CS 273A: Machine Learning Winter 2021
 Lecture 13: Ensemble Methods

Roy Fox

Department of Computer Science
Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler \& Sameer Singh

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Adding features

- So far: linear SVMs, not very expressive
- \Longrightarrow add features $x \mapsto \Phi(x)$
- Linearly non-separable:

Adding features

- Prediction: $\hat{y}(x)=\operatorname{sign}(w \cdot \Phi(x)+b)$

0

- Example: quadratic features $\Phi(x)=\left[\begin{array}{llll}1 & \sqrt{2} x_{i} & x_{i}^{2} & \sqrt{2} x_{i} x_{i^{\prime}}\end{array}\right]$
- n features $\mapsto O\left(n^{2}\right)$ features
- Why $\sqrt{2}$? Next slide... But just scale corresponding weights

Implicit features

- For dual problem, we need $K_{j k}=\Phi\left(x^{(j)}\right) \cdot \Phi\left(x^{(k)}\right)$
- Kernel trick: with $\Phi(x)=\left[\begin{array}{llll}1 & \sqrt{2} x_{i} & x_{i}^{2} & \sqrt{2} x_{i} x_{i^{\prime}}\end{array}\right]$:

$$
\begin{aligned}
K_{j k} & =1+\sum_{i} 2 x_{i}^{(j)} x_{i}^{(k)}+\sum_{i}\left(x_{i}^{(j)} x_{i}^{(k)}\right)^{2}+\sum_{i<i^{\prime}} 2\left(x_{i}^{(j)} x_{i}^{(k)}\right)\left(x_{i^{\prime}}^{(j)} x_{i^{\prime}}^{(k)}\right) \\
& =\left(1+\sum_{i} x_{i}^{(j)} x_{i}^{(k)}\right)^{2}
\end{aligned}
$$

- Each of m^{2} elements computed in $O(n)$ time (instead of $O\left(n^{2}\right)$)

Mercer's Theorem

- Reminder: positive semidefinite matrix $A \succeq 0: v^{\top} A v \geq 0$ for all vectors v
- Positive semidefinite kernel $K \succeq 0$: matrix $K\left(x^{(j)}, x^{(k)}\right) \succeq 0$ for all datasets
- Mercer's Theorem: if $K \succeq 0 \Longrightarrow K\left(x, x^{\prime}\right)=\Phi(x) \cdot \Phi\left(x^{\prime}\right)$ for some $\Phi(x)$
- Φ may be hard to calculate
- May even be infinite dimensional (Hilbert space)
- Not an issue, only the kernel $K\left(x, x^{\prime}\right)$ should be easy to compute ($O\left(m^{2}\right)$ times)

Common kernel functions

- Polynomial: $K\left(x, x^{\prime}\right)=\left(1+x \cdot x^{\prime}\right)^{d}$

- Radial Basis Functions (RBF): $K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$

- Saturating: $K\left(x, x^{\prime}\right)=\tanh \left(a x \cdot x^{\prime}+c\right)$

- Domain-specific: textual similarity, genetic code similarity, ...
- May not be positive semidefinite, and still work well in practice

Kernel SVMs

- Define kernel $K:\left(x, x^{\prime}\right) \mapsto \mathbb{R}$
- Solve dual QP: $\max _{0 \leq \lambda \leq R} \sum_{j}\left(\lambda_{j}-\frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} y^{(k)} K\left(x^{(j)}, x^{(k)}\right)\right) \quad$ s.t. $\sum_{j} \lambda_{j} y^{(j)}=0$
- Learned parameters $=\lambda$ (m parameters)
- But also need to store all support vectors (having $\lambda_{j}>0$)
- Prediction: $\hat{y}(x)=\operatorname{sign}(w \cdot \Phi(x))$

$$
=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi\left(x^{(j)}\right) \cdot \Phi(x)\right)=\operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K\left(x^{(j)}, x\right)\right)
$$

