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Logistics

- * Project abstract due today

* Assignment 4 due next Tue, Feb 23
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Project guidelines

 (Goal: for each one of you to get a hands-on feel for
> What makes learning algorithms better / worse
- Practice selecting algorithms, hyperparameters
> What makes features useful / useless
- Practice selecting (adding / removing) features
o Software: use any existing packages for learning / visualization / analysis
> mitools, scikit-learn, tensorflow, pytorch, keras, mxnet, ...

> Go beyond simply applying it (as in the assignments)
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Today's lecture
Support Vector Machines
Lagrangian and duality

Kernel Machines
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MLPs In practice

 Example: Deep belief nets
> Handwriting recognition

> /84 pixels < 500 mid layer < 500 high < 2000 top < 10 labels

~
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Convolutional Networks (ConvNets)

 Group and share weights to use inductive bias:

> Images are translation invariant

input: 28x28 image weights: 5x5
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Convolutional Networks (ConvNets)

 Group and share weights to use inductive bias:

> Images are translation invariant

input: 28x28 image weights: 5x5

filter response at each patch

hy=o0 [ Z wl-jxl-j]
tj

un over all patches of input
(activation map)
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Convolutional Networks (ConvNets)

 Group and share weights to use inductive bias:

> Images are translation invariant

input: 28x28 image weights: 5x5

many hidden units, few parameters!

un over all patches of input
(activation map)
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Convolutional Networks (ConvNets)

 Group and share weights to use inductive bias:

> Images are translation invariant

input: 28x28 image weights: 5x5

y -
)
y -
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Convolutional Networks (ConvNets)

* As before: view components as composable building blocks

> Design deep structure from parts
- Convolutional layers
- Max-pooling (sub-sampling) layers

- Densely connected layers

C3:f. maps 16@10x10

INPUT %2'%2118[9 maps S4: 1. maps 16@5x5
120 84 10

— I
| Full cmAecﬁon | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
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Example: AlexNet

 Deep NN model for ImageNet classification
> 650Kk units; 60m parameters
> 1m data; 1 week training (GPUs)

> (Can be use pre-trained, or fine-tuned (trained again on new data)

5 convolutional layers 3 dense layers

iInput
224x224x3

.
\ g - : O" .'
.o.‘ Rl . - ?.'. " ..A....l':“
9 ‘.f.f’:"} ;_::_::_:l '

output
(1000 classes)
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Hidden layers as “features”™

* \/isualizing a convolutional network’s filters:

Low-Level| |Mid-Level| [High-Level Trainable
Feature Feature Featu._re Classifier
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Recap

e Multi-layer perceptrons (MLPs); other neural networks architectures

 Composition of simple perceptrons

» Each just a linear response + non-linear activation

> Hidden units used to create new features

> Jointly form universal function approximators: enough units — any function
* Training via backprop = gradient chain rule + dynamic programming

 Much more: deep nets (DNNs), ConvNets, ...
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Today's lecture

Advanced Neural Networks

Lagrangian and duality

Kernel Machines
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Linear classifiers

 Assume separable training data

* Which decision boundary is “better”?

> Both have 0 training error, but one seems to generalize better

e Let's quantify this intuition

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs



Decision margin

e Let's try to maximize the margin = distance of data from boundary
» Logistic regression: £, ,(x,y) = ylogo(w - x + b) + (1 — y)log(1l — o(w - x + b))
» Whatifwescalew-x+b — 10w - x4+ 100? = loss gets betteras o — * 1

» Optimum at infinity! but the decision boundary w - x + b = 0 is unchanged...

. ¢ °, w-x+b>0 = f(x)=+1

scale Invariance:
let's choose w such that

~ ©
N

®
W-x+b=+1
N

/

w-x+b<0 = fx)=-1 °+ . N

\
w-x+b=—-1"+_

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs



Computing the margin

w-X
[wl|?

