CS 273A: Machine Learning Winter 2021 Lecture 19: Final Review

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

Final Logistics

- Format:
- Time: Thursday, March 18, 1:30-4pm
- Canvas "quiz": multiple choice, numerical, textual, drawing \Longrightarrow let us know about technical difficulties
- Many questions, $\sim 75 \%$ longer than midterm, but should be doable in <2 hours
- We'll be on zoom to address questions and issues: https://uci.zoom.us//94903054276
- You can use:
- Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
- A basic arithmetic calculator; no phones, no computers
- Blank paper sheets for your calculations
- Brainpower and good vibes
- No proctoring; the penalty for cheating is being the kind of person who cheats

Exam suggestions

- Large majority of the questions are on topics taught after midterm
- Look at past exams
- Train yourself by reading some solutions, evaluate yourself on held-out exams
- Organize / join study groups (e.g. on piazza)
- During the exam:
- Start with questions you find easy
- Don't get bogged down by exact calculations
- Leave expressions unsolved and come back to them later
- Optional: upload your calculation sheet(s)
- They won't be graded, but can be used for regrading

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP)

Deep Neural Networks (DNNs)

- Layers of perceptrons can be stacked deeply
- Deep architectures are subject of much current research

Feed-forward (FF) networks

- Information flow in feed-forward (FF) networks:
- Inputs \rightarrow shallow layers \rightarrow deeper layers \rightarrow outputs
- Alternative: recurrent NNs (information loops back)
- Multiple outputs \Longrightarrow efficiency:
- Shared parameters, less data, less computation
- Multi-class classification:

- Multilogistic regression (softmax): $\hat{y}_{c}=\frac{\exp \left(h_{c}\right)}{\sum_{\bar{c}} \exp \left(h_{\bar{c}}\right)}$

Gradient computation

- MLPs are function compositions of single layers
- Apply chain rule:

example: $f(g, h)=\sigma(g+h) \Longrightarrow \partial_{g} f=f(1-f)$
\Longrightarrow reuse f from the forward pass
- Backpropagation = chain rule + dynamic programming to avoid repetitions

Maximizing the margin

- Constrained optimization: get all data points correctly + maximize the margin
- $w^{*}=\arg \max _{w} \frac{2}{\|w\|}=\arg \min _{w}\|w\|$
- such that all data points predicted with enough margin: $\begin{cases}w \cdot x^{(j)}+b \geq+1 & \text { if } y^{(j)}=+1 \\ w \cdot x^{(j)}+b \leq-1 & \text { if } y^{(j)}=-1\end{cases}$
- \Longrightarrow s.t. $y^{(j)}\left(w \cdot x^{(j)}+b\right) \geq 1$ (m constraints)
- Example of Quadratic Program (QP)
- Quadratic objective, linear constraints

Soft margin: dual form

- Primal problem: $w^{*}, b^{*}=\underset{w, b}{\arg \min _{\epsilon} \min } \frac{1}{2}\|w\|^{2}+R \sum_{j} \epsilon^{(j)}$
- s.t. $y^{(j)}\left(w \cdot x^{(j)}+b\right) \geq 1-\epsilon^{(j)} ; \quad \epsilon^{(j)} \geq 0$
- Dual problem: $\max _{0 \leq \lambda \leq R} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)}\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Optimally: $w^{*}=\sum_{j} \lambda_{j} y^{(j)} x^{(j)}$; to handle b : add constant feature $x_{0}=1$
- Support vector $=$ points on or inside margin $=\lambda_{j}>0$
- Gram matrix $=K_{j k}=x^{(j)} \cdot x^{(k)}=$ similarity of every pair of instances

Kernel SVMs

- Define kernel $K:\left(x, x^{\prime}\right) \mapsto \mathbb{R}$
- Solve dual QP: $\max _{0 \leq \lambda \leq R} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} K\left(x^{(j)}, x^{(k)}\right)\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Learned parameters $=\lambda$ (m parameters)
- But also need to store all support vectors (having $\lambda_{j}>0$)
- Prediction: $\hat{y}(x)=\operatorname{sign}(w \cdot \Phi(x))$

$$
=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi\left(x^{(j)}\right) \cdot \Phi(x)\right)=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K\left(x^{(j)}, x\right)\right)
$$

