CS 273A: Machine Learning Winter 2021 Lecture 19: Final Review

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

Final Logistics

- Format:
 - Time: Thursday, March 18, 1:30–4pm
 - Canvas "quiz": multiple choice, numerical, textual, drawing \implies let us know about technical difficulties
 - Many questions, ~75% longer than midterm, but should be doable in < 2 hours
 - We'll be on zoom to address questions and issues: <u>https://uci.zoom.us/j/94903054276</u>
- You can use:
 - Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
 - A basic arithmetic calculator; no phones, no computers
 - Blank paper sheets for your calculations
 - Brainpower and good vibes
- No proctoring; the penalty for cheating is being the kind of person who cheats

Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

Exam suggestions

- Large majority of the questions are on topics taught after midterm \bullet
- Look at past exams ullet
 - Train yourself by reading some solutions, evaluate yourself on held-out exams
- Organize / join study groups (e.g. on piazza)
- During the exam:
 - Start with questions you find easy
 - Don't get bogged down by exact calculations
 - Leave expressions unsolved and come back to them later
 - Optional: upload your calculation sheet(s)
 - They won't be graded, but can be used for regrading

Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Deep Neural Networks (DNNs)

- Layers of perceptrons can be stacked deeply
 - Deep architectures are subject of much current research

input layer 1 layer 2 layer 3 features • • •

• • •

Feed-forward (FF) networks

- Information flow in feed-forward (FF) networks:
 - Inputs \rightarrow shallow layers \rightarrow deeper layers \rightarrow outputs
 - Alternative: recurrent NNs (information loops back)
- Multiple outputs \implies efficiency:
 - Shared parameters, less data, less computation
- Multi-class classification:
 - One-hot labels $y = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots \end{bmatrix}$
 - , Multilogistic regression (softmax): $\hat{y}_c = -$

 $\exp(h_c)$

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Gradient computation

- - Apply chain rule:

Backpropagation = chain rule + dynamic programming to avoid repetitions

example: $f(g,h) = \sigma(g+h) \implies \partial_g f = f(1-f)$ \implies reuse f from the forward pass

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•
$$w^* = \arg\max_{w} \frac{2}{\|w\|} = \arg\min_{w} \|w\|$$

► such that all data points predicted with enough margin: $\begin{cases} w \cdot x^{(j)} + b \ge +1 & \text{if } y^{(j)} = +1 \\ w \cdot x^{(j)} + b \le -1 & \text{if } y^{(j)} = -1 \end{cases}$

► ⇒ s.t.
$$y^{(j)}(w \cdot x^{(j)} + b) \ge 1$$
 (m

- Example of Quadratic Program (QP)
 - Quadratic objective, linear constraints

constraints)

Soft margin: dual form

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{e} \frac{1}{2} ||w||^2 + R \sum_{j} e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{\epsilon} \frac{1}{2} ||w||^2 + R \sum_j e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_j \left(\lambda_j - \frac{1}{2} \sum_k \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_j \lambda_j y^{(j)} = 0$

• Optimally:
$$w^* = \sum_{j} \lambda_j y^{(j)} x^{(j)}$$
; to hand

• Support vector = points on or inside margin = $\lambda_i > 0$

• Gram matrix =
$$K_{jk} = x^{(j)} \cdot x^{(k)} = \text{simila}$$

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

lle b: add constant feature $x_0 = 1$

J

arity of every pair of instances

Kernel SVMs

• Define kernel $K : (x, x') \mapsto \mathbb{R}$

• Solve dual QP: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{j} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} \right)$

- Learned parameters = λ (*m* parameters)
 - But also need to store all support vectors (having $\lambda_i > 0$)
- Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x))$

$$= \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x)\right) = \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K(x^{(j)}, x)\right)$$

$$(j)y^{(k)}K(x^{(j)}, x^{(k)})$$
 s.t. $\sum_{j} \lambda_{j} y^{(j)} = 0$

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Bagging

- Bagging = bootstrap aggregating:
 - Resample *K* datasets $\mathscr{D}_1, \ldots, \mathscr{D}_K$ of size *b*
 - Train K models $\theta_1, \ldots, \theta_K$ on each dataset
 - Regression: output $f_{\theta} : x \mapsto \frac{1}{K} \sum f_{\theta_k}(x)$
 - Classification: output $f_{\theta} : x \mapsto \text{majority}\{f_{\theta_{\mu}}(x)\}$
- Similar to cross-validation (for different purpose), but outputs average model
 - Also, datasets are resampled (with replacement), not a partition