» Basic linear algebra: x =rw + z = w + z, with Z orthogonal to w

 Support vectors = x and x~ that are closest points to the boundary

w-xT+b=+1
w-x"+b=-1
w-r'w+zt+b—-rw—->bz"—b)=2
rt=r)|w|* =2

2

. Maragin = l(r* — rw]|| = —=—
ain = [l = rowll = =

. Maximizing the margin = minimizing ||w||?
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Maximizing the margin

o Constrained optimization: get all data points correctly + maximize the margin

. WF¥ =arg max — = arg min ||w||
2wl "

woxP+b>41 ify? =41

> such that all data points predicted with enough margin: {

w-axWepb< -1 ifyl) = -1

> = s.t. YO w - xY + b) > 1 (m constraints)

 Example of Quadratic Program (QP)

» Quadratic objective, linear constraints
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Example: one feature

* Suppose we have three data points

I o
[ 7
> X = — 3, = — 1 " ,{7
I I’
1/
———————f
>x=—1, =—1 ‘ ‘ é[’lll x
4’ II
o
» x=2,y=+1 -3 -1 ,/l", ,’I
VAR | II
« Many separating perceptrons T(ax + b)
, b
» Separating if a > 0 and —— € (—1,2)
 Margin constraints:
J minimize |a| and set b to match: ‘
a== h=—— =
» —3a+b< -1 = b<3a-1 3 3 p‘v
2 constraints are active
v —la+b<—-1 = b<a-1 —> these are the support vectors

» +2a+b>+1 = b>—-2a+1
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Today's lecture

Advanced Neural Networks

Support Vector Machines

Kernel Machines
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Lagrange method

Constrained optimization: w*, b* = arg min %HWHZ st. 1 —yY(w-xV 4+5) <0
w.,b )

[0 | g(0)

o Lagrange method: introduce Lagrange multipliers /1]- (one per constraint)

0* = arg min max (@) + A.0.(0
g min max f(6) 2]‘, 5(0)

> If g(0) <0 = optimally, 4, = 0
> If g(0) > 0 = optimally, /; » co = this € cannot achieve the minimum
> If g(0) =0 = doesn't matter; generally, 4, > 0

> Complementary slackness: for optimal 6, 4, if 4, > 0 = g(0) =0
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Margin optimization

. Original problem: w*, b* = arg min%Hsz st. 1 —yPw-xY+5) <0
w.,b

Lagrangian: w*, b* = arg min max %le\z + Z Al — yO(w - xU + b))
° w,b  1>0 j

Optimally: w* = Z 2.yPx )
j

> For support vector j € SV: b* = yW) — y# . x)

> Lagrangian linear in b

— Z /ij(j) = (0 for b* to be finite
J
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Primal—-dual optimization

Primal problem: w*, b* = arg min%Hsz st. 1 —yYw-xV+p)<0
w.,b

Lagrangian: w*, b* = arg min max %Hsz + Z Al — yO(w - xV + b))
° w,b  A>0 ;

Plug in the solution: w = 2 /ij(j)x(j); constraint: Z /ljy(j) = ()
J J

Dual problem: max A== Y LA yPDy®xl). st Ay =
’ = ( > 2 2%
e Another Quadratic Program (QP):

» Complicated objective in m variables; m + 1 simple constraints (instead of v.v.)
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Non-separable problems

SVM: w*, b* = arg min max %HWHZ + Z Al — yO(w - xU + b))
° w,b  A1>0 j

« Can't work with non-separable data: constraints violated = /1]- — OO

« What if we fix /lj = R?

w*, b* = arg min %HWHZ — R Z YO (w - x) + b)
w,b ;
() () 2
_argman\y M—(w-x +b)\+ HWH
- AN

! M>|w-xY+b]

 Similar to MAE + L, regularizer = considers all data points (not just margin)
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Soft margin

* Only consider points that violate the margin constraint:

“hinge(y> y) = max{0,1 — yy}

w*, b* = arg migl %”WHZ + R Z fhinge(y(j)a w - xY) + b)
w, :
j

» €Y = max{0,1 — yP(w - xY + b)} = how much is margin constraint violated

. : | .
Primal problem: w*, b* = arg min min EHWHZ + R 2 el
wb € I

> sty (w - xUV + b) > 1 — €V (relaxed constraints satisfied)

