CS 273A: Machine Learning Winter 2021 Lecture 12: SVMs

Roy Fox

Department of Computer Science **Bren School of Information and Computer Sciences** University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

• Project abstract due today

• Assignment 4 due next Tue, Feb 23

Project guidelines

- Goal: for each one of you to get a hands-on feel for
 - What makes learning algorithms better / worse
 - Practice selecting algorithms, hyperparameters
 - What makes features useful / useless
 - Practice selecting (adding / removing) features
- Software: use any existing packages for learning / visualization / analysis
 - mltools, scikit-learn, tensorflow, pytorch, keras, mxnet, ...
 - Go beyond simply applying it (as in the assignments)

Today's lecture

Advanced Neural Networks

Support Vector Machines

Lagrangian and duality

Kernel Machines

MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - ▶ 784 pixels \Leftrightarrow 500 mid layer \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 1 2 3 4 5 6 7 8 9	
	0123456789	() () <td< th=""><th></th></td<>	

MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - ▶ 784 pixels \Leftrightarrow 500 mid layer \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels

0 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 4 4 9 4 9 5 7 5 5 5 5 6 4 6 6 7 7 7 7 7	
838886 999499	

- Group and share weights to use inductive bias:
 - Images are translation invariant

input: 28x28 image

weights: 5x5

- Group and share weights to use inductive bias:
 - Images are translation invariant

- Group and share weights to use inductive bias:
 - Images are translation invariant

input: 28x28 image

weights: 5x5

many hidden units, few parameters! Run over all patches of input (activation map)

- Group and share weights to use inductive bias:
 - Images are translation invariant

- As before: view components as composable building blocks
 - Design deep structure from parts
 - **Convolutional layers**
 - Max-pooling (sub-sampling) layers
 - **Densely connected layers**

Example: AlexNet

- Deep NN model for ImageNet classification \bullet
 - 650k units; 60m parameters
 - Im data; 1 week training (GPUs)
 - Can be use pre-trained, or fine-tuned (trained again on new data) **5 convolutional layers**

3 dense layers

Hidden layers as "features"

• Visualizing a convolutional network's filters:

- Multi-layer perceptrons (MLPs); other neural networks architectures
- Composition of simple perceptrons
 - Each just a linear response + non-linear activation
 - Hidden units used to create new features
 - Jointly form universal function approximators: enough units \rightarrow any function
- Training via backprop = gradient chain rule + dynamic programming
- Much more: deep nets (DNNs), ConvNets, …

Today's lecture

Advanced Neural Networks

Support Vector Machines

Lagrangian and duality

Kernel Machines

Linear classifiers

- Assume separable training data
- Which decision boundary is "better"?
 - Both have 0 training error, but one seems to generalize better
- Let's quantify this intuition

Decision margin

- Let's try to maximize the margin = distance of data from boundary
- Logistic regression: $\mathscr{L}_{w,b}(x,y) = y \log (x,y)$
 - What if we scale $w \cdot x + b \to 10w \cdot x + 10b? \Longrightarrow$ loss gets better as $\sigma \to \pm 1$
 - Optimum at infinity! but the decision boundary $w \cdot x + b = 0$ is unchanged...

 $w \cdot x + b < 0 \implies f(x) = -1$

 $w \cdot x + b =$

$$g\sigma(w \cdot x + b) + (1 - y)\log(1 - \sigma(w \cdot x + b))$$

Computing the margin

- Basic linear algebra: $x = rw + z = \frac{w \cdot x}{\|w\|^2}w + z$, with z orthogonal to w
- Support vectors = x^+ and x^- that are closest points to the boundary

$$w \cdot x^{+} + b = + 1$$

$$w \cdot x^{-} + b = - 1$$

$$w \cdot (r^{+}w + z^{+} + b - r^{-}w - bz^{-})$$

$$(r^{+} - r^{-}) ||w||^{2} = 2$$

• Margin =
$$\|(r^+ - r^-)w\| = \frac{2}{\|w\|}$$

• Maximizing the margin = minimizing $||w||^2$

Maximizing the margin

• Constrained optimization: get all data points correctly + maximize the margin

•
$$w^* = \arg\max_{w} \frac{2}{\|w\|} = \arg\min_{w} \|w\|$$

► such that all data points predicted with enough margin: $\begin{cases} w \cdot x^{(j)} + b \ge +1 & \text{if } y^{(j)} = +1 \\ w \cdot x^{(j)} + b \le -1 & \text{if } y^{(j)} = -1 \end{cases}$

