
Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

CS 273A: Machine Learning
Winter 2021

Lecture 19: Final Review

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

Final Logistics
• Format:

‣ Time: Thursday, March 18, 1:30–4pm

‣ Canvas “quiz”: multiple choice, numerical, textual, drawing let us know about technical difficulties

‣ Many questions, ~75% longer than midterm, but should be doable in < 2 hours

‣ We'll be on zoom to address questions and issues: https://uci.zoom.us/j/94903054276

• You can use:

‣ Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it

‣ A basic arithmetic calculator; no phones, no computers

‣ Blank paper sheets for your calculations

‣ Brainpower and good vibes

• No proctoring; the penalty for cheating is being the kind of person who cheats

⟹

https://uci.zoom.us/j/94903054276

Roy Fox | CS 273A | Winter 2021 | Lecture 19: Final Review

Exam suggestions
• Large majority of the questions are on topics taught after midterm

• Look at past exams

‣ Train yourself by reading some solutions, evaluate yourself on held-out exams

• Organize / join study groups (e.g. on piazza)

• During the exam:

‣ Start with questions you find easy

‣ Don't get bogged down by exact calculations

‣ Leave expressions unsolved and come back to them later

‣ Optional: upload your calculation sheet(s)

- They won't be graded, but can be used for regrading

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

σ

σ

σ

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply

‣ Deep architectures are subject of much current research

input
features

layer 1 layer 2 layer 3

⋯

⋯

r1 = w[0].T @ x + b[0] # linear response
h1 = sig(r1) # activation function

r2 = w[1].T @ h1 + b[1] # linear response
h2 = sig(r2) # activation function

 # ...

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:

‣ Inputs shallow layers deeper layers outputs

‣ Alternative: recurrent NNs (information loops back)

• Multiple outputs efficiency:

‣ Shared parameters, less data, less computation

• Multi-class classification:

‣ One-hot labels

‣ Multilogistic regression (softmax):

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Gradient computation

• MLPs are function compositions of single layers

‣ Apply chain rule:

• Backpropagation = chain rule + dynamic programming to avoid repetitions

f(g, h)

g(⋯)

h(⋯)

⋯ ℒ(⋯)
∂fℒ

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ

inputs

hidden layer

outputs

example:
 reuse from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f)
⟹ f

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•

‣ such that all data points predicted with enough margin:

‣ (constraints)

• Example of Quadratic Program (QP)

‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y(j)(w ⋅ x(j) + b) ≥ 1 m
{w ⋅ x(j) + b ≥ + 1 if y(j) = + 1

w ⋅ x(j) + b ≤ − 1 if y(j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Soft margin: dual form

• Primal problem:

‣ s.t. ;

• Dual problem:

‣ Optimally: ; to handle : add constant feature

‣ Support vector = points on or inside margin =

‣ Gram matrix = = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ(j)

y(j)(w ⋅ x(j) + b) ≥ 1 − ϵ(j) ϵ(j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)x(j) ⋅ x(k)) s.t. ∑
j

λjy(j) = 0

w* = ∑
j

λjy(j)x(j) b x0 = 1

λj > 0

Kjk = x(j) ⋅ x(k)

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Kernel SVMs
• Define kernel

• Solve dual QP:

• Learned parameters = (parameters)

‣ But also need to store all support vectors (having)

• Prediction:

K : (x, x′) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky(j)y(k)K(x(j), x(k))) s.t. ∑
j

λjy(j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy(j)Φ(x(j)) ⋅ Φ(x) = sign ∑
j

λjy(j)K(x(j), x)

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

Bagging
• Bagging = bootstrap aggregating:

‣ Resample datasets of size

‣ Train models on each dataset

‣ Regression: output

‣ Classification: output

• Similar to cross-validation (for different purpose), but outputs average model

‣ Also, datasets are resampled (with replacement), not a partition

K 𝒟1, …, 𝒟K b

K θ1, …, θK

fθ : x ↦ 1
K ∑

k

fθk
(x)

fθ : x ↦ majority{fθk
(x)}

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

Ensemble methods

• Ensemble = “committee” of models:

