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Project guidelines
• Goal: for each one of you to get a hands-on feel for


‣ What makes learning algorithms better / worse


- Practice selecting algorithms, hyperparameters


‣ What makes features useful / useless


- Practice selecting (adding / removing) features


• Software: use any existing packages for learning / visualization / analysis


‣ mltools, scikit-learn, tensorflow, pytorch, keras, mxnet, ...


‣ Go beyond simply applying it (as in the assignments)
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Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Advanced Neural Networks
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MLPs in practice
• Example: Deep belief nets


‣ Handwriting recognition


‣ 784 pixels ⬄ 500 mid layer ⬄ 500 high ⬄ 2000 top ⬄ 10 labels
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• Example: Deep belief nets


‣ Handwriting recognition


‣ 784 pixels ⬄ 500 mid layer ⬄ 500 high ⬄ 2000 top ⬄ 10 labels


MLPs in practice
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Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:


‣ Images are translation invariant


input: 28x28 image weights: 5x5
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Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:


‣ Images are translation invariant


filter response at each patch

Run over all patches of input 
  (activation map)

h1 = σ ∑
ij

wijxij

input: 28x28 image weights: 5x5
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Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:


‣ Images are translation invariant


many hidden units, few parameters!

Run over all patches of input 
  (activation map)

input: 28x28 image weights: 5x5
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Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:


‣ Images are translation invariant


input: 28x28 image weights: 5x5
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Convolutional Networks (ConvNets)
• As before: view components as composable building blocks


‣ Design deep structure from parts


- Convolutional layers


- Max-pooling (sub-sampling) layers


- Densely connected layers
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Example: AlexNet
• Deep NN model for ImageNet classification


‣ 650k units; 60m parameters


‣ 1m data; 1 week training (GPUs)


‣ Can be use pre-trained, or fine-tuned (trained again on new data)

5 convolutional layers 3 dense layers

input 
224x224x3

output 
(1000 classes)
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Hidden layers as “features”
• Visualizing a convolutional network’s filters:
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• Multi-layer perceptrons (MLPs); other neural networks architectures


• Composition of simple perceptrons


‣ Each just a linear response + non-linear activation


‣ Hidden units used to create new features


‣ Jointly form universal function approximators: enough units  any function


• Training via backprop = gradient chain rule + dynamic programming


• Much more: deep nets (DNNs), ConvNets, ...

→

Recap
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Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Advanced Neural Networks
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Linear classifiers
• Assume separable training data


• Which decision boundary is “better”?


‣ Both have 0 training error, but one seems to generalize better


• Let's quantify this intuition
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• Let's try to maximize the margin = distance of data from boundary


• Logistic regression: 


‣ What if we scale ?  loss gets better as 


‣ Optimum at infinity! but the decision boundary  is unchanged...


ℒw,b(x, y) = y log σ(w ⋅ x + b) + (1 − y)log(1 − σ(w ⋅ x + b))

w ⋅ x + b → 10w ⋅ x + 10b ⟹ σ → ± 1

w ⋅ x + b = 0

Decision margin

w ⋅ x + b = 0

w ⋅ x + b > 0 ⟹ f(x) = + 1

w ⋅ x + b < 0 ⟹ f(x) = − 1

scale invariance: 
let's choose  such thatww ⋅ x + b = + 1

w ⋅ x + b = − 1
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Computing the margin

• Basic linear algebra: , with  orthogonal to 


• Support vectors =  and  that are closest points to the boundary





• Margin 


• Maximizing the margin = minimizing 

x = rw + z = w ⋅ x
∥w∥2 w + z z w

x+ x−

w ⋅ x+ + b = + 1
w ⋅ x− + b = − 1
w ⋅ (r+w + z+ + b − r−w − bz− − b) = 2
(r+ − r−)∥w∥2 = 2

= ∥(r+ − r−)w∥ = 2
∥w∥

∥w∥2

w ⋅ x + b = 0

wmargin

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin


• 


‣ such that all data points predicted with enough margin:


‣  (  constraints)


• Example of Quadratic Program (QP)


‣ Quadratic objective, linear constraints

w* = arg max
w

2
∥w∥ = arg min

w
∥w∥

⟹ s.t. y( j)(w ⋅ x( j) + b) ≥ 1 m
{w ⋅ x( j) + b ≥ + 1 if y( j) = + 1

w ⋅ x( j) + b ≤ − 1 if y( j) = − 1

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Example: one feature
• Suppose we have three data points