Bagging

- Bagging = bootstrap aggregating:
- Resample K datasets $\mathscr{D}_{1}, \ldots, \mathscr{D}_{K}$ of size b
- Train K models $\theta_{1}, \ldots, \theta_{K}$ on each dataset
-Regression: output $f_{\theta}: x \mapsto \frac{1}{K} \sum_{k} f_{\theta_{k}}(x)$
- Classification: output $f_{\theta}: x \mapsto$ majority $\left\{f_{\theta_{k}}(x)\right\}$
- Similar to cross-validation (for different purpose), but outputs average model
- Also, datasets are resampled (with replacement), not a partition

Ensemble methods

- Ensemble $=$ "committee" of models: $\hat{y}_{k}(x)=f_{\theta_{k}}(x)$
. Decisions made by average / majority vote: $\hat{y}(x)=\frac{1}{K} \sum_{k} \hat{y}_{k}(x)$
- May be weighted: better model = higher weight: $\hat{y}(x)=\sum_{k} \alpha_{k} \hat{y}_{k}(x)$
- Stacking $=$ use ensemble as inputs (as in MLP): $\hat{y}(x)=f_{\theta}\left(\hat{y}_{1}(x), \ldots, \hat{y}_{K}(x)\right)$
- f_{θ} trained on held out data = validation of which model should be trusted
- f_{θ} linear \Longrightarrow weighted committee, with learned weights

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
- Let weights depend on $x: \hat{y}(x)=\sum_{k} \alpha_{k}(x) \hat{y}_{k}(x)$
- Can we predict which model will perform well?
- Learn a predictor $\alpha_{\phi}(k \mid x)$

- E.g., multilogistic regression (softmax) $\alpha_{\phi}(k \mid x)=\frac{\exp \left(\phi_{k} \cdot x\right)}{\sum_{k^{\prime}} \exp \left(\phi_{k^{\prime}} \cdot x\right)}$
- Loss, experts, weights differentiable \Longrightarrow end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
- Much data \Longrightarrow max info gain stable across data samples
- Little diversity among models \Longrightarrow little gained from ensemble
- Random Forests = subsample features
- Each tree only allowed to use a subset of features
- Still low, but higher bias
- Average over trees for lower variance
- Works very well in practice \Longrightarrow go-to algorithm for small ML tasks

Gradient Boosting example: MSE loss

. Ensemble: $\hat{y}_{K}=\sum_{k} f_{k}(x)$; MSE loss: $\mathscr{L}\left(y, \hat{y}_{k}\right)=\frac{1}{2}\left(y-\hat{y}_{k-1}-f_{k}(x)\right)^{2}$

- To minimize: have $f_{k}(x)$ try to predict $y-\hat{y}_{k-1}$
- Then update $\hat{y}_{k}=\hat{y}_{k-1}+f_{k}(x)$
data prediction

increasingly accurate increasingly complex

AdaBoost

- AdaBoost = adaptive boosting:
- Initialize $w_{0}^{(j)}=\frac{1}{m}$
- Train classifier f_{k} on training data with weights w_{k-1}
- Compute weighted error rate $\epsilon_{k}=\frac{\sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right]}{\sum_{j} w_{k-1}^{(j)}}$
- Compute $\alpha_{k}=\frac{1}{2} \ln \frac{1-\epsilon_{k}}{\epsilon_{k}}$
- Update weights $w_{k}^{(j)}=w_{k-1}^{(j)} e^{-y^{(j)} \alpha_{k} f_{k}\left(x^{(j)}\right)}$ (increase weight for misclassified points)
- Predict $\hat{y}(x)=\operatorname{sign} \sum_{k} \alpha_{k} f_{k}(x)$

k-Means

- Simple clustering algorithm
- Repeat:
- Update the clustering = assignment of data points to clusters
- Update the cluster's representation to match the assigned points
- Notation:
- $x_{i}=$ data point in the dataset
- $k=$ number of clusters
- $\mu_{c}=$ representation of cluster c

k-Means

- k-Means optimizes the MSE Ioss: $\mathscr{L}(z, \mu)=\sum_{i}\left\|x_{i}-\mu_{z_{i}}\right\|^{2}$
- Iterate until convergence:
- For each $x_{i} \in \mathscr{D}$, find the closest cluster: $z_{i}=\arg \min _{c}\left\|x_{i}-\mu_{c}\right\|^{2}$
- Set each cluster centroid μ_{c} to the mean of assigned points: $\mu_{c}=\frac{1}{m_{c}} \sum_{i: z_{i}=c} x_{i}$