Demo

- https://cs.stanford.edu/people/karpathy/svmjs/demo/

Linear vs. kernel SVMs

- Linear SVMs
- $\hat{y}=\operatorname{sign}(w \cdot x+b) \Longrightarrow n+1$ parameters
- Alternatively: represent by indexes of SVs; usually, \#SVs = \#parameters
- Kernel SVMs
- $K\left(x, x^{\prime}\right)$ may correspond to high- (possibly infinite-) dimensional $\Phi(x)$
- Typically more efficient to store the SVs $x^{(j)}$ (not $\Phi\left(x^{(j)}\right)$)
- And their corresponding λ_{j}

Recap

- Maximize margin for separable data
- Primal QP: minimize $\|w\|^{2}$ subject to linear constraints
- Dual QP: m variables, m^{2} dot products
- Soft margin for non-separable data
- Primal problem: regularized hinge loss
- Dual problem: m-dimensional QP
- Kernel Machines
- Dual form involves only pairwise similarity
- Mercer kernels: equivalent to dot products in implicit high-dimensional space

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Bias vs. variance

- Imagine 3 universes $\rightarrow 3$ datasets

- High bias
- Doesn't vary much between universes
- Low variance

- A complex model:
- Low bias
- High variance

Averaging across datasets

- What if we could reach out across universes
- Average models for different datasets
- For classification: majority vote of different models
- Same bias
- Lower variance
- But we only have our training set \mathscr{D}
- Idea: resample $\mathscr{D}_{1}, \ldots, \mathscr{D}_{K}$ from \mathscr{D}
- Average models trained for each \mathscr{D}_{k}

Bootstrap

- Resampling = any method that samples a new dataset from the training set

$$
\tilde{\mathscr{D}}=\left\{\left(x^{\left(j_{1}\right)}, y^{\left(j_{1}\right)}\right), \ldots,\left(x^{\left(j_{b}\right)}, y^{\left(j_{b}\right)}\right)\right\} \quad j_{1}, \ldots, j_{b} \sim \mathrm{U}(1, \ldots, m)
$$

- Subsampling = resampling without replacement (choose a subset)
- Bootstrap = resampling with replacement (may repeat same datapoint)
- Preferred for theory that is less sensitive to good choice of b
- But has higher variance

Bagging

- Bagging = bootstrap aggregating:
- Resample K datasets $\mathscr{D}_{1}, \ldots, \mathscr{D}_{K}$ of size b
- Train K models $\theta_{1}, \ldots, \theta_{K}$ on each dataset
-Regression: output $f_{\theta}: x \mapsto \frac{1}{K} \sum_{k} f_{\theta_{k}}(x)$
- Classification: output $f_{\theta}: x \mapsto$ majority $\left\{f_{\theta_{k}}(x)\right\}$
- Similar to cross-validation (for different purpose), but outputs average model
- Also, datasets are resampled (with replacement), not a partition

Bagging: properties

- Each model is trained from less data
- More bias
- More variance
- Replacement also adds variance (repetitions throw off the data distribution)
- Models are averaged
- Doesn't affect bias (defined as average over models)
- Variance reduced a lot (roughly as $\frac{1}{K}$, under some conditions)
- More bias, less variance \Longrightarrow less overfitting = simpler model, in a sense

Bagged decision trees

- A model badly in need for complexity reduction: decision trees
- Very low bias, very high variance
- Randomly resample data
- Train decision tree for each sample; no max depth
- Still low bias, high variance
- Average / majority decision over models

Bagged decision trees

- Average model can't just "memorize" training data
- Each data point only seen by few models
- Hopefully still predicted well by majority of other models
full training dataset

majority of 25 trees

majority of 100 trees

Ensemble methods

- Ensemble $=$ "committee" of models: $\hat{y}_{k}(x)=f_{\theta_{k}}(x)$
. Decisions made by average / majority vote: $\hat{y}(x)=\frac{1}{K} \sum_{k} \hat{y}_{k}(x)$
- May be weighted: better model = higher weight: $\hat{y}(x)=\sum_{k} \alpha_{k} \hat{y}_{k}(x)$
- Stacking $=$ use ensemble as inputs (as in MLP): $\hat{y}(x)=f_{\theta}\left(\hat{y}_{1}(x), \ldots, \hat{y}_{K}(x)\right)$
- f_{θ} trained on held out data = validation of which model should be trusted
- f_{θ} linear \Longrightarrow weighted committee, with learned weights

