CS 273A: Machine Learning Winter 2021 Lecture 2: Nearest Neighbors

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

assignment 1

- lacksquare

Assignment 1 is up on Canvas and gradescope Due: Thu, Jan 14 (PT)

Lectures will be recorded and added to this playlist.

Today's lecture

Nearest Neighbors

Overfitting and complexity

Bayes classifiers

Roy Fox | CS 273A | Winter 2021 | Lecture 2: Nearest Neighbors

k-Nearest Neighbors

Nearest-Neighbor regression

• $f(x) = y^{(i)}$, such that $x^{(i)} \in \mathcal{D}$ is the closest data point to x

Nearest-Neighbor regression

- Decision function $f: x \mapsto y$ is piecewise constant (for 1D x)

Data induces f implicitly; f is never stored explicitly, but can be computed

Alternative: linear regression

Measuring error

• Error / residual: $\epsilon = y - \hat{y}$

Mean square error (MSE): $\frac{1}{-1} \sum (\epsilon^{(i)})^2$ M

Roy Fox | CS 273A | Winter 2021 | Lecture 2: Nearest Neighbors

Classification

- Using colors as our "third dimension", we can visualize in 2D
- Particularly clear for classification, where y is discrete

Measuring error

• Error rate:
$$\frac{1}{m} \sum_{i} \delta[y^{(i)} \neq \hat{y}^{(i)}]$$

Decision boundary is piecewise linear

- For every two data points $x^{(i)}$, $x^{(j)}$ of different classes $y^{(i)} \neq y^{(j)}$
 - The hyperplane orthogonal to their midpoint is where $d(x, x^{(i)}) = d(x, x^{(j)})$
 - The decision boundary consists of some of these hyperplanes

Voronoi tessellation

- Each data point has a region in which it is the nearest neighbor
 - This region is a polygon
- The decision boundary consists of the edges that cross classes

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

- Simple linear model
- Fits the training data, but with errors
- Interpolation seems reasonable

- High-order polynomial model
- Fits the training data perfectly
- Interpolation? more like confabulation, amirite?

- New test data will also have prediction errors
- Good generalization = test errors will be similar to training errors

- A complex model may fit the training data well \rightarrow low training error
- But it may generalize poorly to test data \rightarrow high test error
- This is called overfitting the training data

How overfitting affects prediction error

- Low model complexity → underfitting
 - High test error = high training error + low generalization error
- High model complexity → overfitting
 - High test error = low training error + high generalization error

Validation

- How can we choose the model complexity? with learning!
 - Model selection = choose our model class
 - Score function: low test error = training error + generalization error

Model learning

Model selection

Recap: overfitting and complexity

- Test error = training error + generalization error
- Model complexity may lead to overfitting
 - Fit the training data very well, but generalize poorly
- Model simplicity may lead to underfitting
 - Do as poorly on the test data as on the training data

Today's lecture

Nearest Neighbors

Overfitting and complexity

k-Nearest Neighbors

Bayes classifiers

k-Nearest Neighbor (kNN)

- Find the k nearest neighbors to x in the dataset
 - Given x, rank the data points by their distance from x, $d(x, x^{(j)})$

- Usually, Euclidean distance $d(x, x^{(j)}) = \sqrt{1}$

- Select the k data points which are have smallest distance to x
- What is the prediction?
 - Regression: average $y^{(j)}$ for the k closest training examples
 - Classification: take a majority vote among
 - No ties in 2-class problems when k is odd

$$\frac{1}{n} \sum_{i} (x_i - x_i^{(j)})^2$$

$$y^{(j)}$$
 for the k closest training examples

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
 - Majority voting means less emphasis on individual points

$$k = 3$$

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
 - Majority voting means less emphasis on individual points

$$k = 7$$

kNN decision boundary

- For classification, the decision boundary is piecewise linear
- Increasing k "simplifies" the decision boundary
 - Majority voting means less emphasis on individual points

Error rates and k

training data "memorized"

- A complex model fits training data but generalizes poorly
- k = 1: perfect memorization of examples = complex
- k = m: predict majority class over entire dataset = simple
- We can select k with validation

kNN classifier: further considerations

- Decision boundary smoothness
 - Increases with k, as we average over more neighbors
 - Decreases with training size m, as more points support the boundary
 - Generally, optimal k should increase with m
- Extensions of k-Nearest Neighbors
 - Do features have the same scale? importance?

Weighted distance:
$$d(x, x') = \sqrt{\sum_{i} w_i (x_i - x'_i)^2}$$

- Non-Euclidean distances may be more appropriate for type of data
- Fast search techniques (indexing) to find k closest points in high-dimensional space

Weighted average / voting based on distance: $\hat{y} = \sum w(d(x, x^{(j)}))y^{(j)}$

Recap: *k*-Nearest Neighbors

- Piecewise linear decision boundary
 - Just for analysis the algorithm doesn't compute the boundary
- With k > 1:
 - Regression \rightarrow (weighted) average
 - Classification \rightarrow (weighted) vote
- Overfitting and complexity:
 - Model "complexity" goes down as k grows
 - Use validation data to estimate test error rates and select k

Today's lecture

Nearest Neighbors

Overfitting and complexity

Bayes classifiers

Roy Fox | CS 273A | Winter 2021 | Lecture 2: Nearest Neighbors

k-Nearest Neighbors

A basic classifier

- Training data: $\mathcal{D} = \{x^{(i)}, y^{(i)}\}_i$, classifier: $f(x; \mathcal{D})$
 - If x has discrete features $\rightarrow f(x; \mathscr{D})$ is a contingency table
- Example: credit rating prediction (bage
 - x = income (low / med / high)
- How can we make the highest proportion of correct predictions?
 - Predict the more likely outcome for each possible observation

Features	# bad	# good
x = 0	42	15
x = 1	338	287
x = 2	3	5

A basic classifier

- Training data: $\mathcal{D} = \{x^{(i)}, y^{(i)}\}_i$, classifier: $f(x; \mathcal{D})$
 - If x has discrete features $\rightarrow f(x; \mathscr{D})$ is a contingency table
- Example: credit rating prediction (ba
 - x = income (low / med / high)
- How can we make the highest proportion of correct predictions?
 - Predict the more likely outcome for each possible observation
- Normalize counts into probabilities:
 - How does this scale to multiple features?

ld/good)	Features	# bad	# good
	x = 0	.7368	.2632
	x = 1	.5408	.4592
	x = 2	.3750	.6250

$$p(y = good | x = c)$$

assignment 1

- lacksquare

Assignment 1 is up on Canvas and gradescope Due: Thu, Jan 14 (PT)

Lectures will be recorded and added to this playlist.