Ensemble methods

- Ensemble = "committee" of models: $\hat{v}_{l}(x) = f_{0}(x)$
 - Decisions made by average / majori

May be weighted: better model = high

- - f_{A} trained on held out data = validation of which model should be trusted
 - f_{θ} linear \implies weighted committee, with learned weights

S:
$$y_k(x) = f_{\theta_k}(x)$$

ity vote: $\hat{y}(x) = \frac{1}{K} \sum_k \hat{y}_k(x)$

gher weight:
$$\hat{y}(x) = \sum_{k} \alpha_k \hat{y}_k(x)$$

• Stacking = use ensemble as inputs (as in MLP): $\hat{y}(x) = f_{\theta}(\hat{y}_1(x), \dots, \hat{y}_K(x))$

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
 - Let weights depend on *x*: $\hat{y}(x) = \sum \alpha_k(x)\hat{y}_k(x)$
- Can we predict which model will perform well?
 - Learn a predictor $\alpha_{\phi}(k \mid x)$
 - E.g., multilogistic regression (softmax

$$\mathbf{x}) \ \alpha_{\phi}(k \,|\, x) = \frac{\exp(\phi_k \cdot x)}{\sum_{k'} \exp(\phi_{k'} \cdot x)}$$

Loss, experts, weights differentiable \implies end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
 - Much data \implies max info gain stable across data samples
 - Little diversity among models \implies little gained from ensemble
- Random Forests = subsample features
 - Each tree only allowed to use a subset of features
 - Still low, but higher bias
 - Average over trees for lower variance
- Works very well in practice \implies go-to algorithm for small ML tasks

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

Gradient Boosting example: MSE loss

Ensemble:
$$\hat{y}_{K} = \sum_{k} f_{k}(x)$$
; MSE loss: $\mathscr{L}(y, \hat{y}_{k}) = \frac{1}{2}(y - \hat{y}_{k-1} - f_{k}(x))^{2}$

• To minimize: have $f_k(x)$ try to predict

$$x t y - \hat{y}_{k-1}$$

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

AdaBoost

• AdaBoost = adaptive boosting:

• Initialize
$$w_0^{(j)} = \frac{1}{m}$$

• Train classifier f_k on training data with weights w_{k-1}

Compute weighted error rate $\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_i w_{k-1}^{(j)}}$

• Compute
$$\alpha_k = \frac{1}{2} \ln \frac{1 - \epsilon_k}{\epsilon_k}$$

• Update weights $w_k^{(j)} = w_{k-1}^{(j)} e^{-y^{(j)}\alpha_k f_k(x^{(j)})}$ (increase weight for misclassified points)

Predict
$$\hat{y}(x) = \text{sign} \sum_{k} \alpha_k f_k(x)$$

k-Means

- Simple clustering algorithm
- Repeat:
 - Update the clustering = assignment of data points to clusters
 - Update the cluster's representation to match the assigned points
- Notation:
 - $x_i = \text{data point in the dataset}$
 - k = number of clusters
 - μ_c = representation of cluster *c*

k-Means optimizes the MSE loss: $\mathscr{L}(x)$

- Iterate until convergence: lacksquare
 - For each $x_i \in \mathcal{D}$, find the closest clust

$$(z, \mu) = \sum_{i} ||x_i - \mu_{z_i}||^2$$

ter:
$$z_i = \arg\min_c ||x_i - \mu_c||^2$$

Set each cluster centroid μ_c to the mean of assigned points: $\mu_c = \frac{1}{m_c} \sum x_i$ $i:z_i=c$

Hierarchical agglomerative clustering

- Another simple clustering algorithm
- Define distance (dissimilarity) between clusters $d(C_i, C_i)$
- Initialize: every data point is its own cluster
- Repeat:
 - Compute distance between each pair of clusters
 - Merge two closest clusters
- Output: tree of merge operations ("dendrogram")

• Complexity: in m - 1 iterations, merge distances and sort $\implies O(m^2 \log m)$

From dendrogram to clusters

• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data

• For a given k, or a given level of dissimilarity

dendrogram

Distance measures

•
$$d_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{avg}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} ||x|$$

•
$$d_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Important property: iterative computation

$$d(C_i \cup C_j, C_k) =$$

Gaussian Mixture Models (GMMs)

- Each cluster is modeled by a Gaussian $p(x \mid c) = \mathcal{N}(x; \mu_c, \Sigma_c)$
 - Σ_c allows non-isotropic clusters \implies weighted Euclidean distance
- Mixture = distribution over Gaussians is given by a probability vector p(c)
- Generative model = we can sample
 - Sample $z \sim p(c)$
 - Sample $x \sim p(x \mid c = z)$