► ⇒ s.t.
$$y^{(j)}(w \cdot x^{(j)} + b) \ge 1$$
 (m

- Example of Quadratic Program (QP)
 - Quadratic objective, linear constraints

constraints)

Example: one feature

- Suppose we have three data points
 - x = -3, y = -1
 - x = -1, y = -1
 - ► *x* = 2, *y* = + 1
- Many separating perceptrons T(ax + b)
 - Separating if a > 0 and $-\frac{b}{a} \in (-1,2)$
- Margin constraints:

$$\bullet \quad -3a+b \le -1 \implies b \le 3a-1$$

- $-1a + b < -1 \implies b < a 1$
- $+2a+b \ge +1 \implies b \ge -2a+1$

Today's lecture

Advanced Neural Networks

Lagrangian and duality

Kernel Machines

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

Support Vector Machines

Lagrange method

• Constrained optimization: w^* , $b^* = \arg$

• Lagrange method: introduce Lagrange multipliers λ_j (one per constraint)

 $\theta^* = \arg\min n$

- If $g_i(\theta) < 0 \implies$ optimally, $\lambda_i = 0$
- If $g_i(\theta) > 0 \implies$ optimally, $\lambda_i \to \infty \implies$ this θ cannot achieve the minimum
- If $g_j(\theta) = 0 \implies$ doesn't matter; generally, $\lambda_j > 0$
- Complementary slackness: for optimal θ

$$\min_{w,b} \frac{\frac{1}{2} \|w\|^2}{\underbrace{f(\theta)}} \quad \text{s.t. } \underbrace{1 - y^{(j)}(w \cdot x^{(j)} + b)}_{g(\theta)} \le 0$$

$$\max_{\lambda \ge 0} f(\theta) + \sum_{j} \lambda_j g_j(\theta)$$

$$\lambda, \text{ if } \lambda_j > 0 \implies g_j(\theta) = 0$$

Margin optimization

• Original problem: $w^*, b^* = \arg \min \frac{1}{2}$ w,b

• Lagrangian: $w^*, b^* = \arg\min\max_{w,b} \frac{1}{\lambda \ge 0}^2$

Optimally:
$$w^* = \sum_{j} \lambda_j y^{(j)} x^{(j)}$$

• For support vector $j \in SV$: $b^* = y^{(j)} - w^* \cdot x^{(j)}$

Lagrangian linear in b

$$\implies \sum_{j} \lambda_{j} y^{(j)} = 0 \text{ for } b^{*} \text{ to be finite}$$

$$\frac{1}{2} \|w\|^2 \quad \text{s.t. } 1 - y^{(j)}(w \cdot x^{(j)} + b) \le 0$$
$$\frac{1}{2} \|w\|^2 + \sum_j \lambda_j (1 - y^{(j)}(w \cdot x^{(j)} + b))$$

 $w \cdot x + b = +1$

Primal-dual optimization

- Primal problem: $w^*, b^* = \arg\min_{w,b} \frac{1}{2} \|w\|^2$ s.t. $1 y^{(j)}(w \cdot x^{(j)} + b) \le 0$
- Lagrangian: $w^*, b^* = \arg\min_{w,b} \max_{\lambda \ge 0} \frac{1}{2} ||w||^2 + \sum_i \lambda_i (1 y^{(i)}(w \cdot x^{(i)} + b))$
- Plug in the solution: $w = \sum_{j} \lambda_{j} y^{(j)} x^{(j)}$; constraint: $\sum_{j} \lambda_{j} y^{(j)} = 0$

Dual problem:
$$\max_{\lambda \ge 0} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k \right)$$

- Another Quadratic Program (QP):
 - Complicated objective in m variables; m + 1 simple constraints (instead of v.v.)

