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Final Logistics

e Format:

> Time: Thursday, March 18, 1:30-4pm

> Canvas “quiz”: multiple choice, numerical, textual, drawing = let us know about technical difficulties
> Many questions, ~75% longer than midterm, but should be doable in < 2 hours

> We'll be on zoom to address questions and issues: https://uci.zoom.us/j/94903054276

e YOu can use:
> Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
> A basic arithmetic calculator; no phones, no computers
> Blank paper sheets for your calculations

> Brainpower and good vibes

* No proctoring; the penalty for cheating is being the kind of person who cheats
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https://uci.zoom.us/j/94903054276

Exam suggestions

Large majority of the questions are on topics taught after midterm

Look at past exams

> Train yourself by reading some solutions, evaluate yourself on held-out exams
Organize / join study groups (e.g. on piazza)

During the exam:

> Start with questions you find easy

> Don't get bogged down by exact calculations

> Leave expressions unsolved and come back to them later

> Optional: upload your calculation sheet(s)

- They won't be graded, but can be used for regrading
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Multi-Layer Perceptron (MLP)

r 1
Wi 2 A
W
Xq 01
W F2
12 Ws
W02 2 > T Z > T
1 W F(x) = TwT®(x)) = T(w, F,(x) + woFo(x) + wiF3(x) + wy)
3
Wo3 > A

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks



Multi-Layer Perceptron (MLP)

F 1
W11 )> A

W

Xq 01
w F2
12 W2
1 W F(x) = TwT®(x)) = T(w F,(x) + woF,(x) + wyF5(x) + wy)
3
Wo3 > A
regression ‘

F(x) = wTd(x) |

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks



Multi-Layer Perceptron (MLP)

Fl
Wy > " O
W
Xq 01
F2
W12 W,
Wo2 2 O 2. s O
1 W F(x) = c(WTD(x)) = o(w,F,(x) + woF,(x) + wiF5(x) + wy)
3
regression

Fx) =wid(x) ~

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks



Deep Neural Networks (DNNs)

e |ayers of perceptrons can be stacked deeply

> Deep architectures are subject of much current research
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Feed-forward (FF) networks

* Information flow in feed-forward (FF) networks: hidden layer

> Inputs — shallow layers — deeper layers — outputs _ ‘
Inputs A outputs

> Alternative: recurrent NNs (information loops back) , ‘
 Multiple outputs = efficiency: ‘V’f'.“?y/'
| TS
S\ /"
» Shared parameters, less data, less computation \ W

e Multi-class classification: '

> One-hotlabelsy=10 0 1 0 -.-] I

information

exp(h,.)
2 - exp(h;z)

., Multilogistic regression (softmax): y,. =
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Gradient computation

hidden layer

» MLPs are function compositions of single layers

> Apply chain rule:

T () %= oS G
- deh—, - 4
-0 @

example: f(g,h) = o(g+ h) = agf=f(1 —f)

—> reuse f from the forward pass

 Backpropagation = chain rule + dynamic programming to avoid repetitions
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Maximizing the margin

o Constrained optimization: get all data points correctly + maximize the margin

. WF¥ =arg max — = arg min ||w||
2wl "

woxP+b>41 ify? =41

> such that all data points predicted with enough margin: {

w-axWepb< -1 ifyl) = -1

> = s.t. YO w - xY + b) > 1 (m constraints)

 Example of Quadratic Program (QP)

» Quadratic objective, linear constraints
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Soft margin: dual form

. S -
Primal problem: w*, b* = arg min min EHWH2 + R E el
w,b € .
J

° 0<A<R

Dual problem: max Z /lj—% 2 /Ij/lky(j)y(k)x(j) . x ) s.t. Z AyWPD =0
] k

>

Optimally: w* = Z /ij(j)x(j); to handle b: add constant feature x, = 1
J

» Support vector = points on or inside margin = /IJ- > 0

» Gram matrix = Kjk = xW) . x0 - similarity of every pair of instances
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Kernel SVMs

e Define kernel K : (x,x") |

0<A<R =
J

. Solve dual QP: max Z (/lj—% Z /ljxlky(j)y(k)K(x(j),x(k))> s.t. Z /ljy(j) =0
k

o |earned parameters = A (m parameters)

» But also need to store all support vectors (having /1]- > ()

e Prediction: y(x) = sign(w - P(x))