Hierarchical agglomerative clustering

- Another simple clustering algorithm
- Define distance (dissimilarity) between clusters $d\left(C_{i}, C_{j}\right)$
- Initialize: every data point is its own cluster
- Repeat:
- Compute distance between each pair of clusters
- Merge two closest clusters
- Output: tree of merge operations ("dendrogram")
- Complexity: in $m-1$ iterations, merge distances and sort $\Longrightarrow O\left(m^{2} \log m\right)$

From dendrogram to clusters

- Given the hierarchy of clusters, choose a frontier of subtrees = clusters

dendrogram

- For a given k, or a given level of dissimilarity

Distance measures

- $d_{\min }\left(C_{i}, C_{j}\right)=\min _{x \in C_{i}, y \in C_{j}}\|x-y\|^{2}$

- $d_{\max }\left(C_{i}, C_{j}\right)=\max _{x \in C_{i} y \in C_{j}}\|x-y\|^{2}$
. $d_{\text {avg }}\left(C_{i}, C_{j}\right)=\frac{1}{\left|C_{i}\right| \cdot\left|C_{j}\right|} \sum_{x \in C_{i} y \in C_{j}}\|x-y\|^{2}$
- $d_{\text {means }}\left(C_{i}, C_{j}\right)=\left\|\mu_{i}-\mu_{j}\right\|^{2}$
- Important property: iterative computation

$$
d\left(C_{i} \cup C_{j}, C_{k}\right)=f\left(d\left(C_{i}, C_{k}\right), d\left(C_{j}, C_{k}\right)\right)
$$

Gaussian Mixture Models (GMMs)

- Each cluster is modeled by a Gaussian $p(x \mid c)=\mathscr{N}\left(x ; \mu_{c}, \Sigma_{c}\right)$
- Σ_{c} allows non-isotropic clusters \Longrightarrow weighted Euclidean distance
- Mixture = distribution over Gaussians is given by a probability vector $p(c)$
- Generative model = we can sample $p(x)$:
- Sample $z \sim p(c)$
- Sample $x \sim p(x \mid c=z)$

$$
\text { we don't output } z \text {, it is "latent" = hidden }
$$

$$
\Longrightarrow \text { can be any of them }
$$

Probability of this $x: \sum_{c} p(c=z) p(x \mid c=z)=\sum_{c} p(c, x)=p(x)$

Training GMMs

- k-Means:
- Assign data points to clusters z_{i}
- Update each cluster's parameters μ_{c}
- A "soft" version of k-Means: Expectation-Maximization (EM) algorithm
- Find a "soft" assignment $p(c \mid x)$
- Update model parameters $p(c), p(x \mid c)$
- The EM algorithm is extremely general, GMMs are a very special case

Expectation-Maximization: E-step

- Initialize model parameters $\pi_{c}=p(c), \mu_{c}, \Sigma_{c}$
- E-step (Expectation): [why "expectation"? comes from the general EM algorithm]
- For each data point x_{i}, use Bayes' rule to compute:

$$
r_{i c}=p\left(c \mid x_{i}\right)=\frac{p(c) p\left(x_{i} \mid c\right)}{\sum_{\bar{c}} p(\bar{c}) p\left(x_{i} \mid \bar{c}\right)}=\frac{\pi_{c} \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)}{\sum_{\bar{c}} \pi_{\bar{c}} \mathcal{N}\left(x_{i} ; \mu_{\bar{c}}, \Sigma_{\bar{c}}\right)}
$$

- High weight to clusters that are likely a-priori, or in which x_{i} is relatively probable

Expectation-Maximization: M-step

- Given assignment probabilities $r_{i c}$
- M-step (Maximization):
- For each cluster c, fit the best Gaussian to the weighted assignment

fraction of weight assigned to cluster c

$$
\begin{aligned}
& \pi_{c}=\frac{m_{c}}{m} \quad \mu_{c}=\frac{1}{m_{c}} \sum_{i} r_{i c} x_{i} \\
& \Sigma_{c}=\frac{1}{m_{c}} \sum_{i} r_{i c}\left(x_{i}-\mu_{c}\right)\left(x_{i}-\mu_{c}\right)^{\top}
\end{aligned}
$$