» €Y > 0 (only “snug fit” violating points)
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Soft margin: dual form

. S -
Primal problem: w*, b* = arg min min EHWH2 + R E el
w,b € .
J

° 0<A<R

Dual problem: max Z /lj—% 2 /Ij/lky(j)y(k)x(j) . x ) s.t. Z AyWPD =0
] k

>

Optimally: w* = Z /ij(j)x(j); to handle b: add constant feature x, = 1
J

» Support vector = points on or inside margin = /IJ- > 0

» Gram matrix = Kjk = xW) . x0 - similarity of every pair of instances
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Today's lecture

Advanced Neural Networks

Support Vector Machines

Lagrangian and duality
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Adding features

e So far: linear SVMs, not very expressive

» — add features x > O(x)

e Linearly non-separable;

Xj—

* Linearly separable in quadratic features:
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Adding features

» Prediction: y(x) = sign(w - O(x) + b)

. Dual problem: max 2 (/lj—%Z/Ij,lky(j)y(k)q)(x(j)).q)(x(k))) st Z ) = ()
k

0<ALZR ™=
J

. Example: quadratic features @(x) = [1 \/Exl. xl.z \/Exixi,]

» 1 features — O(n?) features

> Why \/5? Next slide... But just scale corresponding weights
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Implicit features

. For dual problem, we need K = d(xV) . d(xW)
. Kernel trick: with ®(x) = [1 \/in xl.2 \/zxixi,]:

]k =1+ Z 2x(]) (k) + Z (x(]) (k))2 n 2 2()6(]) (k))(x(]) (k))

1<i’
2

_ () (k)
=\ 1+ Z XX,
i

» Each of m? elements computed in O(n) time (instead of O(nz))
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Mercer's Theorem

» Reminder: positive semidefinite matrix A > 0: vIAv > 0 for all vectors v

. Positive semidefinite kernel K > 0: matrix K(x, x¥) > 0 for all datasets

e Mercer's Theorem:if K > 0 = K(x,x") = ®(x) - D(x’) for some D(x)

« @ may be hard to calculate

> May even be infinite dimensional (Hilbert space)

» Not an issue, only the kernel K(x, x") should be easy to compute (O(m?) times)
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Common kernel functions

» Polynomial: K(x,x") = (1 +x - x)?

| | | | . Jx — x|
Radial Basis Functions (RBF): K(x,x") = exp | —

20?

» Saturating: K(x, x") = tanh(ax - x" + ¢)

 Domain-specific: textual similarity, genetic code similarity, ...

> May not be positive semidefinite, and still work well in practice
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Kernel SVMs

e Define kernel K : (x,x") |

0<A<R =
J

. Solve dual QP: max Z (/lj—% Z /ljxlky(j)y(k)K(x(j),x(k))> s.t. Z /ljy(j) =0
k

o |earned parameters = A (m parameters)

» But also need to store all support vectors (having /1]- > ()

e Prediction: y(x) = sign(w - P(x))

= sign Z /ljy(j)CD(x(j)) - D(x) | = s1gn Z /ljy(j)K(x(j),x)
J J
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Demo

» https://cs.stanford.edu/people/karpathy/svmis/demo/
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https://cs.stanford.edu/people/karpathy/svmjs/demo/

Linear vs. kernel SVMs

e Linear SVMs

» y=s1gn(w - x + b) = n + 1 parameters

|

> Alternatively: represent by indexes of SVs; usually, #5Vs = #parameters

e Kernel SVMs
» K(x,x") may correspond to high- (possibly infinite-) dimensional P (x)
» Typically more efficient to store the SVs x) (not ®(x))

- And their corresponding /4,
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Recap

 Maximize margin for separable data
> Primal QP: maximize ||w||? subject to linear constraints

» Dual QP: m variables, m? dot products

e Soft margin for non-separable data

> Primal problem: regularized hinge loss

> Dual problem: m-dimensional QP

 Kernel Machines
> Dual form involves only pairwise similarity

> Mercer kernels: equivalent to dot products in implicit high-dimensional space
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Logistics

- * Project abstract due today

* Assignment 4 due next Tue, Feb 23
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