= sign Z /ljy(j)CD(x(j)) - D(x) | = s1gn Z /ljy(j)K(x(j),x)
J J
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Bagging
 Bagging = bootstrap aggregating:
> Resample K datasets 9, ..., D, of size b

> Train K models 0, ..., 0, on each dataset

. , 1
Regression: output f, : x e Z fgk(X)
k

>

- Classification: output f, : X = majority{fy (x) }

e Similar to cross-validation (for different purpose), but outputs average model

> Also, datasets are resampled (with replacement), not a partition
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Ensemble methods
. Ensemble = “committee” of models: y,(x) = fek(x)

>

Decisions made by average / majority vote: y(x) = % Z Vi (x)
k

>

May be weighted: better model = higher weight: y(x) = Z .y, (x)
k

» Stacking = use ensemble as inputs (as in MLP): y(x) = fo(V{(X), ..., Yg(x))
~ f,trained on held out data = validation of which model should be trusted

» [y linear = weighted committee, with learned weights
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Mixture of Experts (MoE)

o Experts = models can “specialize”, good only for some instances

mixture of 3

Let weights depend on x: y(X) — Z ak(X)j\/k(X) . linear predictors
' |

>

e Can we predict which model will perform well?

> Learn a predictor a (k| x)

exp(¢y - x)
zk/ eXp(¢k’ ' )C)

E.g., multilogistic regression (softmax) a¢(k\x) =

» Loss, experts, weights differentiable =— end-to-end gradient-based learning
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Random Forests

 Bagging over decision trees: which feature at root?
> Much data = max info gain stable across data samples

> Little diversity among models — little gained from ensemble

e Random Forests = subsample features
> Each tree only allowed to use a subset of features
> Still low, but higher bias

> Average over trees for lower variance

 Works very well in practice = go-to algorithm for small ML tasks
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Gradient Boosting example: MSE loss

> To minimize: have f,(x) try to predict y — y,_;

> Then update y, = y, | + f.(x)
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AdaBoost

 AdaBoost = adaptive boosting:

e ' 1
» |nitialize W(]) = —
0 m

~ Train classifier f, on training data with weights w,_,

2wy # ()]
~ Compute weighted error rate €;, = .
5w,

l — ¢,

1
> COmpUte Olk — 5 ln -
k

. Update weights wlgj) — wlg)le_y(j 2 /i*”) (increase weight for misclassified points)

 Predict $(x) = sign Z ()
k
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k-Means

e Simple clustering algorithm
 Repeat:
> Update the clustering = assignment of data points to clusters

» Update the cluster's representation to match the assigned points

e Notation:

> X; = data point in the dataset

» k = number of clusters

> U = representation of cluster ¢
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k-Means

_ k-Means optimizes the MSE loss: Z£(z, ) = Z [x; — ﬂzl.Hz

l

* |terate until convergence:

., For each x; € U, find the closest cluster: z; = arg min ||x; — //tcHz

C

Set each cluster centroid y . to the mean of assigned points: j,. = mi Z X

>

LN
/41,&.

e

Ho€—9 1/'
?'\ .—w’%
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Hierarchical agglomerative clustering

Another simple clustering algorithm

Define distance (dissimilarity) between clusters d(C;, C))

Initialize: every data point is its own cluster

Repeat:
> Compute distance between each pair of clusters

> Merge two closest clusters

Output: tree of merge operations (“dendrogram?)

Complexity: in m — 1 iterations, merge distances and sort => O(m?> log m)
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From dendrogram to clusters

* Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data dendrogram

' B S ) N
0 1 —— = T |
o

> For a given k, or a given level of dissimilarity
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Distance measures

mm( C) —  min Hx yHZ . produces minimum spanning tree
xeC,yel; R
* dmax( C) — Ihax HX y Hz avoids elongated clusters
XEC yEC \
_ 1 o2
GO = e 2 Ikl
xeC,yel;

c dmeans(ci9 C) = H//ti — Hz

j Hi \
* Important property: iterative computation

d(Cz U C}" Ck) =f(d(ci9 Ck)9 d(C}a Ck))

Nearest
Neighbour

| T
(Single Linkage)

Em thest
eighbour

[Complete Lmkfige)

Centroid

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering



Gaussian Mixture Models (GMMs)

» Each cluster is modeled by a Gaussian p(x|c) = A/ (x; u,., 2.)

