CS 273A: Machine Learning Winter 2021 Lecture 14: Clustering

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

- lacksquare

Assignment 5 to be published soon

Due next Thu, March 4

• Final report the following Thu, March 11

Today's lecture

Clustering

Agglomerative clustering

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

k-Means

Unsupervised learning

- Supervised learning: learn decision $f: x \mapsto y$ from $\mathcal{D} = \{(x^{(j)}, y^{(j)})\}$
- Unsupervised learning: discover patterns in x from $\mathcal{D} = \{x^{(j)}\}$
 - Explain some features in terms of others
 - Impute missing values
 - Estimate data density (for data generation or anomaly detection)
 - Generate succinct representation (via feature selection or generation)
- Example: clustering

Represent data point as member of one of few sets (clusters) with some property

Clustering

- Group data points into few sets
 - Clustering function: $f: x \mapsto c$
 - Similar to classification, except true labels never seen (latent)
- Examples:

Clustering & compression

- - We need an encoder $f: x \mapsto c$ and decoder $g: c \mapsto \hat{x}$

x —

- Codebook = dictionary of the possible codewords = values of C
- Vector quantization = encoding vector to the nearest dictionary vector

g $\rightarrow \hat{x}$

• Suppose we must communicate x using only finite symbols (bit string, word)

Today's lecture

Clustering

Agglomerative clustering

k-Means

k-Means

- Simple clustering algorithm
- Repeat:
 - Update the clustering = assignment of data points to clusters
 - Update the cluster's representation to match the assigned points
- Notation:
 - $x_i = \text{data point in the dataset}$
 - k = number of clusters
 - μ_c = representation of cluster *c*

k-Means

- Iterate until convergence:
 - For each $x_i \in \mathcal{D}$, find the closest cluster of $x_i \in \mathcal{D}$.

Set each cluster centroid μ_c to the mean of assigned points: $\mu_c = \frac{1}{m_c} \sum_{i:z_i=c} x_i$

uster:
$$z_i = \underset{c}{\arg\min} ||x_i - \mu_c||^2$$

k-Means optimizes the MSE loss: $\mathscr{L}(z,\mu) = \sum ||x_i - \mu_{z_i}||^2$

- Optimize with respect to z: closest centroid
- Optimize with respect to μ : cluster mean
- Coordinate descent = each step descends on subset of parameters
- k-Means is guaranteed to converge:
 - 0, and decreasing every step ► *£* >
 - But convergence may not be to global optimum

Sensitivity to initialization

- The loss landscape has many local optima
- Different initializations of μ lead to different results
 - Randomly try various initializations
 - Use \mathscr{L} ("training loss") to select best initialization

Not a problem in the supervised version: μ given \implies 1-Nearest Neighbor

Initialization methods

Random

- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together

Initialization methods

• Random

- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together
- Distance-based
 - Initialize first centroid to a random data point
 - Initialize each next centroid to the point farthest from other centroids
 - Issue: may choose outliers

Initialization methods

Random

- Initialize each centroid to a random data point
- Ensures centroids are near some data
- Issue: may initialize several centroids close together
- **Distance-based**
 - Initialize first centroid to a random data point
 - Initialize each next centroid to the point farthest from other centroids
 - Issue: may choose outliers
- Randomized distance-based ("k-means++")
 - Randomize over far points
 - Distribution of next initial centroid: $p(x) \propto (d(x, \mu))^2$
 - Likely to put a cluster far away, in a region with lots of data

Out-of-sample clustering

- How can we use clustering to assign new data points?
- In k-Means: choose nearest centroid
 - 1-NN with learned centroids

Choosing k

- How to choose the number of clusters k?
- More clusters \implies can make them closer to more points

$$\implies \text{Loss } \mathscr{L}(z,\mu) = \sum_{i} ||x_i - \mu_{z_i}||^2 ge$$

• Larger $k \Longrightarrow$ larger model complexity

enerally decreases with k (validation loss too...)

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

Choosing k

- How to choose the number of clusters k?
- More clusters \implies can make them closer to more points

$$\Longrightarrow \text{Loss } \mathscr{L}(z,\mu) = \sum_{i} ||x_i - \mu_{z_i}||^2 \text{gen}$$

- Larger $k \Longrightarrow$ larger model complexity
- One solution: penalize complexity; loss = MSE + regularizer
 - More clusters may increase loss if they don't help much

Example: simplified BIC $\mathscr{L}(z,\mu) = \log z$

enerally decreases with k (validation loss too...)

$$\left(\frac{1}{md}\sum_{i}\|x_{i}-\mu_{z_{i}}\|^{2}\right)+k\frac{\log m}{m}$$

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering

Recap: k-means

- Clusters represented as centroids in feature space
- Initialize centroids; repeat:
 - Assign each data point to its closest centroid
- Coordinate descent on MSE loss
- Prone to local optima; initialization important
- Can use to assign out-of-sample data

Move centroids minimize mean squared error (i.e. means of assigned points)

• Choosing k =#clusters: model selection; penalize for complexity (BIC, etc.)

Today's lecture

Clustering

Agglomerative clustering

k-Means

Hierarchical agglomerative clustering

- Another simple clustering algorithm
- Define distance (dissimilarity) between clusters $d(C_i, C_i)$
- Initialize: every data point is its own cluster
- Repeat:
 - Compute distance between each pair of clusters
 - Merge two closest clusters
- Output: tree of merge operations ("dendrogram")

• Complexity: in m - 1 iterations, merge distances and sort $\implies O(m^2 \log m)$

Iteration 1

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

height of join indicates dissimilarity

Iteration 2

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

Iteration 3

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

Iteration *m* – 3

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

Iteration *m* – 2

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

Iteration m-1

• Build clustering hierarchically, bottom up ("agglomerative")

data

dendrogram

From dendrogram to clusters

• Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data

• For a given k, or a given level of dissimilarity

dendrogram

Distance measures

•
$$d_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

•
$$d_{avg}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i, y \in C_j} ||x|$$

•
$$d_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$

Important property: iterative computation

$$d(C_i \cup C_j, C_k) =$$

Distance measures

Dissimilarity measure affects the clustering qualitatively

single linkage (min)

complete linkage (max)

Recap: agglomerative clustering

- Hierarchical clustering: build "dendrogram"
 - Bottom-up: agglomerative clustering
- Successively merge closest pair of clusters
 - Dendrogram = tree of merges & distances
 - Complexity = $O(m^2 \log m)$

Clusters quality depend on choice of a distance / dissimilarity measure