Mixture of Experts (MoE)

- Experts = models can "specialize", good only for some instances
- Let weights depend on $x: \hat{y}(x)=\sum_{k} \alpha_{k}(x) \hat{y}_{k}(x)$
- Can we predict which model will perform well?
- Learn a predictor $\alpha_{\phi}(k \mid x)$

- E.g., multilogistic regression (softmax) $\alpha_{\phi}(k \mid x)=\frac{\exp \left(\phi_{k} \cdot x\right)}{\sum_{k^{\prime}} \exp \left(\phi_{k^{\prime}} \cdot x\right)}$
- Loss, experts, weights differentiable \Longrightarrow end-to-end gradient-based learning

Random Forests

- Bagging over decision trees: which feature at root?
- Much data \Longrightarrow max info gain stable across data samples
- Little diversity among models \Longrightarrow little gained from ensemble
- Random Forests = subsample features
- Each tree only allowed to use a subset of features
- Still low, but higher bias
- Average over trees for lower variance
- Works very well in practice \Longrightarrow go-to algorithm for small ML tasks

Recap

- Ensembles = collections of predictors
- Combine predictions to improve performance
- Bagging = bootstrap aggregation
- Reduces model class complexity to mitigate overfitting
- Resample the data many times (with replacement)
- For each, train model
- More bias but less variance
- Also more compute - both at training time and at test time

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Growing ensembles

- Ensemble $=$ collection of models: $\hat{y}(x)=\sum_{k} f_{k}(x)$
- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?

$$
\mathscr{L}\left(y, \hat{y}^{\prime}\right)=\mathscr{L}\left(y, \hat{y}+f_{K+1}(x)\right)
$$

- Let's find $f_{K+1}(x)$ that minimizes this loss
- If we could do this well - done in one step
- Instead, let's do it badly but many times \rightarrow gradually improve

Boosting

- Question: can we create a strong learner from many weak learners?
- Weak learner = underfits, but fast and simple (e.g., decision stump, perceptron)
- Strong learner = performs well but increasingly complex
- Boosting: focus new learners on instances that current ensemble gets wrong
- Train new learner
- Measure errors
- Re-weight data points to emphasize large residuals
- Repeat

Example: MSE loss

. Ensemble: $\hat{y}_{K}=\sum_{k} f_{k}(x) ;$ MSE loss: $\mathscr{L}\left(y, \hat{y}_{k}\right)=\frac{1}{2}\left(y-\hat{y}_{k-1}-f_{k}(x)\right)^{2}$

- To minimize: have $f_{k}(x)$ try to predict $y-\hat{y}_{k-1}$
- Then update $\hat{y}_{k}=\hat{y}_{k-1}+f_{k}(x)$
data prediction

increasingly accurate increasingly complex

Gradient Boosting

. More generally: pseudo-residuals $r_{k}^{(j)}=-\left.\partial_{\hat{y}} \mathscr{L}\left(y^{(j)}, \hat{y}\right)\right|_{\hat{y}=\hat{y}_{k-1}^{(j)}}$

- $r_{k}^{(j)}=$ steepest descent of loss in "prediction space" (how $\hat{y}_{k-1}^{(j)}$ should change)
- For MSE loss: $r_{k}^{(j)}=y^{(j)}-\hat{y}_{k-1}^{(j)}$ as before
- Gradient Boosting:
- Learn weak model to predict $f_{k}: x^{(j)} \mapsto r_{k}^{(j)}$
- Find best step size $\alpha_{k}=\arg \min _{\alpha} \frac{1}{m} \sum_{j} \mathscr{L}\left(y^{(j)}, \hat{y}_{k-1}^{(j)}+\alpha f_{k}\left(x^{(j)}\right)\right)$ (line search)

Demo

- http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Today's lecture

Kernel Machines

Bagging

Gradient boosting

AdaBoost

Growing ensembles

- Ensemble $=$ collection of models: $\hat{y}(x)=\sum_{k} \alpha_{k} f_{k}(x)$
- Models should "cover" for each other
- If we could add a model to a given ensemble, what would we add?

$$
\mathscr{L}\left(y, \hat{y}_{k}\right)=\mathscr{L}\left(y, \hat{y}_{k-1}+\alpha_{k} f_{k}(x)\right)
$$