> 2. allows non-isotropic clusters = weighted Euclidean distance

» Mixture = distribution over Gaussians is given by a probability vector p(c)

« Generative model = we can sample p(x):

» Sample z ~ p(c)

we don't output z, it is “latent” = hidden
/ —> can be any of them

» Sample x ~ p(x|c = 2)

I

 Probability of this x: Z plc=2pkx|c=2) = 2 p(c,x) = p(x)
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Training GMMs

o k-Means:

> Assign data points to clusters z;
» Update each cluster's parameters u..
« A “soft” version of k-Means: Expectation—Maximization (EM) algorithm

> Find a “soft” assignment p(c | x)

» Update model parameters p(c), p(x| c)

 The EM algorithm is extremely general, GMMs are a very special case
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Expectation-Maximization: E-step

e Initialize model parameters 7. = p(c), 1., 2.
e E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

> For each data point x;, use Bayes' rule to compute:

o= np(c|x) = plople)  m N pe, 2
e = F - Zép(ﬁ)p(xi\(?) B Zgﬂé'/’/(xi;ﬂé’zé)

> High weight to clusters that are likely a-priori, or in which X; is relatively probable

area: 7,

area: 7, r 2 0.7 { N —
\ v
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Expectation-Maximization: M-step

 Given assignment probabilities r;,
e M-step (Maximization):

> For each cluster ¢, fit the best Gaussian to the weighted assignment

total weight assigned to cluster ¢ 2

Tem,. = 2 what is Z m.? m

18
] C

fraction of weight assigned to cluster c

~~—~ me _ L
% ; Mo = m 2 ,ricxi
C l V\

T
Ze = o 20l = G = H)T

weighted covariance of data in cluster c

weighted mean of data in cluster ¢
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Dimensionality reduction: linear features

» Example: summarize two real features x = |x, x,| — one real feature z

» If z preserves much information about x, should be able to find x ~ f(2)

e Linear embedding:
X2
> X R ZV
o .Xa:uu
> zv should be the closest point to x along v - ,
yd
- = z=Xx-V -
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Singular Value Decomposition (SVD)

» Alternative method for finding covariance eigenvectors

> Has many other uses

o Singular Value Decomposition (SVD): X = UDV1

» U and V (left- and right singular vectors) are orthogonal: UTU = [, VIV =]

> D (singular values) is rectangular-diagonal

&

mXn m X k k Xk kXn

. ¥ = XX = VDTUTUDV' = V(DTD)VT

« UD matrix gives coefficients to reconstruct data: x; = Ui’1D1,1v1 + Ui,zDz,zvz + ...

» We can truncate this after top k singular values (square root of eigenvalues)
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Latent-space models: extensions

Add lower-order terms: v, =& u+ b, + b, + Z Ui Viu
k

> U = overall average rating (affected by user interface etc.)
-~ b, + b, = item and user biases

 Can add non-linearity (saturating?)

Gradient decent on loss, e.g. MSE : £ (U, V) = Z X, — Z U, .V,

u,m k

* Train using a gradient-based optimizer
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Why active learning?

full labeled data SVM on random sample SVM on selected sample
(unavailable) of labeled data of labeled data
3 | | | 3 | ] | | | |
2 — o — 2 — A . -
A, | ) s
1 F . . 1 ,_.A. R $e° ;
. °‘.° A, A —.
O — .:‘..' 2 _ O - :*.. AA.: .A .A‘.:: .:: —
IR o °.°. AA,' i
-1 — ..A. N '1 — ") o’ 7
A o A
-2 - -2 . . -
_3 | ] | _3 | | ] ] |
-4 2 4 -4 -2 0 2 4

Source: https://www.datacamp.com/community/tutorials/active-learning

e Expensive labels = prefer to label instances relevant to the decision

o Selecting relevant points may be hard too = automate with active learning

* Obijective: learn good model while minimizing #queries for labels
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https://www.datacamp.com/community/tutorials/active-learning

Active learning settings

Select

Observe most Query -
ﬁ , ) ﬁ -
instances  informative  INStance

)

* Pool-Based Sampling

instances
. . Learner Oracle
» Learner selects instances in dataset x € & to label
Observe an dr;';?:" Query —
* Stream-Based Selective Sampling — . — =

