CS 273A: Machine Learning Winter 2021
 Lecture 2: Nearest Neighbors

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

Logistics

- Assignment 1 is up on Canvas and gradescope

assignment 1

- Due: Thu, Jan 14 (PT)
- Lectures will be recorded and added to this playlist.

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

Nearest-Neighbor regression

- $f(x)=y^{(i)}$, such that $x^{(i)} \in \mathscr{D}$ is the closest data point to x

Nearest-Neighbor regression

- Decision function $f: x \mapsto y$ is piecewise constant (for 1D x)
- Data induces f implicitly; f is never stored explicitly, but can be computed

Alternative: linear regression

- Decision function $f: x \mapsto y$ is linear, $f(x)=\theta_{0}+\theta_{1} x$
- f is stored by its parameters $\theta=\left[\begin{array}{ll}\theta_{0} & \theta_{1}\end{array}\right]$

Measuring error

- Error / residual: $\epsilon=y-\hat{y}$
. Mean square error (MSE): $\frac{1}{m} \sum_{i}\left(\epsilon^{(i)}\right)^{2}=\frac{1}{m} \sum_{i}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}$

Classification

- Using colors as our "third dimension", we can visualize in 2D
- Particularly clear for classification, where y is discrete

Measuring error

. Error rate: $\frac{1}{m} \sum_{i} \delta\left[y^{(i)} \neq \hat{y}^{(i)}\right]$

Decision boundary is piecewise linear

- For every two data points $x^{(i)}, x^{(j)}$ of different classes $y^{(i)} \neq y^{(j)}$
- The hyperplane orthogonal to their midpoint is where $d\left(x, x^{(i)}\right)=d\left(x, x^{(j)}\right)$
- The decision boundary consists of some of these hyperplanes

Voronoi tessellation

- Each data point has a region in which it is the nearest neighbor
- This region is a polygon
- The decision boundary consists of the edges that cross classes

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

Overfitting and complexity

- Simple linear model
- Fits the training data, but with errors
- Interpolation seems reasonable

Overfitting and complexity

- High-order polynomial model
- Fits the training data perfectly
- Interpolation? more like confabulation, amirite?

Overfitting and complexity

- New test data will also have prediction errors
- Good generalization = test errors will be similar to training errors

Overfitting and complexity

- A complex model may fit the training data well \rightarrow low training error
- But it may generalize poorly to test data \rightarrow high test error
- This is called overfitting the training data

How overfitting affects prediction error

- Low model complexity \rightarrow underfitting
- High test error = high training error + low generalization error
- High model complexity \rightarrow overfitting
- High test error = low training error + high generalization error

Validation

- How can we choose the model complexity? with learning!
- Model selection = choose our model class
- Score function: low test error = training error + generalization error

Model learning

Model selection

Recap: overfitting and complexity

- Test error = training error + generalization error
- Model complexity may lead to overfitting
- Fit the training data very well, but generalize poorly
- Model simplicity may lead to underfitting
- Do as poorly on the test data as on the training data

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

k-Nearest Neighbor (kNN)

- Find the k nearest neighbors to x in the dataset
- Given x, rank the data points by their distance from $x, d\left(x, x^{(j)}\right)$
- Usually, Euclidean distance $d\left(x, x^{(j)}\right)=\sqrt{\frac{1}{n} \sum_{i}\left(x_{i}-x_{i}^{(j)}\right)^{2}}$
- Select the k data points which are have smallest distance to x
- What is the prediction?
- Regression: average $y^{(j)}$ for the k closest training examples
- Classification: take a majority vote among $y^{(j)}$ for the k closest training examples
- No ties in 2-class problems when k is odd

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
- Majority voting means less emphasis on individual points

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
- Majority voting means less emphasis on individual points

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
- Majority voting means less emphasis on individual points

Error rates and k

- A complex model fits training data but generalizes poorly
- $k=1$: perfect memorization of examples = complex
- $k=m$: predict majority class over entire dataset = simple
- We can select k with validation

kNN classifier: further considerations

- Decision boundary smoothness
- Increases with k, as we average over more neighbors
- Decreases with training size m, as more points support the boundary
- Generally, optimal k should increase with m
- Extensions of k-Nearest Neighbors
- Do features have the same scale? importance?
${ }^{-} \quad$ Weighted distance: $d\left(x, x^{\prime}\right)=\sqrt{\sum_{i} w_{i}\left(x_{i}-x_{i}^{\prime}\right)^{2}}$
- Non-Euclidean distances may be more appropriate for type of data
- Fast search techniques (indexing) to find k closest points in high-dimensional space
. Weighted average / voting based on distance: $\hat{y}=\sum w\left(d\left(x, x^{(j)}\right)\right) y^{(j)}$

Recap: k-Nearest Neighbors

- Piecewise linear decision boundary
- Just for analysis - the algorithm doesn't compute the boundary
- With $k>1$:
- Regression \rightarrow (weighted) average
- Classification \rightarrow (weighted) vote
- Overfitting and complexity:
- Model "complexity" goes down as k grows
- Use validation data to estimate test error rates and select k

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

A basic classifier

- Training data: $\mathscr{D}=\left\{x^{(i)}, y^{(i)}\right\}_{i}$, classifier: $f(x ; \mathscr{D})$
- If x has discrete features $\rightarrow f(x ; \mathscr{D})$ is a contingency table
- Example: credit rating prediction (bad/good)
- $x=$ income (low / med / high)

Features	\# bad	\# good
$x=0$	42	15
$x=1$	338	287
$x=2$	3	5

- How can we make the highest proportion of correct predictions?
- Predict the more likely outcome for each possible observation

A basic classifier

- Training data: $\mathscr{D}=\left\{x^{(i)}, y^{(i)}\right\}_{i}$, classifier: $f(x ; \mathscr{D})$
- If x has discrete features $\rightarrow f(x ; \mathscr{D})$ is a contingency table
- Example: credit rating prediction (bad/good)
- $x=$ income (low / med / high)

Features	\# bad	\# good
$x=0$.7368	.2632
$x=1$.5408	.4592
$x=2$.3750	.6250

- How can we make the highest proportion of correct predictions?
- Predict the more likely outcome for each possible observation
- Normalize counts into probabilities: $p(y=\operatorname{good} \mid x=c)$
- How does this scale to multiple features?

Logistics

- Assignment 1 is up on Canvas and gradescope

assignment 1

- Due: Thu, Jan 14 (PT)
- Lectures will be recorded and added to this playlist.

