# CS 273A: Machine Learning **Winter 2021** Lecture 16: Latent-Space Models (cont.)

#### Roy Fox

**Department of Computer Science Bren School of Information and Computer Sciences** University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh







### Logistics

#### assignments

project

#### evaluations

final exam

• Assignment 5 due Thursday

• Final report due next Thursday

- Evaluations due end of next week
- Review: next Thursday
- Final: Thursday, March 18, 1:30–3:30pm

### **Today's lecture**

### **Eigen-faces**

#### Latent Semantic Analysis

#### **Collaborative Filtering**

### Latent-space representations: uses

- Remove unneeded features
  - Features that add very little information (e.g. low variability, high noise)
  - Features that are similar to others (e.g. almost linearly dependent)
  - Reduce dimensionality for downstream application
    - Supervised learning: fewer parameters, need less data
    - Compression: less bandwidth
- Can also add features
  - Summarize multiple features into few cleaner / higher-level ones





## **PCA:** applications

- Eigen-faces
  - Represent image data (e.g. faces) using PCA
- Latent-Space Analysis (topic models)
  - Represent text data (e.g. bag of words) using PCA
- Collaborative Filtering for Recommendation Systems
  - Represent sentiment data (e.g. ratings) using PCA

## Singular Value Decomposition (SVD)

- Alternative method for finding covariance eigenvectors
  - Has many other uses
- Singular Value Decomposition (SVD):  $X = UDV^{T}$ 
  - U and V (left- and right singular vectors) are orthogonal:  $U^{\dagger}U = I, V^{\dagger}V = I$
  - D (singular values) is rectangular-diagonal
  - $\Sigma = X^{\mathsf{T}}X = VD^{\mathsf{T}}U^{\mathsf{T}}UDV^{\mathsf{T}} = V(D^{\mathsf{T}}D)V^{\mathsf{T}}$
- - We can truncate this after top k singular values (square root of eigenvalues)



• UD matrix gives coefficients to reconstruct data:  $x_i = U_{i,1}D_{1,1}v_1 + U_{i,2}D_{2,2}v_2 + \cdots$ 

- "Eigen-X" = represent X using its principal components
- Viola Jones dataset:  $24 \times 24$  images  $\in \mathbb{R}^{576}$ 
  - Can represent vector as image









- "Eigen-X" = represent X using its principal components
- Viola Jones dataset:  $24 \times 24$  images  $\in \mathbb{R}^{576}$ 
  - Can represent vector as image



mean



 $v_1$ 





principal components

• Project data on k

- "Eigen-X" = represent X using its principal components
- Viola Jones dataset:  $24 \times 24$  images  $\in \mathbb{R}^{5/6}$ 
  - Can represent vector as image



• Visualize basis vectors  $v_i$ 







- "Eigen-X" = represent X using its principal components
- Viola Jones dataset:  $24 \times 24$  images  $\in \mathbb{R}^{576}$ 
  - Can represent vector as image



Visualize data by projecting onto 2 principal components



## Nonlinear latent spaces

- Latent-space representation = represent  $x_i$  as  $z_i$ 
  - Usually more succinct, less noisy
  - Preserves most (interesting) information on  $x_i \implies$  can reconstruct  $\hat{x}_i \approx x_i$
  - Auto-encoder = encode  $x \rightarrow z$ , decode  $z \rightarrow \hat{x}$
- Linear latent-space representation:
  - Encode:  $Z = XV_{<k} = (UDV^{\mathsf{T}}V)_{<k} =$
- Nonlinear: e.g., encoder + decoder are neural networks
  - Restrict z to be shorter than  $x \implies$  requires succinctness





$$U_{\leq k} D_{\leq k}$$
; Decode:  $X \approx ZV_{\leq k}^{\mathsf{T}}$ 





## Variational Auto-Encoders (VAE)

- Probabilistic model:
  - Simple prior over latent space p(z) (e.g. Gaussian)
  - Decoder = generator  $p_{\theta}(x \mid z)$ , tries to match data distribution  $p_{\theta}(x) \approx \mathscr{D}$
  - Encoder = inference  $q_{\phi}(z \mid x)$ , tries to match posterior  $q_{\phi}(z \mid x) \approx \frac{p(z)p_{\theta}(x \mid z)}{p_{\theta}(x)}$









### **Today's lecture**

#### Eigen-faces

#### Latent Semantic Analysis

#### **Collaborative Filtering**

### **Textual features**

How to extract features from text for model inputs?

Idea: bag of words = indicate word count, not order

Rain and chilly weather didn't keep thousands of paradegoers from camping out Friday night for the 111th Tournament of Roses.

Spirits were high among the street party crowd as they set up for curbside seats for today's parade.

"I want to party all night," said Tyne Gaudielle, 15, of Glendale, who spent the last night of the year along Colorado Boulevard with a group of friends.

Whether they came for the partying or the parade, campers were in for a long night. Rain continued into the evening and temperatures were expected to dip down into the low 40s.

