

CS 273A: Machine Learning Winter 2021

Lecture 13: Ensemble Methods

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Adding features

- So far: linear SVMs, not very expressive
 - \rightarrow add features $x \mapsto \Phi(x)$
- Linearly non-separable:

• Linearly separable in quadratic features:

Adding features

- Prediction: $\hat{y}(x) = \text{sign}(w \cdot \Phi(x) + b)$
- Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_{j} \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} \Phi(x^{(j)}) \cdot \Phi(x^{(k)}) \right) \quad \text{s.t. } \sum_{j} \lambda_{j} y^{(j)} = 0$
- Example: quadratic features $\Phi(x) = \begin{bmatrix} 1 & \sqrt{2}x_i & x_i^2 & \sqrt{2}x_i x_{i'} \end{bmatrix}$
 - n features $\mapsto O(n^2)$ features
 - Why $\sqrt{2}$? Next slide... But just scale corresponding weights

Implicit features

- For dual problem, we need $K_{jk} = \Phi(x^{(j)}) \cdot \Phi(x^{(k)})$
- Kernel trick: with $\Phi(x) = \begin{bmatrix} 1 & \sqrt{2}x_i & x_i^2 & \sqrt{2}x_ix_{i'} \end{bmatrix}$:

$$K_{jk} = 1 + \sum_{i} 2x_{i}^{(j)}x_{i}^{(k)} + \sum_{i} (x_{i}^{(j)}x_{i}^{(k)})^{2} + \sum_{i < i'} 2(x_{i}^{(j)}x_{i}^{(k)})(x_{i'}^{(j)}x_{i'}^{(k)})$$

$$= \left(1 + \sum_{i} x_{i}^{(j)}x_{i}^{(k)}\right)^{2}$$

• Each of m^2 elements computed in O(n) time (instead of $O(n^2)$)

Mercer's Theorem

- Reminder: positive semidefinite matrix $A \geq 0$: $v^{\dagger}Av \geq 0$ for all vectors v
- Positive semidefinite kernel $K \geq 0$: matrix $K(x^{(j)}, x^{(k)}) \geq 0$ for all datasets
- Mercer's Theorem: if $K \ge 0 \implies K(x, x') = \Phi(x) \cdot \Phi(x')$ for some $\Phi(x)$
- ullet Φ may be hard to calculate
 - May even be infinite dimensional (Hilbert space)
 - ► Not an issue, only the kernel K(x, x') should be easy to compute $(O(m^2))$ times)

Common kernel functions

• Polynomial: $K(x, x') = (1 + x \cdot x')^d$

• Radial Basis Functions (RBF): $K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$

• Saturating: $K(x, x') = \tanh(ax \cdot x' + c)$

- Domain-specific: textual similarity, genetic code similarity, ...
 - May not be positive semidefinite, and still work well in practice

Kernel SVMs

• Define kernel $K:(x,x')\mapsto \mathbb{R}$

• Solve dual QP:
$$\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} K(x^{(j)}, x^{(k)}) \right)$$
 s.t. $\sum_{j} \lambda_j y^{(j)} = 0$

- Learned parameters = λ (m parameters)
 - But also need to store all support vectors (having $\lambda_j > 0$)
- Prediction: $\hat{y}(x) = \text{sign}(w \cdot \Phi(x))$

$$= \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x)\right) = \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K(x^{(j)}, x)\right)$$

Demo

https://cs.stanford.edu/people/karpathy/svmjs/demo/

Linear vs. kernel SVMs

Linear SVMs

- $\hat{y} = sign(w \cdot x + b) \Longrightarrow n + 1$ parameters
- Alternatively: represent by indexes of SVs; usually, #SVs = #parameters

Kernel SVMs

- K(x, x') may correspond to high- (possibly infinite-) dimensional $\Phi(x)$
- Typically more efficient to store the SVs $x^{(j)}$ (not $\Phi(x^{(j)})$)
 - And their corresponding λ_i

Recap

- Maximize margin for separable data
 - Primal QP: minimize $||w||^2$ subject to linear constraints
 - ► Dual QP: *m* variables, *m*² dot products
- Soft margin for non-separable data
 - Primal problem: regularized hinge loss
 - ► Dual problem: *m*-dimensional QP
- Kernel Machines
 - Dual form involves only pairwise similarity
 - Mercer kernels: equivalent to dot products in implicit high-dimensional space

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Bias vs. variance

- Imagine 3 universes → 3 datasets
- A simple model:
 - Poor prediction (on average across universes)
 - High bias
 - Doesn't vary much between universes
 - Low variance
- A complex model:
 - Low bias
 - High variance

observed data

Averaging across datasets

- What if we could reach out across universes
 - Average models for different datasets
 - For classification: majority vote of different models
- Same bias
- Lower variance
- But we only have our training set
 - Idea: resample $\mathcal{D}_1, ..., \mathcal{D}_K$ from \mathcal{D}
 - Average models trained for each \mathcal{D}_k