‣ Decisions made by average / majority vote:

‣ May be weighted: better model = higher weight:

• Stacking = use ensemble as inputs (as in MLP):

‣ trained on held out data = validation of which model should be trusted

‣ linear weighted committee, with learned weights

̂yk(x) = fθk
(x)

̂y(x) = 1
K ∑

k

̂yk(x)

̂y(x) = ∑
k

αk ̂yk(x)

̂y(x) = fθ(̂y1(x), …, ̂yK(x))

fθ

fθ ⟹

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

Mixture of Experts (MoE)

• Experts = models can “specialize”, good only for some instances

‣ Let weights depend on :

• Can we predict which model will perform well?

‣ Learn a predictor

- E.g., multilogistic regression (softmax)

• Loss, experts, weights differentiable end-to-end gradient-based learning

x ̂y(x) = ∑
k

αk(x) ̂yk(x)

αϕ(k |x)

αϕ(k |x) =
exp(ϕk ⋅ x)

∑k′
exp(ϕk′

⋅ x)

⟹

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mixture of 3
linear predictors

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

Random Forests
• Bagging over decision trees: which feature at root?

‣ Much data max info gain stable across data samples

‣ Little diversity among models little gained from ensemble

• Random Forests = subsample features

‣ Each tree only allowed to use a subset of features

‣ Still low, but higher bias

‣ Average over trees for lower variance

• Works very well in practice go-to algorithm for small ML tasks

⟹

⟹

⟹

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

• Ensemble: ; MSE loss:

‣ To minimize: have try to predict

‣ Then update

̂yK = ∑
k

fk(x) ℒ(y, ̂yk) = 1
2 (y − ̂yk−1 − fk(x))2

fk(x) y − ̂yk−1

̂yk = ̂yk−1 + fk(x)

Gradient Boosting example: MSE loss

data
prediction

residual
weak model

increasingly accurate
increasingly complex

Roy Fox | CS 273A | Winter 2021 | Lecture 13: Ensemble Methods

AdaBoost
• AdaBoost = adaptive boosting:

‣ Initialize

‣ Train classifier on training data with weights

‣ Compute weighted error rate

‣ Compute

‣ Update weights (increase weight for misclassified points)

• Predict

w(j)
0 = 1

m

fk wk−1

ϵk =
∑j w(j)

k−1δ[y(j) ≠ fk(x(j))]

∑j w(j)
k−1

αk = 1
2 ln

1 − ϵk

ϵk

w(j)
k = w(j)

k−1e
−y(j)αk fk(x(j))

̂y(x) = sign∑
k

αk fk(x)

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

-Meansk
• Simple clustering algorithm

• Repeat:

‣ Update the clustering = assignment of data points to clusters

‣ Update the cluster's representation to match the assigned points

• Notation:

‣ = data point in the dataset

‣ = number of clusters

‣ = representation of cluster

xi

k

μc c

xi

μc

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

-Meansk

• -Means optimizes the MSE loss:

• Iterate until convergence:

‣ For each , find the closest cluster:

‣ Set each cluster centroid to the mean of assigned points:

k ℒ(z, μ) = ∑
i

∥xi − μzi
∥2

xi ∈ 𝒟 zi = arg min
c

∥xi − μc∥2

μc μc = 1
mc ∑

i:zi=c

xi

μ1

μ2

μ2

μ1

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

Hierarchical agglomerative clustering
• Another simple clustering algorithm

• Define distance (dissimilarity) between clusters

• Initialize: every data point is its own cluster

• Repeat:

‣ Compute distance between each pair of clusters

‣ Merge two closest clusters

• Output: tree of merge operations (“dendrogram”)

• Complexity: in iterations, merge distances and sort

d(Ci, Cj)

m − 1 ⟹ O(m2 log m)

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

From dendrogram to clusters
• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