 $_{k}y^{(j)}y^{(k)}x^{(j)}\cdot x^{(k)}\right) \quad \text{s.t. } \sum_{i}\lambda_{j}y^{(j)} = 0$

Non-separable problems

• SVM: $w^*, b^* = \arg \min \max_{w,b} \frac{1}{\lambda > 0} \frac{1}{2} \|w\|^2$

- Can't work with non-separable data: constraints violated $\implies \lambda_i \rightarrow \infty$
- What if we fix $\lambda_i = R$?

$$w^*, b^* = \arg\min_{w,b} \frac{1}{2} \|w\|^2 - R \sum_j y^{(j)} (w \cdot x^{(j)} + b)$$

= $\arg\min_{w,b} \sum_j |y^{(j)}M - (w \cdot x^{(j)} + b)| + \frac{1}{2R} \|w\|^2$
 $M > |w \cdot x^{(j)} + b|$

$$= \arg \min_{w,b} \frac{1}{2} \|w\|^2 - R \sum_{j} y^{(j)} (w \cdot x^{(j)} + b)$$

$$= \arg \min_{w,b} \sum_{j} |y^{(j)}M - (w \cdot x^{(j)} + b)| + \frac{1}{2R} \|w\|^2$$

$$\bigwedge_{M > |w \cdot x^{(j)} + b|}$$

$$(2^{2} + \sum_{j} \lambda_{j}(1 - y^{(j)}(w \cdot x^{(j)} + b)))$$

• Similar to MAE + L_2 regularizer \implies considers <u>all</u> data points (not just margin)

Soft margin

Only consider points that violate the margin constraint: \bullet

$$\mathcal{L}_{hinge}(y, \hat{y}) = \max\{0, 1 - y\hat{y}\}$$
$$\min_{w, b} \frac{1}{2} \|w\|^2 + R \sum_{j} \mathcal{L}_{hinge}(y^{(j)}, w \cdot x^{(j)} + b)$$

$$\ell_{\mathsf{hinge}}(y, \hat{y}) = \max\{0, 1 - y\hat{y}\}\$$

$$w^*, b^* = \arg\min_{w, b} \frac{1}{2} ||w||^2 + R \sum_{j} \ell_{\mathsf{hinge}}(y^{(j)}, w \cdot x^{(j)} + b)$$

•
$$e^{(j)} = \max\{0, 1 - y^{(j)}(w \cdot x^{(j)} + b)\} =$$

Primal problem: $w^*, b^* = \arg\min_{w,b} \min_{\epsilon} w^*$

• s.t.
$$y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - \epsilon^{(j)}$$
 (relaxed

• $e^{(j)} \ge 0$ (only "snug fit" violating points)

how much is margin constraint violated

$$\frac{1}{2} \|w\|^2 + R \sum_{j} \epsilon^{(j)}$$

d constraints satisfied)

Soft margin: dual form

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{e} \frac{1}{2} ||w||^2 + R \sum_{j} e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_{j} \left(\lambda_j - \frac{1}{2} \sum_{k} \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_{j} \lambda_j y^{(j)} = 0$

Primal problem:
$$w^*, b^* = \arg\min_{w,b} \min_{\epsilon} \frac{1}{2} ||w||^2 + R \sum_j e^{(j)}$$

• s.t. $y^{(j)}(w \cdot x^{(j)} + b) \ge 1 - e^{(j)}; \quad e^{(j)} \ge 0$
Dual problem: $\max_{0 \le \lambda \le R} \sum_j \left(\lambda_j - \frac{1}{2} \sum_k \lambda_j \lambda_k y^{(j)} y^{(k)} x^{(j)} \cdot x^{(k)} \right) \quad \text{s.t. } \sum_j \lambda_j y^{(j)} = 0$