Dimensionality reduction: linear features

- Example: summarize two real features $x=\left[x_{1}, x_{2}\right] \rightarrow$ one real feature z
- If z preserves much information about x, should be able to find $x \approx f(z)$
- Linear embedding:
- $x \approx z v$
- $z v$ should be the closest point to x along v

$$
-\quad \Longrightarrow z=x \cdot v
$$

Singular Value Decomposition (SVD)

- Alternative method for finding covariance eigenvectors
- Has many other uses
- Singular Value Decomposition (SVD): $X=U D V^{\top}$
- U and V (left- and right singular vectors) are orthogonal: $U^{\top} U=I, V^{\top} V=I$
- D (singular values) is rectangular-diagonal
- $\Sigma=X^{\top} X=V D^{\top} U^{\top} U D V^{\top}=V\left(D^{\top} D\right) V^{\top}$

- UD matrix gives coefficients to reconstruct data: $x_{i}=U_{i, 1} D_{1,1} v_{1}+U_{i, 2} D_{2,2} v_{2}+\cdots$
- We can truncate this after top k singular values (square root of eigenvalues)

Latent-space models: extensions

- Add lower-order terms: $r_{m u} \approx \mu+b_{m}+b_{u}+\sum_{k} U_{m k} V_{k u}$
- $\mu=$ overall average rating (affected by user interface etc.)
- $b_{m}+b_{u}=$ item and user biases
- Can add non-linearity (saturating?)
- Gradient decent on loss, e.g. MSE : $\mathscr{L}(U, V)=\sum_{u, m}\left(X_{m u}-\sum_{k} U_{m k} V_{k u}\right)^{2}$
- Train using a gradient-based optimizer

Why active learning?

full labeled data (unavailable)

SVM on random sample
of labeled data

SVM on selected sample of labeled data

- Expensive labels \Longrightarrow prefer to label instances relevant to the decision
- Selecting relevant points may be hard too \Longrightarrow automate with active learning
- Objective: learn good model while minimizing \#queries for labels

Active learning settings

- Pool-Based Sampling
- Learner selects instances in dataset $x \in \mathscr{D}$ to label

- Learner gets stream of instances x_{1}, x_{2}, \ldots, decides which to label
- Membership Query Synthesis
- Learner generates instance x

- Doesn't have to occur naturally $=p(x)$ may be low
- \Longrightarrow May be harder for teacher to label ("is this synthesized image a dog or a cat?")

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_{1}, \ldots, a_{k}
- Each time we take action a_{i} we see a noisy reward $r_{t} \sim p_{i}$
- Can we maximize the expected reward $\max _{\mathbb{E}_{r \sim p_{i}}[r] \text { ? }}$
- We can use the mean as an estimate $\mu_{i}=\mathbb{E}_{r \sim p_{i}}[r] \approx \frac{1}{m_{i}} \sum_{t \in T_{i}} r_{t}$
- Challenge: is the best mean so far the best action?
- Or is there another that's better than it appeared so far?

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
- Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean reward of each arm $\hat{\mu}_{i}$ quickly $\rightarrow \mathcal{N}\left(\mu_{i}, O\left(\frac{1}{m_{i}}\right)\right)$
- Be optimistic by slowly-growing number of standard deviations: $a=\arg \max _{i} \hat{\mu}_{i}+\sqrt{\frac{2 \ln T}{m_{i}}}$
- Confidence bound: likely $\mu_{i} \leq \hat{\mu}_{i}+c \sigma_{i}$; unknown constant in the variance \Longrightarrow let c grow
- But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T)=O(\log T)$, provably optimal

Agent-environment interface

- Environment
- Executes the action \rightarrow changes its state
- Generates next observation
- Supervisor: reveals the reward
- Agent
- Policy decides on next action $\pi\left(a_{t} \mid x_{t}\right)$

- Context can be full state $x_{t}=s_{t}$
- Or any summary of observable history $x_{t}=f\left(h_{t}\right)$

Agent context x_{t}

- Observable history: everything the agent saw so far
- $h_{t}=\left(o_{1}, a_{1}, r_{1}, o_{2}, \ldots, a_{t-1}, r_{t-1}, o_{t}\right)$
- The context x_{t} used for the agent's policy $\pi\left(a_{t} \mid x_{t}\right)$ can be:
- Reactive policy: $x_{t}=o_{t}$ (optimal under full observability: $o_{t}=s_{t}$)