Bootstrap

• Resampling = any method that samples a new dataset from the training set

$$\tilde{\mathcal{D}} = \{(x^{(j_1)}, y^{(j_1)}), \dots, (x^{(j_b)}, y^{(j_b)})\} \quad j_1, \dots, j_b \sim U(1, \dots, m)$$

- Subsampling = resampling without replacement (choose a subset)
- Bootstrap = resampling with replacement (may repeat same datapoint)
 - Preferred for theory that is less sensitive to good choice of b
 - But has higher variance

Bagging

- Bagging = bootstrap aggregating:
 - Resample K datasets $\mathcal{D}_1, ..., \mathcal{D}_K$ of size b
 - Train K models $\theta_1, ..., \theta_K$ on each dataset
 - Regression: output $f_{\theta}: x \mapsto \frac{1}{K} \sum_{k} f_{\theta_k}(x)$
 - Classification: output $f_{\theta}: x \mapsto \text{majority}\{f_{\theta_k}(x)\}$
- Similar to cross-validation (for different purpose), but outputs average model
 - Also, datasets are resampled (with replacement), not a partition

Bagging: properties

- Each model is trained from less data
 - More bias
 - More variance
 - Replacement also adds variance (repetitions throw off the data distribution)
- Models are averaged
 - Doesn't affect bias (defined as average over models)
 - ► Variance reduced a lot (roughly as $\frac{1}{K}$, under some conditions)
- More bias, less variance \Longrightarrow less overfitting = simpler model, in a sense

Bagged decision trees

- A model badly in need for complexity reduction: decision trees
 - Very low bias, very high variance
- Randomly resample data
- Train decision tree for each sample; no max depth
 - Still low bias, high variance
- Average / majority decision over models

Bagged decision trees

- Average model can't just "memorize" training data
 - Each data point only seen by few models
 - Hopefully still predicted well by majority of other models

Ensemble methods

- Ensemble = "committee" of models: $\hat{y}_k(x) = f_{\theta_k}(x)$
 - Decisions made by average / majority vote: $\hat{y}(x) = \frac{1}{K} \sum_{k} \hat{y}_{k}(x)$
 - May be weighted: better model = higher weight: $\hat{y}(x) = \sum_{k} \alpha_k \hat{y}_k(x)$
- Stacking = use ensemble as inputs (as in MLP): $\hat{y}(x) = f_{\theta}(\hat{y}_1(x), \dots, \hat{y}_K(x))$
 - f_{θ} trained on held out data = validation of which model should be trusted
 - f_{θ} linear \Longrightarrow weighted committee, with learned weights

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
 - Let weights depend on x: $\hat{y}(x) = \sum_{k} \alpha_k(x) \hat{y}_k(x)$
- Can we predict which model will perform well?
 - Learn a predictor $\alpha_{\phi}(k \mid x)$

E.g., multilogistic regression (softmax)
$$\alpha_{\phi}(k \mid x) = \frac{\exp(\phi_k \cdot x)}{\sum_{k'} \exp(\phi_{k'} \cdot x)}$$

Loss, experts, weights differentiable

 end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
 - Much data

 max info gain stable across data samples
 - ► Little diversity among models —> little gained from ensemble
- Random Forests = subsample features
 - Each tree only allowed to use a subset of features
 - Still low, but higher bias
 - Average over trees for lower variance

Recap

- Ensembles = collections of predictors
 - Combine predictions to improve performance
- Bagging = bootstrap aggregation
 - Reduces model class complexity to mitigate overfitting
 - Resample the data many times (with replacement)
 - For each, train model
 - More bias but less variance
 - Also more compute both at training time and at test time

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Growing ensembles

Ensemble = collection of models:
$$\hat{y}(x) = \sum_{k} f_k(x)$$

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?

$$\mathcal{L}(y, \hat{y}') = \mathcal{L}(y, \hat{y} + f_{K+1}(x))$$

- Let's find $f_{K+1}(x)$ that minimizes this loss
 - ► If we could do this well done in one step
 - ► Instead, let's do it badly but many times → gradually improve

Boosting

- Question: can we create a strong learner from many weak learners?
 - Weak learner = underfits, but fast and simple (e.g., decision stump, perceptron)
 - Strong learner = performs well but increasingly complex
- Boosting: focus new learners on instances that current ensemble gets wrong
 - Train new learner
 - Measure errors
 - Re-weight data points to emphasize large residuals
 - Repeat

Example: MSE loss

• Ensemble:
$$\hat{y}_K = \sum_k f_k(x)$$
; MSE loss: $\mathcal{L}(y, \hat{y}_k) = \frac{1}{2}(y - \hat{y}_{k-1} - f_k(x))^2$

- ► To minimize: have $f_k(x)$ try to predict $y \hat{y}_{k-1}$
- Then update $\hat{y}_k = \hat{y}_{k-1} + f_k(x)$

