CS 273A: Machine Learning **Winter 2021** Lecture 17: Active and Online Learning

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Logistics

assignments

project

evaluations

final exam

• Assignment 5 due Thursday

• Final report due next Thursday

- Evaluations due end of next week
- Review: next Thursday
- Final: Thursday, March 18, 1:30–3:30pm

Today's lecture

Active learning

Online learning

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Sequential decision making

Motivation

- Supervised learning: classification
 - Pro: training data $\mathcal{D} = \{(x^{(j)}, y^{(j)})\}$ very informative
 - Con: expert labels $y^{(j)}$ may be expensive to get for big data
- Unsupervised learning: clustering
 - Pro: training data $\mathcal{D} = \{x^{(j)}\}$ may be easier to get
 - Con: discovered clusters may not match intended classes
- Semi-supervised learning: best of both worlds?
 - Few labels \implies class identity; much unlabeled data \implies class borders

Example: semi-supervised SVM

- Problem: only few instances are labeled
 - Do unlabeled instances violate the margin constraints $y^{(j)}(w \cdot x^{(j)} + b) \ge 1?$

- We don't know $y^{(j)}$...

- Let's assume labels are correct \Longrightarrow
- Constraints no longer linear
 - Can solve with Integer Programming

or other approximation methods

$$y^{(j)} = \operatorname{sign}(w \cdot x^{(j)} + b)$$

• Constraint becomes $|w \cdot x^{(j)} + b| \ge 1 \iff x^{(j)}$ outside margin on either side

Who selects which instances to label?

- Random = semi-supervised learning
 - Labeled points ~ p(x, y), unlabeled points from marginal distribution ~ p(x)
 - Equivalently: select instances ~ p(x), select uniformly which to label ~ p(y | x)
- Teacher = exact learning, curriculum learning
 - Teacher identifies where learner is wrong, provides corrective labels
 - Some learners benefit from gradual increase in complexity (e.g. boosting)
- Learner = active learning
 - Automate the process of selecting good points to label

Why active learning?

- Expensive labels \implies prefer to label instances relevant to the decision \bullet
- Selecting relevant points may be hard too \implies automate with active learning
- Objective: learn good model while minimizing #queries for labels

Active learning settings

- Pool-Based Sampling
 - Learner selects instances in dataset $x \in \mathcal{D}$ to label
- Stream-Based Selective Sampling
 - Learner gets stream of instances x_1, x_2, \ldots , decides which to label
- Membership Query Synthesis
 - earner generates instance x
 - Doesn't have to occur naturally = p(x) may be low

 $- \implies$ May be harder for teacher to label ("is this synthesized image a dog or a cat?")

Simple example: find decision threshold

- When building decision tree on continuous features
 - Where to put the threshold on a given feature?
- If all data points are labeled and sorted \Longrightarrow binary search
 - Split data in half until you find switch point of $-1 \rightarrow +1$
- Active learning = ask for labels
 - Same strategy: query mid point, if $-1 / +1 \implies$ determines left / right half
 - #queries = $\log m$

How to select relevant data points?

- Least Confidence
 - Query point about which learner is most uncertain of the label
 - Requires learner to know its uncertainty, e.g. a probabilistic model $p_{\theta}(y \mid x)$
- Margin Sampling
 - Multi-class => least confident doesn't mean least likely to get confused
 - Example: $p_{\theta}(y \mid x) = [0.3, 0.4, 0.3] \text{ vs.} [0.45, 0.5, 0.05]$
 - Query point about which two classes are most similar (near margin between them)
- Entropy Sampling

Query point that has most entropy = maximum information gain by revealing true label

Today's lecture

Active learning

Online learning

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Sequential decision making

Online learning

- More generally, we can have different costs $\mathscr{L}(y, \hat{y}) = d(y, \hat{y})$
- Online learning:
 - Stream of instances, need to make predictions / decisions / actions online
 - We don't know the reward = -cost until we actually select \hat{y}
 - We'll never know the reward of other actions
- Objective:
 - Make better and better decisions (compared to what? later...)