- Let's find $\alpha_{k}, f_{k}(x)$ that minimize this loss
- If we could do this well - done in one step
- Instead, let's do it badly but many times \rightarrow gradually improve

Example: exponential loss

- Exponential loss: $\mathscr{L}(y, \hat{y})=e^{-y \hat{y}}$
- Optimal $\hat{y}(x): \arg \min _{\hat{y}} \mathbb{E}_{y \mid x}[\mathscr{L}(y, \hat{y})]=\frac{1}{2} \ln \frac{p(y=+1 \mid x)}{p(y=-1 \mid x)}$ (proof by derivative)
- If we can minimize the loss $\Longrightarrow \operatorname{sign}(\hat{y})$ is the more likely label
- Let's find model $f_{k}: x \mapsto\{+1,-1\}$ that minimizes

$$
\begin{gathered}
\sum_{j} \mathscr{L}\left(y^{(j)}, \hat{y}_{k}^{(j)}\right)=\sum_{j} \mathscr{L}\left(y^{(j)}, \hat{y}_{k-1}^{(j)}+\alpha_{k} f_{k}\left(x^{(j)}\right)\right)=\sum_{j} \overbrace{e^{-y^{(j)} \hat{y}_{k-1}^{(j)}}}^{w_{k-1}^{(j)}} e^{-y^{(j)} \alpha_{k} f_{k}\left(x^{(j)}\right)} \\
=\left(e^{\alpha_{k}}-e^{-\alpha_{k}}\right) \sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right]+e^{-\alpha_{k}} \sum_{j} w_{k-1}^{(j)}
\end{gathered}
$$

Minimizing weighted loss

- So far, we minimized average loss: $\frac{1}{m} \sum_{j} \mathscr{L}\left(y^{(j)}, \hat{y}^{(j)}\right)$
. We can also minimize weighted loss: $\sum_{j} w^{(j)} \mathscr{L}\left(y^{(j)}, \hat{y}^{(j)}\right)$
- Every data point "counts" as $w^{(j)}$
E.g., in decision trees, weighted info gain obtained by $p(y=c) \propto \sum w^{(j)}$
- In our current case, weighted $0-1$ loss: $\sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right]$

Boosting with exponential loss (cont.)

- The best classifier to add to the ensemble minimizes weighted 0-1 loss:

$$
\sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right] \text { with } w_{k-1}^{(j)}=e^{-y^{(j)} \hat{y}_{k-1}^{(j)}}
$$

. It gives weighted error rate $\epsilon_{k}=\frac{\sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right]}{\sum_{j} w_{k-1}^{(j)}}$

- Plugging into the loss and solving: $\alpha_{k}=\frac{1}{2} \ln \frac{1-\epsilon_{k}}{\epsilon_{k}}$
- Now add the model and update the ensemble $\hat{y}_{k}(x)=\hat{y}_{k-1}(x)+\alpha_{k} f_{k}(x)$

AdaBoost

- AdaBoost = adaptive boosting:
- Initialize $w_{0}^{(j)}=\frac{1}{m}$
- Train classifier f_{k} on training data with weights w_{k-1}
- Compute weighted error rate $\epsilon_{k}=\frac{\sum_{j} w_{k-1}^{(j)} \delta\left[y^{(j)} \neq f_{k}\left(x^{(j)}\right)\right]}{\sum_{j} w_{k-1}^{(j)}}$
- Compute $\alpha_{k}=\frac{1}{2} \ln \frac{1-\epsilon_{k}}{\epsilon_{k}}$
- Update weights $w_{k}^{(j)}=w_{k-1}^{(j)} e^{-y^{(j)} \alpha_{k} f_{k}\left(x^{(j)}\right)}$ (increase weight for misclassified points)
- Predict $\hat{y}(x)=\operatorname{sign} \sum_{k} \alpha_{k} f_{k}(x)$

Recap

- Ensembles = collections of predictors
- Combine predictions to improve performance
- Boosting: Gradient Boost, AdaBoost, ...
- Build strong predictor from many weak ones
- Train sequentially; later predictors focus on mistakes by earlier
- Weight "hard" examples more

