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Logistics

* Assignment 5 to be published soon

e Due next Thu, March 4

- * Final report the following Thu, March 11
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Today's lecture

k-Means

Agglomerative clustering
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Unsupervised learning

» Supervised learning: learn decision f : x — y from D = {(x(j),y(j))}

» Unsupervised learning: discover patterns in x from & = {x(j)}

» Explain some features in terms of others

> Impute missing values

» Estimate data density (for data generation or anomaly detection)

) Q
o

> Generate succinct representation (via feature selection or generation)

 Example: clustering

> Represent data point as member of one of few sets (clusters) with some property
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Clustering

 Group data points into few sets

> Clustering function: f: x = ¢
> Similar to classification, except true labels never seen (latent)

 Examples:

close to each other large margin density
far from others
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Clustering & compression

C A

o Suppose we must communicate x using only finite symbols (bit string, word)

» We need an encoder f : x — ¢ and decoder g : ¢ — X

> Codebook = dictionary of the possible codewords = values of ¢

e \ector quantization = encoding vector to the nearest dictionary vector

Voronoi regions
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Today's lecture

Clustering

Agglomerative clustering
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k-Means

e Simple clustering algorithm
 Repeat:
> Update the clustering = assignment of data points to clusters

» Update the cluster's representation to match the assigned points

e Notation:

> X; = data point in the dataset

» k = number of clusters

> U = representation of cluster ¢
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k-Means

 |terate until convergence:

., Foreach x; € 9, find the closest cluster: z; = arg min ||x; — ﬂcHz

C

>

Set each cluster centroid y. to the mean of assigned points: j,. = mi Z X
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k-Means

_ k-Means optimizes the MSE loss: Z£'(z, ) = 2 [ x; — //iZZ.H2

l

> Optimize with respect to z: closest centroid

> Optimize with respect to u: cluster mean

e Coordinate descent = each step descends on subset of parameters

« k-Means is guaranteed to converge:

» £ > 0, and decreasing every step

> But convergence may not be to global optimum
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Sensitivity to initialization

e [The loss Iandscape has many local optima - Not a problem in the supervised version:
u given —> 1-Nearest Neighbor

 Different initializations of u lead to different results

> Randomly try various initializations

» Use & (“training loss”) to select best initialization
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Initialization methods

e Random
> Initialize each centroid to a random data point
» Ensures centroids are near some data

> Issue: may Iinitialize several centroids close together
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Initialization methods

« Random
> Initialize each centroid to a random data point
> Ensures centroids are near some data
> |ssue: may initialize several centroids close together
* Distance-based
> Initialize first centroid to a random data point
> Initialize each next centroid to the point farthest from other centroids

> Issue: may choose outliers
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Initialization methods

« Random
> Initialize each centroid to a random data point
> Ensures centroids are near some data
> |ssue: may initialize several centroids close together
* Distance-based
> Initialize first centroid to a random data point
> Initialize each next centroid to the point farthest from other centroids

> Issue: may choose outliers

« Randomized distance-based (“k-means++")
> Randomize over far points
» Distribution of next initial centroid: p(x)  (d(x, 1))?

> Likely to put a cluster far away, in a region with lots of data
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Out-of-sample clustering

 How can we use clustering to assign new data points?

e In k-Means: choose nearest centroid

> 1-NIN with learned centroids
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Choosing &

« How to choose the number of clusters k? k

* More clusters = can make them closer to more points o5 10

>

—> Loss L(g, u) = Z || x; — /“‘z,-HZ generally decreases with k (validation loss t0o0...)

l

» Larger k = larger model complexity
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Choosing k

« How to choose the number of clusters k?

 More clusters =— can make them closer to more points

>

—> Loss L(g, u) = Z || x; — //tZin generally decreases with k (validation loss t0o0...)

l

» Larger k = larger model complexity

* One solution: penalize complexity; loss = MSE + regularizer

> More clusters may increase loss if they don't help much

logm

> m

Example: simplified BIC Z(z,u) = log | — Y llx; — . |I* | + &
l
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Recap: k-means

Clusters represented as centroids In feature space

Initialize centroids; repeat:
> Assign each data point to its closest centroid

> Move centroids minimize mean squared error (i.e. means of assigned points)
Coordinate descent on MSE loss
Prone to local optima; initialization important

Can use to assign out-of-sample data

Choosing k = #clusters: model selection; penalize for complexity (BIC, etc.)
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Today's lecture

Clustering

k-Means

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering



Hierarchical agglomerative clustering

Another simple clustering algorithm

Define distance (dissimilarity) between clusters d(C;, C))

Initialize: every data point is its own cluster

Repeat:
> Compute distance between each pair of clusters

> Merge two closest clusters

Output: tree of merge operations (“dendrogram?)

Complexity: in m — 1 iterations, merge distances and sort => O(m?> log m)
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lteration 1

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
0o .o
° ¢ . height of join
indicates dissimilarity
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lteration 2

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration 3

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration m — 3

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram
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lteration m — 2

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram

{j00r1033§86r18ﬂ5l
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lteration m — 1

* Build clustering hierarchically, bottom up (“agglomerative™)

data dendrogram

{j00f1033§86r16ﬂ6l
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From dendrogram to clusters

* Given the hierarchy of clusters, choose a frontier of subtrees = clusters

data dendrogram
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> For a given k, or a given level of dissimilarity
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Distance measures

mm( C) —  min Hx yHZ . produces minimum spanning tree
xeC,yel; R
* dmax( C) — Ihax HX y Hz avoids elongated clusters
XEC yEC \
_ 1 o2
GO = e 2 Ikl
xeC,yel;

c dmeans(ci9 C) = H//ti — Hz

j Hi \
* Important property: iterative computation

d(Cz U C}" Ck) =f(d(ci9 Ck)9 d(C}a Ck))

Nearest
Neighbour

| T
(Single Linkage)

Em thest
eighbour

[Complete Lmkfige)

Centroid
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Distance measures

* Dissimilarity measure affects the clustering qualitatively

single linkage (min) complete linkage (max)

Roy Fox | CS 273A | Winter 2021 | Lecture 14: Clustering



Recap: agglomerative clustering

e Hierarchical clustering: build “dendrogram”

> Bottom-up: agglomerative clustering

e Successively merge closest pair of clusters
> Dendrogram = tree of merges & distances
> Complexity = O(m* log m)

* Clusters quality depend on choice of a distance / dissimilarity measure
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