‣ , 


‣ , 


‣ , 


• Many separating perceptrons 


‣ Separating if  and 


• Margin constraints:


‣ 


‣ 


‣

x = − 3 y = − 1

x = − 1 y = − 1

x = 2 y = + 1

T(ax + b)

a > 0 − b
a ∈ (−1,2)

−3a + b ≤ − 1 ⟹ b ≤ 3a − 1

−1a + b ≤ − 1 ⟹ b ≤ a − 1

+2a + b ≥ + 1 ⟹ b ≥ − 2a + 1

x

b

a

  -3       -1                 2

minimize  and set  to match: 
 

2 constraints are active 
 these are the support vectors

|a | b
a = 2

3 b = − 1
3

⟹
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Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Advanced Neural Networks
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Lagrange method

• Constrained optimization: 


• Lagrange method: introduce Lagrange multipliers  (one per constraint)


 


‣ If optimally, 


‣ If optimally, this  cannot achieve the minimum


‣ If doesn't matter; generally, 


‣ Complementary slackness: for optimal , if 

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t.  1 − y( j)(w ⋅ x( j) + b) ≤ 0

λj

θ* = arg min
θ

max
λ≥0

f(θ) + ∑
j

λjgj(θ)

gj(θ) < 0 ⟹ λj = 0

gj(θ) > 0 ⟹ λj → ∞ ⟹ θ

gj(θ) = 0 ⟹ λj > 0

θ, λ λj > 0 ⟹ gj(θ) = 0

f(θ) g(θ)
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Margin optimization

• Original problem: 


• Lagrangian: 


• Optimally: 


‣ For support vector : 


‣ Lagrangian linear in 


 for  to be finite

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y( j)(w ⋅ x( j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

w* = ∑
j

λjy( j)x( j)

j ∈ SV b* = y( j) − w* ⋅ x( j)

b

⟹ ∑
j

λjy( j) = 0 b*

w ⋅ x + b = + 1

w ⋅ x + b = − 1
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Primal–dual optimization

• Primal problem: 


• Lagrangian: 


• Plug in the solution: ; constraint: 


‣ Dual problem:  


• Another Quadratic Program (QP):


‣ Complicated objective in  variables;  simple constraints (instead of v.v.)

w*, b* = arg min
w,b

1
2 ∥w∥2 s.t. 1 − y( j)(w ⋅ x( j) + b) ≤ 0

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

w = ∑
j

λjy( j)x( j) ∑
j

λjy( j) = 0

max
λ≥0 ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)x( j) ⋅ x(k)) s.t. ∑
j

λjy( j) = 0

m m + 1



Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Non-separable problems

• SVM: 


• Can't work with non-separable data: constraints violated 


• What if we fix ?


 


• Similar to MAE +  regularizer  considers all data points (not just margin)

w*, b* = arg min
w,b

max
λ≥0

1
2 ∥w∥2 + ∑

j

λj(1 − y( j)(w ⋅ x( j) + b))

⟹ λj → ∞

λj = R

w*, b* = arg min
w,b

1
2 ∥w∥2 − R∑

j

y( j)(w ⋅ x( j) + b)

= arg min
w,b ∑

j

|y( j)M − (w ⋅ x( j) + b) |+ 1
2R ∥w∥2

L2 ⟹
M > |w ⋅ x( j) + b |
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Soft margin
• Only consider points that violate the margin constraint:


 


 


‣  = how much is margin constraint violated


• Primal problem: 


‣ s.t.  (relaxed constraints satisfied)


‣  (only “snug fit” violating points)

ℓhinge(y, ̂y) = max{0,1 − y ̂y}

w*, b* = arg min
w,b

1
2 ∥w∥2 + R∑

j

ℓhinge(y( j), w ⋅ x( j) + b)

ϵ( j) = max{0,1 − y( j)(w ⋅ x( j) + b)}

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ( j)

y( j)(w ⋅ x( j) + b) ≥ 1 − ϵ( j)

ϵ( j) ≥ 0
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Soft margin: dual form

• Primal problem: 


‣ s.t. ;     


• Dual problem: 


‣ Optimally: ; to handle : add constant feature 


‣ Support vector = points on or inside margin = 


‣ Gram matrix =  = similarity of every pair of instances

w*, b* = arg min
w,b

min
ϵ

1
2 ∥w∥2 + R∑

j

ϵ( j)

y( j)(w ⋅ x( j) + b) ≥ 1 − ϵ( j) ϵ( j) ≥ 0

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)x( j) ⋅ x(k)) s.t. ∑
j

λjy( j) = 0

w* = ∑
j

λjy( j)x( j) b x0 = 1

λj > 0

Kjk = x( j) ⋅ x(k)
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Today's lecture