‣ For a given , or a given level of dissimilarityk

data dendrogram

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

Distance measures

•

•

•

•

• Important property: iterative computation

dmin(Ci, Cj) = min
x∈Ci,y∈Cj

∥x − y∥2

dmax(Ci, Cj) = max
x∈Ci,y∈Cj

∥x − y∥2

davg(Ci, Cj) = 1
|Ci | ⋅ |Cj | ∑

x∈Ci,y∈Cj

∥x − y∥2

dmeans(Ci, Cj) = ∥μi − μj∥2

d(Ci ∪ Cj, Ck) = f(d(Ci, Ck), d(Cj, Ck))

produces minimum spanning tree

avoids elongated clusters

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Gaussian Mixture Models (GMMs)
• Each cluster is modeled by a Gaussian

‣ allows non-isotropic clusters weighted Euclidean distance

• Mixture = distribution over Gaussians is given by a probability vector

• Generative model = we can sample :

‣ Sample

‣ Sample

‣ Probability of this :

p(x |c) = 𝒩(x; μc, Σc)

Σc ⟹

p(c)

p(x)

z ∼ p(c)

x ∼ p(x |c = z)

x ∑
c

p(c = z)p(x |c = z) = ∑
c

p(c, x) = p(x)

we don't output , it is “latent” = hidden
 can be any of them

z
⟹

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Training GMMs

• -Means:

‣ Assign data points to clusters

‣ Update each cluster's parameters

• A “soft” version of -Means: Expectation–Maximization (EM) algorithm

‣ Find a “soft” assignment

‣ Update model parameters ,

• The EM algorithm is extremely general, GMMs are a very special case

k

zi

μc

k

p(c |x)

p(c) p(x |c)

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: E-step

• Initialize model parameters , ,

• E-step (Expectation): [why “expectation”? comes from the general EM algorithm]

‣ For each data point , use Bayes' rule to compute:

‣ High weight to clusters that are likely a-priori, or in which is relatively probable

πc = p(c) μc Σc

xi

ric = p(c |xi) =
p(c)p(xi |c)

∑c̄ p(c̄)p(xi | c̄)
=

πc𝒩(xi; μc, Σc)

∑c̄ πc̄𝒩(xi; μc̄, Σc̄)

xi

area: π1
area: π2r1 = 0.7

r1 = 0.3

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Expectation–Maximization: M-step
• Given assignment probabilities

• M-step (Maximization):

‣ For each cluster , fit the best Gaussian to the weighted assignment

ric

c

mc = ∑
i

ric

πc =
mc

m μc = 1
mc ∑

i

ricxi

Σc = 1
mc ∑

i

ric(xi − μc)(xi − μc)⊺

what is ?∑
c

mc m
total weight assigned to cluster c

fraction of weight assigned to cluster c

weighted mean of data in cluster c

weighted covariance of data in cluster c

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Dimensionality reduction: linear features

• Example: summarize two real features one real feature

‣ If preserves much information about , should be able to find

• Linear embedding:

‣

‣ should be the closest point to along

-

x = [x1, x2] → z

z x x ≈ f(z)

x ≈ zv

zv x v

⟹ z = x ⋅ v

550 600 650 700 750 800 850 900 950 1000
550

600

650

700

750

800

850

900

950

1000

x1

x2

550 600 650 700 750 800 850 900 950 1000
550

600

650

700

750

800

850

900

950

1000

x1

x2
v

Roy Fox | CS 273A | Winter 2021 | Lecture 15: Latent-Space Models

Singular Value Decomposition (SVD)
• Alternative method for finding covariance eigenvectors

‣ Has many other uses

• Singular Value Decomposition (SVD):

‣ and (left- and right singular vectors) are orthogonal: ,

‣ (singular values) is rectangular-diagonal

‣

• matrix gives coefficients to reconstruct data:

‣ We can truncate this after top singular values (square root of eigenvalues)

X = UDV⊺

U V U⊺U = I V⊺V = I

D

Σ = X⊺X = VD⊺U⊺UDV⊺ = V(D⊺D)V⊺

UD xi = Ui,1D1,1v1 + Ui,2D2,2v2 + ⋯

k

 X
m × n

 U
m × k

≈ ⋅ ⋅ D
k × k

 V⊺

k × n

Roy Fox | CS 273A | Winter 2021 | Lecture 16: Latent-Space Models (cont.)