**Observed Data (text docs):** 

| DOC # | WORD # | COUNT | <b>VOCABULARY:</b>  |
|-------|--------|-------|---------------------|
| 1     | 20     | 1     | 0001 ability        |
| T     | 29     | T     | <b>0002 able</b>    |
| 1     | 56     | 1     | <b>0003 accept</b>  |
| 1     | 127    | 1     | 0004 accepted       |
| 1     | 166    | 1     | 0005 according      |
| 1     | 170    | 1     | <b>0006 account</b> |
| T     | 1/6    | T     | 0007 accounts       |
| 1     | 187    | 1     | 0008 accused        |
| 1     | 192    | 1     | <b>0009 act</b>     |
| 1     | 198    | 2     | 0010 acting         |
| 1     |        | 1     | 0011 action         |
| T     | 356    | T     | 0012 active         |
| 1     | 374    | 1     |                     |
| 1     | 381    | 2     |                     |
|       |        |       |                     |

## **Topic models**

- Word distribution is different for different document topics
  - Represent the bag-of-words feature vector in a latent space
  - Such that representation keep topic information

c1: Human machine interface for ABC computer applicat c2: A survey of user opinion of computer system response c3: The EPS user interface management system c4: System and human system engineering testing of EP c5: Relation of user perceived response time to error me

- m1: The generation of random, binary, ordered trees
- m2: The intersection graph of paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-orde
- m4: Graph minors: A survey

| tions<br>se time<br>PS<br>easurement | Human–Computer Interfaces |
|--------------------------------------|---------------------------|
| ering                                | Graph Theory              |

# Latent Semantic Analysis (LSA)

- - Sparse matrix = mostly 0s
  - Typically normalize rows:  $X_{ii}$  = probability that random word in doc j is word i
    - Make documents of different length comparable
  - Typically don't shift or scale columns to have mean 0, var 1
- Perform PCA on X to get latent representation = top k components

• Represent dataset as matrix of word counts:  $X_{ii} = #$  of word j in document i

Allows fuzzy search = documents of given topic, rather than word matching

## Word-doc matrix: example

Observation: many words have

little overlap between the topics

• Typical sizes:

- $\# docs = D \sim 10^6$
- #words in vocabulary =  $W \sim 10^5$
- Matrix size  $\sim 10^{11}$ , but only  $\sim 10^8$  in sparse representation



## Doc dissimilarity matrix: example

- Clustering can be tricky
  - High dissimilarity within topic
  - Some cross-topic similarity

• Define a distance / dissimilarity measure between docs  $D_{ii} = d(x_{i,.}, x_{i,.})$ 



## Singular Value Decomposition (SVD)

• Useful to preserve feature scale:

• With k = 2:









### Latent representation: example



### **Reconstruction: example**





## Distance matrix: example



#### original feature space

- LSA results in more similarity within topics
  - Still some similarity across topics, but easily separable

latent feature space



### **Today's lecture**

#### **Eigen-faces**

#### Latent Semantic Analysis

#### **Collaborative Filtering**

## **Recommendation Systems**

- Recommend decisions / items the user may like
  - Need to understand both the items and the users
  - E.g. movies, books, groceries, restaurants (remember those?)
- Training data
  - User information  $\mapsto$  features: demographics, social network, past ratings
  - Item metadata  $\mapsto$  features: creator, genre, ingredients
- Learning output = decision function:
  - Relevance score, predicted rating / ranking

## **Recommendation Systems: examples**

| NETFLIX                                                                                                                                                                                                                                       |                                                                                           | Y                                                          | our Am                                                  | azon.o                                       | om                                             | Your Browsin                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------|
| Browse Watch You<br>DVDs Instantly Quer<br>Suggestions (1279) Suggestion<br>Movies You'll Lo<br>Suggestions based on you<br>To Get the Best Suggesti                                                                                          | r Movies Friends &<br>Te You'll Community<br>s by Genre → Rate Movies<br>OVC<br>r ratings | Rate G                                                     |                                                         | An<br>Tal<br>Lea                             | nazon<br>ke a mi<br>arn mo                     | Betterize<br>nute to imp<br>re |
| 1. Rate your genres.                                                                                                                                                                                                                          | +Alexander Se                                                                             | arch In                                                    | nages                                                   | Maps                                         | Play                                           | YouTube                        |
| New Suggestions for You<br>Based on your recent ratings<br>Crowford<br>for ford<br>for ford<br>for ford<br>for ford<br>for ford<br>for ford<br>for ford<br>for ford<br>for for<br>for<br>for<br>for<br>for<br>for<br>for<br>for<br>for<br>for | Google                                                                                    | restau<br>Web<br>About 1<br>Califor<br>cafishg<br>Score: 2 | Imag<br>,190,000<br>rnia Fis<br>Irill.com/<br>24 / 30 · | es<br>),000 res<br><u>h Grill</u><br>117 Goo | Maps<br>sults (0.3<br><u>Inc</u><br>ogle revie | Shopping<br>7 seconds)         |
|                                                                                                                                                                                                                                               |                                                                                           | Bistan<br>www.bi                                           | go<br>istango.o                                         | com/                                         |                                                |                                |