Gradient Boosting

- . More generally: pseudo-residuals $r_k^{(j)} = -\partial_{\hat{y}} \mathcal{L}(y^{(j)}, \hat{y}) \Big|_{\hat{y}=\hat{y}_{k-1}^{(j)}}$
 - $r_k^{(j)}$ = steepest descent of loss in "prediction space" (how $\hat{y}_{k-1}^{(j)}$ should change)
 - For MSE loss: $r_k^{(j)} = y^{(j)} \hat{y}_{k-1}^{(j)}$ as before
- Gradient Boosting:
 - Learn weak model to $\operatorname{predict} f_k : x^{(j)} \mapsto r_k^{(j)}$
 - Find best step size $\alpha_k = \arg\min_{\alpha} \frac{1}{m} \sum_{j} \mathcal{L}\left(y^{(j)}, \hat{y}_{k-1}^{(j)} + \alpha f_k(x^{(j)})\right)$ (line search

• http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Growing ensembles

• Ensemble = collection of models:
$$\hat{y}(x) = \sum_{k} \alpha_k f_k(x)$$

- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?

$$\mathscr{L}(y, \hat{y}_k) = \mathscr{L}(y, \hat{y}_{k-1} + \alpha_k f_k(x))$$

- Let's find α_k , $f_k(x)$ that minimize this loss
 - ▶ If we could do this well done in one step
 - ► Instead, let's do it badly but many times → gradually improve

Example: exponential loss

- Exponential loss: $\mathcal{L}(y, \hat{y}) = e^{-y\hat{y}}$
 - Optimal $\hat{y}(x)$: arg $\min_{\hat{y}} \mathbb{E}_{y|x}[\mathcal{L}(y,\hat{y})] = \frac{1}{2} \ln \frac{p(y=+1|x)}{p(y=-1|x)}$ (proof by derivative)
 - If we can minimize the loss $\Longrightarrow sign(\hat{y})$ is the more likely label
- Let's find model $f_k: x \mapsto \{+1, -1\}$ that minimizes

$$\sum_{j} \mathcal{L}(y^{(j)}, \hat{y}_{k}^{(j)}) = \sum_{j} \mathcal{L}(y^{(j)}, \hat{y}_{k-1}^{(j)} + \alpha_{k} f_{k}(x^{(j)})) = \sum_{j} e^{-y^{(j)} \hat{y}_{k-1}^{(j)}} e^{-y^{(j)} \alpha_{k} f_{k}(x^{(j)})}$$

$$= (e^{\alpha_{k}} - e^{-\alpha_{k}}) \sum_{j} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_{k}(x^{(j)})] + e^{-\alpha_{k}} \sum_{j} w_{k-1}^{(j)}$$
independent of f_{k}

Minimizing weighted loss

- So far, we minimized average loss: $\frac{1}{m}\sum_{j}\mathcal{L}(y^{(j)},\hat{y}^{(j)})$
- We can also minimize weighted loss: $\sum_{j} w^{(j)} \mathcal{L}(y^{(j)}, \hat{y}^{(j)})$
 - Every data point "counts" as $w^{(j)}$
 - E.g., in decision trees, weighted info gain obtained by $p(y=c) \propto \sum_{j:y^{(j)}=c} w^{(j)}$
- In our current case, weighted 0–1 loss: $\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]$

Boosting with exponential loss (cont.)

• The best classifier to add to the ensemble minimizes weighted 0–1 loss:

$$\sum_{i} w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})] \quad \text{with } w_{k-1}^{(j)} = e^{-y^{(j)} \hat{y}_{k-1}^{(j)}}$$

It gives weighted error rate
$$\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_j w_{k-1}^{(j)}}$$

- Plugging into the loss and solving: $\alpha_k = \frac{1}{2} \ln \frac{1 \epsilon_k}{\epsilon_k}$
- Now add the model and update the ensemble $\hat{y}_k(x) = \hat{y}_{k-1}(x) + \alpha_k f_k(x)$

AdaBoost

- AdaBoost = adaptive boosting:
 - ► Initialize $w_0^{(j)} = \frac{1}{m}$
 - Train classifier f_k on training data with weights w_{k-1}
 - Compute weighted error rate $\epsilon_k = \frac{\sum_j w_{k-1}^{(j)} \delta[y^{(j)} \neq f_k(x^{(j)})]}{\sum_j w_{k-1}^{(j)}}$
 - $\quad \textbf{Compute } \alpha_k = \frac{1}{2} \ln \frac{1 \epsilon_k}{\epsilon_k}$
 - ▶ Update weights $w_k^{(j)} = w_{k-1}^{(j)} e^{-y^{(j)} \alpha_k f_k(x^{(j)})}$ (increase weight for misclassified points)

• Predict
$$\hat{y}(x) = \text{sign } \sum_{k} \alpha_k f_k(x)$$

Recap

- Ensembles = collections of predictors
 - Combine predictions to improve performance
- Boosting: Gradient Boost, AdaBoost, ...
 - Build strong predictor from many weak ones
 - Train sequentially; later predictors focus on mistakes by earlier
 - Weight "hard" examples more