⋅
2
4

̂p(y = 1) ̂p(x = 1,1 |y = 1) =
4
8

⋅
2
4

⋅
1
4

x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

prediction: ̂y = 0



Roy Fox | CS 273A | Winter 2021 | Lecture 3: Bayes Classifiers

Numeric example

• 


• 


• 


• 


• What is ?


‣

̂p(y = 1) =
4
8

= 1 − ̂p(y = 0)

̂p(x1, x2 |y) = ̂p(x1 |y) ̂p(x2 |y)

̂p(x1 = 1 |y = 0) =
3
4

̂p(x1 = 1 |y = 1) =
2
4

̂p(x2 = 1 |y = 0) =
2
4

̂p(x2 = 1 |y = 1) =
1
4

̂p(y = 1 |x1 = 1,x2 = 1)

̂p(y = 0) ̂p(x = 1,1 |y = 0) =
4
8

⋅
3
4

⋅
2
4

̂p(y = 1) ̂p(x = 1,1 |y = 1) =
4
8

⋅
2
4

⋅
1
4

x1 x2 y

1 1 0

1 0 0

1 0 1

0 0 0

0 1 1

1 1 0

0 0 1

1 0 1

̂p(y = 1) ̂p(x = 1,1 |y = 1)
̂p(x = 1,1)

=
̂p(y = 1) ̂p(x = 1,1 |y = 1)

̂p(y = 0) ̂p(x = 1,1 |y = 0) + ̂p(y = 1) ̂p(x = 1,1 |y = 1)
=

4
8 ⋅ 2

4 ⋅ 1
4

4
8 ⋅ 3

4 ⋅ 2
4 + 4

8 ⋅ 2
4 ⋅ 1

4

=
1
4
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Recap

• Bayes' rule: 


• Bayes classifiers: estimate  and  from data


• Naïve Bayes classifiers: assume independent features 


‣ Estimate each  individually


• Maximum posterior (MAP): 


‣ Normalizer  not needed

p(y |x) =
p(y)p(x |y)

p(x)

p(y) p(x |y)

p(x |y) = ∏
i

p(xi |y)

p(xi |y)

̂y(x) = arg max
y

p(y |x) = arg max
y

p(y)p(x |y)

p(x)
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Today's lecture

Bayes classifiers

Naïve Bayes Classifiers

Bayes error
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Bayes classification error

• What is the training error of the MAP prediction ?


• 


• Bayes error rate: probability of misclassification by MAP of true posterior

̂y(x) = arg max
y

p(y |x)

p( ̂y ≠ y) =
15 + 287 + 3

690
= 0.442

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5

prediction:

bad

bad

good

errors
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Bayes error rate
• Suppose that we know the true probabilities 


‣ And that we can compute prior  and posterior 


• Bayes-optimal decision = MAP: 


• Bayes error rate: 


‣ This is the optimal error rate of any classifier


‣ Measures intrinsic hardness of separating  values given only 


- But may get better with more features


• Normally we cannot estimate the Bayes error rate, only approximate with good classifier

p(x, y)

p(y) p(y |x)

̂y = arg max
y

p(y |x)

𝔼x,y∼p[ ̂y ≠ y] = 𝔼x∼p[1 − max
y

p(y |x)]

y x
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Bayes error rate: Gaussian example

decision boundary

p(y = 0)p(x |y = 0)

p(y = 1)p(x |y = 1)

area: p(y = 0)

area: p(y = 1)

, ̂y = 1 y = 0, ̂y = 0 y = 1
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• Not all errors are equally bad


‣ Do some cost more? (e.g. red / green light, diseased / healthy)


• False negative rate: ; false positive rate: 
p(y = 1, ̂y = 0)

p(y = 1)
p(y = 0, ̂y = 1)

p(y = 0)

Types of error

“positive”

“negative”

false positive

false negative
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• Weight different costs differently


‣ 


• Increase  to prefer class 0

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error
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• Weight different costs differently


‣ 


• Decrease  to prefer class 1

α ⋅ p(y = 0)p(x |y = 0) ≶ p(y = 1)p(x |y = 1)

α

Cost of error
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Logistics

assignment 1 • Assignment 1 is due Thursday

resources • A list of great ML textbooks is on the website