Probability of this *x*: $\sum p(c = z)p(x = z)p$

$$p(x)$$
:

we don't output z, it is "latent" = hidden \implies can be any of them

$$x \mid c = z) = \sum_{c} p(c, x) = p(x)$$

Training GMMs

- k-Means:
 - Assign data points to clusters z_i
 - Update each cluster's parameters μ_c
- A "soft" version of k-Means: Expectation–Maximization (EM) algorithm
 - Find a "soft" assignment p(c | x)
 - Update model parameters p(c), p(x | c)
- The EM algorithm is extremely general, GMMs are a very special case

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: E-step

- Initialize model parameters $\pi_c = p($
- E-step (Expectation): [why "expectation"? comes from the general EM algorithm]
 - For each data point x_i , use Bayes' rule to compute:

$$r_{ic} = p(c \mid x_i) = \frac{p(c)p(x_i \mid c)}{\sum_{\bar{c}} p(\bar{c})p(x_i \mid \bar{c})} = \frac{\pi_c \mathcal{N}(x_i; \mu_c, \Sigma_c)}{\sum_{\bar{c}} \pi_{\bar{c}} \mathcal{N}(x_i; \mu_{\bar{c}}, \Sigma_{\bar{c}})}$$

(c),
$$\mu_c$$
, Σ_c

• High weight to clusters that are likely a-priori, or in which x_i is relatively probable

Expectation–Maximization: M-step

- Given assignment probabilities r_{ic}
- M-step (Maximization):
 - For each cluster c, fit the best Gaussian to the weighted assignment

$$\Sigma_c = \frac{1}{m_c} \sum_i M_i$$

Dimensionality reduction: linear features

- Example: summarize two real featu
 - If z preserves much information about x, should be able to find $x \approx f(z)$
- Linear embedding:
 - $x \approx z v$
 - zv should be the closest point to x along v

$$- \implies z = x \cdot v$$

res
$$x = [x_1, x_2] \rightarrow$$
 one real feature z

Singular Value Decomposition (SVD)

- Alternative method for finding covariance eigenvectors
 - Has many other uses
- Singular Value Decomposition (SVD): $X = UDV^{T}$
 - U and V (left- and right singular vectors) are orthogonal: $U^{\dagger}U = I, V^{\dagger}V = I$
 - D (singular values) is rectangular-diagonal
 - $\Sigma = X^{\mathsf{T}}X = VD^{\mathsf{T}}U^{\mathsf{T}}UDV^{\mathsf{T}} = V(D^{\mathsf{T}}D)V^{\mathsf{T}}$
- - We can truncate this after top k singular values (square root of eigenvalues)

• UD matrix gives coefficients to reconstruct data: $x_i = U_{i,1}D_{1,1}v_1 + U_{i,2}D_{2,2}v_2 + \cdots$

Latent-space models: extensions

Add lower-order terms: $r_{m\mu} \approx \mu +$

- μ = overall average rating (affected by user interface etc.)
- $b_m + b_\mu$ = item and user biases
- Can add non-linearity (saturating?)

Gradient decent on loss, e.g. MSE

Train using a gradient-based optimizer

$$b_m + b_u + \sum_k U_{mk} V_{ku}$$

$$:\mathscr{L}(U,V) = \sum_{u,m} \left(X_{mu} - \sum_{k} U_{mk} V_{ku} \right)^2$$

Roy Fox | CS 273A | Winter 2021 | Lecture 16: Latent-Space Models (cont.)

Why active learning?

- Expensive labels \implies prefer to label instances relevant to the decision \bullet
- Selecting relevant points may be hard too \implies automate with active learning
- Objective: learn good model while minimizing #queries for labels

Active learning settings

- Pool-Based Sampling
 - Learner selects instances in dataset $x \in \mathcal{D}$ to label
- Stream-Based Selective Sampling
 - Learner gets stream of instances x_1, x_2, \ldots , decides which to label
- Membership Query Synthesis
 - earner generates instance x
 - Doesn't have to occur naturally = p(x) may be low

 $- \implies$ May be harder for teacher to label ("is this synthesized image a dog or a cat?")