• In multi-class classification, we often assume 0–1 loss $\mathscr{L}(y, \hat{y}) = \delta[y \neq \hat{y}]$

Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions a_1, \ldots, a_k
 - Each time we take action a_i we see a noisy reward $r_t \sim p_i$
- Can we maximize the expected reward $\max_i \mathbb{E}_{r \sim p_i}[r]$?
 - We can use the mean as an estimate

- Challenge: is the best mean so far the best action?
 - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{m_i} \sum_{t \in T_i} r_t$$

One-armed bandit

Multi-armed bandit

Exploration vs. exploitation

- Exploitation = choose actions that seems good (so far)
- Exploration = see if we're missing out on even better ones
- Naïve solution: learn r by trying every action enough times
 - Suppose we can't wait that long: we care about rewards while we learn
- Regret = how much worse our return is than an optimal action

 $\rho(I) =$

$$T\mu_{a^*} - \sum_{t=0}^{T-1} r_t$$

• Can we get the regret to grow sub-linearly with $T? \implies$ average goes to 0: $\frac{\rho(T)}{T} \rightarrow 0$

• http://iosband.github.io/2015/07/28/Beat-the-bandit.html

Optimism under uncertainty

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
 - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rew
- Be optimistic by slowly-growing number of standard deviations: $a = \arg \max_{i} \hat{\mu}_{i} + \sqrt{\frac{2 \ln T}{m_{i}}}$
 - Confidence bound: likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown constant in the variance \implies let c grow
 - But not too fast, or we fail to exploit what we do know
- Regret: $\rho(T) = O(\log T)$, provably optimal

vard of each arm
$$\hat{\mu}_i$$
 quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{m_i}\right)\right)$

Thompson sampling

- Consider a model of the reward distribution $p_{\theta_i}(r \mid a_i)$
- Suppose we start with some prior $q(\theta)$
 - Taking action a_t , see reward $r_t \implies$ update posterior $q(\theta | \{(a_{< t}, r_{< t})\})$
- Thompson sampling:
 - Sample $\theta \sim q$ from the posterior

• Take the optimal action $a^* = \max_{r \sim p_{\theta i}} [r]$

- Update the belief (different methods for doing this)
- Repeat

Other online learning settings

- What is the reward for action a_i ?
 - MAB: random variable with distribution $p_i(r)$
 - Adversarial bandits: adversary selects r_i for every action
 - The adversary knows our algorithm! And past action selection! But not future actions
 - Learner must be stochastic (= unpredictable) in choosing actions
 - Amazingly, there are learners with regret guarantees
- Contextual bandits: we also get instance x, make decision $\pi(a \mid x)$
 - Can we generalize to unseen instances?

Today's lecture

Active learning

Online learning

Roy Fox | CS 273A | Winter 2021 | Lecture 17: Active and Online Learning

Sequential decision making

Agent–environment interface

- Agent
 - Decides on next action
 - Receives next reward
 - Receives next observation
- Environment
 - Executes the action \rightarrow changes its state
 - Generates next observation
 - Supervisor: reveals the reward

Sequential decision making

- Reinforcement learning = learning to make sequential decisions
- Challenges:
 - Online learning: reward is only given for actions taken (not for other actions)
 - Active learning: future "instances" determined by what the learner does
 - Sequential decisions: which of the decisions gets credit for a good reward?
- Examples:
 - Fly drone play Go trade stocks control power station control walking robot
- Rewards: track trajectory win game make \$ produce power (safely!)

Long-term planning

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - Fly drone: slow down to avoid crash?
 - Games: slowly build strength? block opponent? all out attack?
 - Stock trading: sell now or wait for growth?
 - Infrastructure control: reduce output to prevent blackout?
 - Life: invest in college, obey laws, get started early on course project
- Forward thinking and planning are hallmarks of intelligence

Intelligent agents

- Agent outputs action a_t
 - Function of the context: $a_t = f(x_t)$
 - Perhaps stochastic: $\pi(a_t | x_t)$
- What is the context needed for decisions?
 - Ignore all inputs? (open-loop control = sequence of actions)
 - Current observation O_t ?
 - Previous action a_{t-1} ? reward r_{t-1} ?
 - All observations so far $O_{<t}$?

Agent context x_t

Observable history: everything the agent saw so far

•
$$h_t = (o_1, a_1, r_1, o_2, \dots, a_{t-1}, r_{t-1}, o_t)$$

- The context x_t used for the agent's policy $\pi(a_t | x_t)$ can be:
 - Reactive policy: $x_t = o_t$ (optimal under full observability: $o_t = s_t$)
 - Using previous action: $x_t = (a_{t-1}, o_t) \implies$ can be useful if policy is stochastic
 - Using previous reward: $x_t = (r_{t-1}, o_t) \implies$ extra information about the environment

 - Generally: any summary (= memory) of

• Window of past observations: $x_t = (o_{t-3}, o_{t-2}, o_{t-1}, o_t) \Longrightarrow$ better see dynamics

observable history
$$x_t = f(h_t)$$

- Rules are unknown
 - What makes the score increase?
- Dynamics are unknown
 - How do actions change pixels?

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Example: Table Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

Logistics

assignments

project

evaluations

final exam

• Assignment 5 due Thursday

• Final report due next Thursday

- Evaluations due end of next week
- Review: next Thursday
- Final: Thursday, March 18, 1:30–3:30pm