Latent-space models: extensions

• Add lower-order terms:

‣ = overall average rating (affected by user interface etc.)

‣ = item and user biases

• Can add non-linearity (saturating?)

• Gradient decent on loss, e.g. MSE :

• Train using a gradient-based optimizer

rmu ≈ μ + bm + bu + ∑
k

UmkVku

μ

bm + bu

ℒ(U, V) = ∑
u,m (Xmu − ∑

k

UmkVku)
2

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Why active learning?

• Expensive labels prefer to label instances relevant to the decision

• Selecting relevant points may be hard too automate with active learning

• Objective: learn good model while minimizing #queries for labels

⟹

⟹

full labeled data
(unavailable)

SVM on random sample
of labeled data

SVM on selected sample
of labeled data

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Active learning settings
• Pool-Based Sampling

‣ Learner selects instances in dataset to label

• Stream-Based Selective Sampling

‣ Learner gets stream of instances , decides which to label

• Membership Query Synthesis

‣ Learner generates instance

‣ Doesn't have to occur naturally = may be low

- May be harder for teacher to label (“is this synthesized image a dog or a cat?”)

x ∈ 𝒟

x1, x2, …

x

p(x)

⟹

Source: https://www.datacamp.com/community/tutorials/active-learning

https://www.datacamp.com/community/tutorials/active-learning

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Multi-Armed Bandits (MABs)

• Basic setting: single instance , multiple actions

‣ Each time we take action we see a noisy reward

• Can we maximize the expected reward ?

‣ We can use the mean as an estimate

• Challenge: is the best mean so far the best action?

‣ Or is there another that's better than it appeared so far?

x a1, …, ak

ai rt ∼ pi

max
i

𝔼r∼pi
[r]

μi = 𝔼r∼pi
[r] ≈ 1

mi ∑
t∈Ti

rt

One-armed bandit

Multi-armed bandit

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Optimism under uncertainty
• Tradeoff: explore less used actions, but don't be late to start exploiting what's known

‣ Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit

• By the central limit theorem, the mean reward of each arm quickly

• Be optimistic by slowly-growing number of standard deviations:

‣ Confidence bound: likely ; unknown constant in the variance let grow

‣ But not too fast, or we fail to exploit what we do know

• Regret: , provably optimal

̂μi → 𝒩 (μi, O (1
mi))

a = arg max
i

̂μi + 2 ln T
mi

μi ≤ ̂μi + cσi ⟹ c

ρ(T) = O(log T)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Agent–environment interface
• Environment

‣ Executes the action changes its state

‣ Generates next observation

‣ Supervisor: reveals the reward

• Agent

‣ Policy decides on next action

‣ Context can be full state

- Or any summary of observable history

→

π(at |xt)

xt = st

xt = f(ht)

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Agent context xt
• Observable history: everything the agent saw so far

‣

• The context used for the agent's policy can be:

‣ Reactive policy: (optimal under full observability:)

‣ Using previous action: can be useful if policy is stochastic

‣ Using previous reward: extra information about the environment

‣ Window of past observations: better see dynamics

‣ Generally: any summary (= memory) of observable history

ht = (o1, a1, r1, o2, …, at−1, rt−1, ot)

xt π(at |xt)

xt = ot ot = st

xt = (at−1, ot) ⟹

xt = (rt−1, ot) ⟹

xt = (ot−3, ot−2, ot−1, ot) ⟹

xt = f(ht)

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Property

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

State Transition Matrix

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Return as expected future reward

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Markov Decision Process

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Expected Equation, V

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Exp Eq: Matrix Form

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Bellman Optimality Eq, V

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Value Iteration

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

Policy Iteration

Roy Fox | CS 273A | Winter 2021 | Lecture 18: Reinforcement Learning

MC and TD