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_1, \ldots, a_k
 - Each time we take action a_i we see a noisy reward $r_t \sim p_i$
- Can we maximize the expected reward $\max_i \mathbb{E}_{r \sim p_i}[r]$?
 - We can use the mean as an estimate

- Challenge: is the best mean so far the best action?
 - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{m_i} \sum_{t \in T_i} r_t$$

One-armed bandit

Multi-armed bandit

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
 - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rew
- Be optimistic by slowly-growing number of standard deviations: $a = \arg \max_{i} \hat{\mu}_{i} + \sqrt{\frac{2 \ln T}{m_{i}}}$
 - Confidence bound: likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown constant in the variance \implies let c grow
 - But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T) = O(\log T)$, provably optimal

vard of each arm
$$\hat{\mu}_i$$
 quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{m_i}\right)\right)$

Agent-environment interface

- Environment
 - Executes the action \rightarrow changes its state
 - Generates next observation
 - Supervisor: reveals the reward
- Agent
 - Policy decides on next action $\pi(a_t | x_t)$
 - Context can be full state $x_t = s_t$
 - Or any summary of observable history $x_t = f(h_t)$

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Agent context x_t

Observable history: everything the agent saw so far

•
$$h_t = (o_1, a_1, r_1, o_2, \dots, a_{t-1}, r_{t-1}, o_t)$$

- The context x_t used for the agent's policy $\pi(a_t | x_t)$ can be:
 - Reactive policy: $x_t = o_t$ (optimal under full observability: $o_t = s_t$)
 - Using previous action: $x_t = (a_{t-1}, o_t) \implies$ can be useful if policy is stochastic
 - Using previous reward: $x_t = (r_{t-1}, o_t) \implies$ extra information about the environment

 - Generally: any summary (= memory) of

• Window of past observations: $x_t = (o_{t-3}, o_{t-2}, o_{t-1}, o_t) \Longrightarrow$ better see dynamics

observable history
$$x_t = f(h_t)$$

Markov Property

"The future is independent of the past given the present"

Definition

A state S_t is *Markov* if and only if $\mathbb{P}\left[S_{t+1} \mid S_t\right] =$

The state captures all relevant information from the history Once the state is known, the history may be thrown away • i.e. The state is a sufficient statistic of the future

$$= \mathbb{P}\left[S_{t+1} \mid S_1, ..., S_t\right]$$

State Transition Matrix

For a Markov state *s* and successor state *s*['], the *state transition* probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s',

> = from \mathcal{P}

where each row of the matrix sums to 1.

$$\begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

Return as expected future reward

Definition

$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

The discount $\gamma \in [0, 1]$ is the present value of future rewards The value of receiving reward R after k + 1 time-steps is $\gamma^k R$. This values immediate reward above delayed reward. • γ close to 0 leads to "myopic" evaluation • γ close to 1 leads to "far-sighted" evaluation

The *return* G_t is the total discounted reward from time-step t.

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

Definition

A Markov Decision Process is

- \bullet S is a finite set of states
- \blacksquare \mathcal{A} is a finite set of actions
- \mathbf{P} is a state transition probability matrix, $\mathcal{P}^{a}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t \in S_t \right]$
- $\blacksquare \mathcal{R}$ is a reward function, \mathcal{P}
- γ is a discount factor $\gamma \in [0, 1]$.

a tuple
$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

$$S = s, A_t = a]$$

 $R_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = s\right]$

a

Bellman Expected Equation, V

 $v_{\pi}(s) = \sum \pi(a|s) \left(\mathcal{R}^{a}_{s} + \gamma \sum \mathcal{P}^{a}_{ss'} v_{\pi}(s') \right)$ *s*′∈*S* $a \in \mathcal{A}$

Bellman Exp Eq: Matrix Form

The Bellman expectation equation can be expressed concisely using the induced MRP,

with direct solution

 $\mathbf{v}_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}_{\pi}$

 $\mathbf{v}_{\pi} = (\mathbf{I} - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$

Bellman Optimality Eq, V

 $v_*(s) = \max \mathcal{R}$ а

$$\mathcal{C}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{*}(s')$$

Value Iteration

 $v_k(s') \leftrightarrow s' \bigcirc$

 $\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^{a} + \gamma \mathcal{P}^{a} \mathbf{v}_{k}$

 $v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} v_k(s') \right)$

Policy Iteration

Policy evaluation Estimate v_{π}

MC and TD

Goal: learn v_{π} online from experience under policy π Incremental every-visit Monte-Carlo • Update value $V(S_t)$ toward *actual* return G_t

• $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD* target

- $V(S_t) \leftarrow V(S_t) + \alpha (G_t V(S_t))$
- Simplest temporal-difference learning algorithm: TD(0) • Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$
 - $V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{R}_{t+1} + \gamma V(S_{t+1}) V(S_t) \right)$
 - $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD* error