- Using previous action: $x_{t}=\left(a_{t-1}, o_{t}\right) \Longrightarrow$ can be useful if policy is stochastic
- Using previous reward: $x_{t}=\left(r_{t-1}, o_{t}\right) \Longrightarrow$ extra information about the environment
- Window of past observations: $x_{t}=\left(o_{t-3}, o_{t-2}, o_{t-1}, o_{t}\right) \Longrightarrow$ better see dynamics
- Generally: any summary (= memory) of observable history $x_{t}=f\left(h_{t}\right)$

Markov Property

"The future is independent of the past given the present"

Definition

A state S_{t} is Markov if and only if

$$
\mathbb{P}\left[S_{t+1} \mid S_{t}\right]=\mathbb{P}\left[S_{t+1} \mid S_{1}, \ldots, S_{t}\right]
$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

State Transition Matrix

For a Markov state s and successor state s^{\prime}, the state transition probability is defined by

$$
\mathcal{P}_{s s^{\prime}}=\mathbb{P}\left[S_{t+1}=s^{\prime} \mid S_{t}=s\right]
$$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s^{\prime},

$$
\mathcal{P}=\text { from }\left[\begin{array}{ccc}
\mathcal{P}_{11} & \ldots & \mathcal{P}_{1 n} \\
\vdots & & \\
\mathcal{P}_{n 1} & \ldots & \mathcal{P}_{n n}
\end{array}\right]
$$

where each row of the matrix sums to 1 .

Return as expected future reward

Definition

The return G_{t} is the total discounted reward from time-step t.

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\ldots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}
$$

- The discount $\gamma \in[0,1]$ is the present value of future rewards

■ The value of receiving reward R after $k+1$ time-steps is $\gamma^{k} R$.
■ This values immediate reward above delayed reward.

- γ close to 0 leads to "myopic" evaluation

■ γ close to 1 leads to "far-sighted" evaluation

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.

Definition

A Markov Decision Process is a tuple $\langle\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma\rangle$

- \mathcal{S} is a finite set of states
- \mathcal{A} is a finite set of actions
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{s s^{\prime}}^{a}=\mathbb{P}\left[S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right]$
- \mathcal{R} is a reward function, $\mathcal{R}_{s}^{a}=\mathbb{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]$
- γ is a discount factor $\gamma \in[0,1]$.

Bellman Expected Equation, V

$$
v_{\pi}(s)=\sum_{a \in \mathcal{A}} \pi(a \mid s)\left(\mathcal{R}_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{s s^{\prime}}^{a} v_{\pi}\left(s^{\prime}\right)\right)
$$

Bellman Exp Eq: Matrix Form

The Bellman expectation equation can be expressed concisely using the induced MRP,

$$
v_{\pi}=\mathcal{R}^{\pi}+\gamma \mathcal{P}^{\pi} v_{\pi}
$$

with direct solution

$$
v_{\pi}=\left(I-\gamma \mathcal{P}^{\pi}\right)^{-1} \mathcal{R}^{\pi}
$$

Bellman Optimality Eq, V

$$
v_{*}(s)=\max _{a} \mathcal{R}_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{s s^{\prime}}^{a} v_{*}\left(s^{\prime}\right)
$$

Value Iteration

$$
\begin{aligned}
& v_{k}\left(s^{\prime}\right) \leftrightarrow s^{\prime} \\
& v_{k+1}(s)=\max _{a \in \mathcal{A}}\left(\mathcal{R}_{s}^{a}+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{s s^{\prime}}^{a} v_{k}\left(s^{\prime}\right)\right) \\
& \mathbf{v}_{k+1}=\max _{a \in \mathcal{A}} \mathcal{R}^{\mathbf{a}}+\gamma \mathcal{P}^{\mathbf{a}} \mathbf{v}_{k}
\end{aligned}
$$

Policy Iteration

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo

■ Update value $V\left(S_{t}\right)$ toward actual return G_{t}

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(G_{t}-V\left(S_{t}\right)\right)
$$

- Simplest temporal-difference learning algorithm: TD(0)
- Update value $V\left(S_{t}\right)$ toward estimated return $R_{t+1}+\gamma V\left(S_{t+1}\right)$

$$
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left(R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)\right)
$$

- $R_{t+1}+\gamma V\left(S_{t+1}\right)$ is called the TD target
- $\delta_{t}=R_{t+1}+\gamma V\left(S_{t+1}\right)-V\left(S_{t}\right)$ is called the TD error