Support Vector Machines

Lagrangian and duality

Kernel Machines

Advanced Neural Networks



Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Adding features
• So far: linear SVMs, not very expressive


‣  add features 


• Linearly non-separable:


• Linearly separable in quadratic features:


⟹ x ↦ Φ(x)

x1

x1

x2 = x2
1
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Adding features

• Prediction: 


• Dual problem: 


• Example: quadratic features 


‣  features   features


‣ Why ? Next slide... But just scale corresponding weights

̂y(x) = sign(w ⋅ Φ(x) + b)

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)Φ(x( j)) ⋅ Φ(x(k))) s.t. ∑
j

λjy( j) = 0

Φ(x) = [1 2xi x2
i 2xixi′￼]

n ↦ O(n2)

2
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Implicit features

• For dual problem, we need 


• Kernel trick: with :


 


‣ Each of  elements computed in  time (instead of )

Kjk = Φ(x( j)) ⋅ Φ(x(k))

Φ(x) = [1 2xi x2
i 2xixi′￼]

Kjk = 1 + ∑
i

2x( j)
i x(k)

i + ∑
i

(x( j)
i x(k)

i )2 + ∑
i<i′￼

2(x( j)
i x(k)

i )(x( j)
i′￼

x(k)
i′￼

)

= (1 + ∑
i

x( j)
i x(k)

i )
2

m2 O(n) O(n2)
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Mercer's Theorem

• Reminder: positive semidefinite matrix :  for all vectors 


• Positive semidefinite kernel : matrix  for all datasets


• Mercer's Theorem: if  for some 


•  may be hard to calculate


‣ May even be infinite dimensional (Hilbert space)


‣ Not an issue, only the kernel  should be easy to compute (  times)

A ⪰ 0 v⊺Av ≥ 0 v

K ⪰ 0 K(x( j), x(k)) ⪰ 0

K ⪰ 0 ⟹ K(x, x′￼) = Φ(x) ⋅ Φ(x′￼) Φ(x)

Φ

K(x, x′￼) O(m2)
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Common kernel functions
• Polynomial: 


• Radial Basis Functions (RBF): 


• Saturating: 


• Domain-specific: textual similarity, genetic code similarity, ...


‣ May not be positive semidefinite, and still work well in practice

K(x, x′￼) = (1 + x ⋅ x′￼)d

K(x, x′￼) = exp (− ∥x − x′￼∥2

2σ2 )

K(x, x′￼) = tanh(ax ⋅ x′￼+ c)
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Kernel SVMs
• Define kernel 


• Solve dual QP: 


• Learned parameters =  (  parameters)


‣ But also need to store all support vectors (having )


• Prediction: 


 

K : (x, x′￼) ↦ ℝ

max
0≤λ≤R ∑

j (λj−
1
2 ∑

k

λjλky( j)y(k)K(x( j), x(k))) s.t. ∑
j

λjy( j) = 0

λ m

λj > 0

̂y(x) = sign(w ⋅ Φ(x))

= sign ∑
j

λjy( j)Φ(x( j)) ⋅ Φ(x) = sign ∑
j

λjy( j)K(x( j), x)
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Demo

•  https://cs.stanford.edu/people/karpathy/svmjs/demo/

https://cs.stanford.edu/people/karpathy/svmjs/demo/
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Linear vs. kernel SVMs

• Linear SVMs


‣    parameters


‣ Alternatively: represent by indexes of SVs; usually, #SVs = #parameters


• Kernel SVMs


‣  may correspond to high- (possibly infinite-) dimensional 


‣ Typically more efficient to store the SVs  (not )


- And their corresponding 

̂y = sign(w ⋅ x + b) ⟹ n + 1

K(x, x′￼) Φ(x)

x( j) Φ(x( j))

λj
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Recap
• Maximize margin for separable data


‣ Primal QP: maximize  subject to linear constraints


‣ Dual QP:  variables,  dot products


• Soft margin for non-separable data


‣ Primal problem: regularized hinge loss


‣ Dual problem: -dimensional QP


• Kernel Machines


‣ Dual form involves only pairwise similarity


‣ Mercer kernels: equivalent to dot products in implicit high-dimensional space

∥w∥2

m m2

m
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