Learner Discard\‘ Oracle

instance

> Learner gets stream of instances X, x,, ..., decides which to label

—
. . G Q
» Membership Query Synthesis s a =L
instance ' instance
Learner Oracle
> Learner generates |nStance x Source: https://www.datacamp.com/community/tutorials/active-learning

> Doesn't have to occur naturally = p(x) may be low

- —= May be harder for teacher to label (“is this synthesized image a dog or a cat?”)
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https://www.datacamp.com/community/tutorials/active-learning

Multi-Armed Bandits (MABs)

One-armed bandit

 Basic setting: single instance x, multiple actions ay, ..., a;

> Each time we take action a; we see a noisy reward r, ~ p;

. Can we maximize the expected reward max I- er.[l”]?

We can use the mean as an estimate y; = ‘er.[l”] ~
l

>

e Challenge: is the best mean so far the best action?

> Or is there another that's better than it appeared so far?
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Optimism under uncertainty

* Tradeoff: explore less used actions, but don't be late to start exploiting what's known

> Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit

By the central limit theorem, the mean reward of each arm ji. quickly — A (ﬂia O (i>>

ni;

. Be optimistic by slowly-growing number of standard deviations: a = arg max /21' + \/21HT
i

» Confidence bound: likely u; < ji. + co; unknown constant in the variance = let ¢ grow

> But not too fast, or we fail to exploit what we do know

» Regret: p(T) = O(log T'), provably optimal
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Agent—-environment interface

e Environment

> EXxecutes the action — changes its state

» Generates next observation ooservtion /| V| " sen

> Supervisor: reveals the reward

 Agent

~ Policy decides on next action z(a, | x,)

> Context can be full state x, = s,

- Or any summary of observable history x, = f(h,)
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Agent context x,

o Observable history: everything the agent saw so far
» h, = (0y,a(,7(,09y ..., Q,_1,T,_1,0,)

» The context x, used for the agent's policy z(a, | x,) can be:

» Reactive policy: X, = o, (optimal under full observability: o, = §))
> Using previous action: x, = (a,_, 0,) = can be useful if policy is stochastic

> Using previous reward: x, = (r,_;, 0,) = extra information about the environment
> Window of past observations: x, = (0,_3, 0,_», 0,_, 0,) = better see dynamics

> Generally: any summary (= memory) of observable history x, = f(h,)
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Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

]P)[St_|_1 ‘ St] — ]P)[St_|_1 ‘ Sl,...,St]

m [ he state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. [he state is a sufficient statistic of the future
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State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

7)55/ =P [St_|_]_ = 5/ ‘ St = 5]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

P = from

where each row of the matrix sums to 1.
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Return as expected future reward

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 + YRep2 + .0 = Z’YkRH-k—H
k=0

m The discount v € [0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is v*R.

m [ his values immediate reward above delayed reward.

m 7y close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation
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Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P,R,~)
m S is a finite set of states

m A is a finite set of actions

m P Is a state transition probability matrix,
Psasz — IP[SH_]_ — S, ‘ St — S,At — a]
m R is a reward function, R =E[R;11 | 5t = s, A: = 3]

m 7 is a discount factor v € [0, 1].
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Bellman Expected Equation, V




Bellman Exp Eqg: Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R" + P vy

with direct solution

Ve = (I — 777”)_1 R™
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Bellman Optimality Eq, V

Vi(S) = max Re 4+ Z Poivy(s

s’eS
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Value lteration

Vir1(s) = max (R? + Z P vk(s’))

A s’'eS
Vkt1 = max R? + vP%v

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning



Policy lteration

starting
V =

Policy evaluation Estimate v,
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation

T |4

ni—>greedy(V)

Improvement
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MC and TD

m Goal: learn v, online from experience under policy 7

m Incremental every-visit Monte-Carlo
m Update value V/(S;) toward actual return G;

V(S5:) <+ V(S:) + a(G: — V(S5:))

m Simplest temporal-difference learning algorithm: TD(0)
m Update value V/(S;) toward estimated return Ryi1 + vV/(S:41)

V(S:) < V(5t) + a(Rev1 + vV (Si41) — V(S5:))

m Rii1 +vV(S:y1) is called the TD target
m 0 = Rer1 +7V(Se1) — V(S:) is called the TD error
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