Zagat: 25 / 30 · 247 Google reviews

Ruth's Chris Steak House

Zagat: 27 / 30 · 75 Google reviews

Zagat: 23 / 30 · 47 Google reviews

www.ruthschris.com/

www.stonefiregrill.com/

Stonefire Grill

Recommended For You Amazon Betterizer g History

Improve Your Recommendations

Your

#### er

prove your shopping experience by telling us which things you like. This helps us provide



- Recommendation Systems help reduce information overload
  - Identify most relevant items to attend to

| ltem | score |
|------|-------|
| l1   | 0.9   |
| 12   | 1     |
| 13   | 0.3   |
|      |       |

Personalized recommendations



#### user profile / context



Content-based: "show me more of the things I liked before"





Knowledge-based: e.g., "tell me what fits my needs"



Collaborative Filtering: "tell me what's popular among my peers"



• Hybrid: combine information from many inputs and/or methods



## Measuring success

- Prediction perspective
  - Predict to what degree users like the item
  - Most common evaluation for research
  - Regression vs. "top-K" ranking
- Interaction perspective
  - Promote positive "feeling" in users ("satisfaction", engagement)
  - Educate vs. persuade
- **Conversion** perspective  $\bullet$ 
  - Measure commercial success ("hits", click-through rates)
  - Optimize sales and profits

## Why are recommenders important?

- The long tail of item appeal
  - A few items are very popular
  - Most items are popular only with a few people
    - But everybody is interested in some obscure items
- Goal: recommend scarcely known items that the user might like



- these recommendations must be well-targeted

## **Collaborative Filtering: example**

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|
| 1 | 1 |   | 3 |   | ? | 5 |   |   | 5 |    | 4  |    |
| 2 |   |   | 5 | 4 |   |   | 4 |   |   | 2  | 1  | 3  |
| 3 | 2 | 4 |   | 1 | 2 |   | 3 |   | 4 | 3  | 5  |    |
| 4 |   | 2 | 4 |   | 5 |   |   | 4 |   |    | 2  |    |
| 5 |   |   | 4 | 3 | 4 | 2 |   |   |   |    | 2  | 5  |
| 6 | 1 |   | 3 |   | 3 |   |   | 2 |   |    | 4  |    |

movies

#### users

### Latent-space models

- Model: ratings matrix = user features  $\cdot$  movie features
  - Learn values from known ratings
  - Extrapolate to unrated



| 1.1 | 2  | 3. | 5.  | 2-  | 5  | 8.  | 4   | 3. | 1.4 | 2.4 | 9   |
|-----|----|----|-----|-----|----|-----|-----|----|-----|-----|-----|
| 8   | 7. | 5. | 1.4 | 3.  | 1- | 1.4 | 2.9 | 7  | 1.2 | 1   | 1.3 |
| 2.1 | 4  | 6. | 1.7 | 2.4 | 9. | 3   | 4.  | 8. | 7.  | 6   | 1.  |

#### users

#### items

users

### Latent-space models





### Latent-space models

- Ideally, latent representation encodes some meaning
  - What kind of movie is this? Which movies is it similar to?
- Most data is missing  $\implies$  hard to perform SVD

 $\implies$  gradient decent on loss  $\mathscr{L}(U,$ 

predict\_um = U[m,:].dot( V[:,u] ) # predict: vector-vector product err = ( rating[u,m] - predict\_um ) # find error residual  $V_ku$ ,  $U_mk = V[k,u]$ , U[m,k]U[m,k] += alpha \* err \* V\_ku V[k,u] += alpha \* err \* U\_mk

$$V) = \sum_{u,m} \left( X_{mu} - \sum_{k} U_{mk} V_{ku} \right)^2$$

# for user u, movie m, find the k'th eigenvector & coefficient by iterating: # make copies for update # Update our matrices # (compare to least-squares gradient)

### Latent-space models: extensions

• Add lower-order terms:  $r_{mu} \approx \mu + b_m + b_u + \sum U_{mk}V_{ku}$ 

- $\mu$  = overall average rating (affected by user interface etc.)
- $b_m + b_\mu$  = item and user biases
- Can add non-linearity (saturating?)
- Choose a loss, e.g. MSE or multilogistic
- Train using a gradient-based optimizer

### **Ensembles for recommendations**

- Many possible models:
  - Feature-based regression
  - (Weighted) kNN on items
  - (Weighted) kNN on users
  - Latent space representation
- Perhaps we should combine them?
- Use an ensemble average, or a stacked ensemble
  - Stacked ensemble = train a weighted combination of model predictions



<u>http://www.benfrederickson.com/matrix-factorization/</u>

### Logistics

#### assignments

project

#### evaluations

final exam

• Assignment 5 due Thursday

• Final report due next Thursday

- Evaluations due end of next week
- Review: next Thursday
- Final: Thursday, March 18, 1:30–3:30pm