• Optimally:
$$w^* = \sum_{j} \lambda_j y^{(j)} x^{(j)}$$
; to hand

• Support vector = points on or inside margin = $\lambda_i > 0$

• Gram matrix =
$$K_{jk} = x^{(j)} \cdot x^{(k)} = \text{simila}$$

Roy Fox | CS 273A | Winter 2021 | Lecture 12: SVMs

lle b: add constant feature $x_0 = 1$

J

arity of every pair of instances

Today's lecture

Advanced Neural Networks

Support Vector Machines

Lagrangian and duality

Kernel Machines

Adding features

- So far: linear SVMs, not very expressive
 - \implies add features $x \mapsto \Phi(x)$
- Linearly non-separable:

• Linearly separable in quadratic features:

Adding features

• Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x) +$

• Dual problem: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{i} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{i} \right)$

- Example: quadratic features $\Phi(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - *n* features $\mapsto O(n^2)$ features
 - Why $\sqrt{2?}$ Next slide... But just scale corresponding weights

$$\begin{aligned} + b \\ \lambda_k y^{(j)} y^{(k)} \Phi(x^{(j)}) \cdot \Phi(x^{(k)}) \\ \end{bmatrix} \quad \text{s.t.} \quad \sum_j \lambda_j y^{(j)} = 0 \\ 1 \quad \sqrt{2} x_i \quad x_i^2 \quad \sqrt{2} x_i x_{i'} \end{aligned}$$

Implicit features

- For dual problem, we need $K_{ik} = \Phi(x^{(j)}) \cdot \Phi(x^{(k)})$
- Kernel trick: with $\Phi(x) = \begin{bmatrix} 1 & \sqrt{2}x_i & x_i^2 & \sqrt{2}x_i x_{i'} \end{bmatrix}$:

• Each of m^2 elements computed in O(n) time (instead of $O(n^2)$)

 $K_{jk} = 1 + \sum 2x_i^{(j)} x_i^{(k)} + \sum (x_i^{(j)} x_i^{(k)})^2 + \sum 2(x_i^{(j)} x_i^{(k)})(x_{i'}^{(j)} x_{i'}^{(k)})$ i < i'

Mercer's Theorem

- Reminder: positive semidefinite matrix $A \geq 0$: $v^{\mathsf{T}}Av \geq 0$ for all vectors v
- Positive semidefinite kernel $K \geq 0$: matrix $K(x^{(j)}, x^{(k)}) \geq 0$ for all datasets
- Mercer's Theorem: if $K \geq 0 \implies K(x, x') = \Phi(x) \cdot \Phi(x')$ for some $\Phi(x)$
- Φ may be hard to calculate
 - May even be infinite dimensional (Hilbert space)

• Not an issue, only the kernel K(x, x') should be easy to compute ($O(m^2)$) times)

Common kernel functions

• Polynomial: $K(x, x') = (1 + x \cdot x')^d$

Radial Basis Functions (RBF): K(x, x') =

• Saturating: $K(x, x') = \tanh(ax \cdot x' + c)$

- Domain-specific: textual similarity, genetic code similarity, ...
 - May not be positive semidefinite, and still work well in practice

$$= \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$$

_
_
-
_
_
_
-
_
_
-
_

Kernel SVMs

• Define kernel $K : (x, x') \mapsto \mathbb{R}$

• Solve dual QP: $\max_{0 \le \lambda \le R} \sum_{i} \left(\lambda_{j} - \frac{1}{2} \sum_{k} \lambda_{j} \lambda_{k} y^{(j)} \right)$

- Learned parameters = λ (*m* parameters)
 - But also need to store all support vectors (having $\lambda_i > 0$)
- Prediction: $\hat{y}(x) = \operatorname{sign}(w \cdot \Phi(x))$

$$= \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} \Phi(x^{(j)}) \cdot \Phi(x)\right) = \operatorname{sign}\left(\sum_{j} \lambda_{j} y^{(j)} K(x^{(j)}, x)\right)$$

$$(j)y^{(k)}K(x^{(j)}, x^{(k)})$$
 s.t. $\sum_{j} \lambda_{j} y^{(j)} = 0$

https://cs.stanford.edu/people/karpathy/svmjs/demo/ \bullet

Linear vs. kernel SVMs

- Linear SVMs
 - $\hat{y} = \operatorname{sign}(w \cdot x + b) \Longrightarrow n + 1$ parameters
 - Alternatively: represent by indexes of SVs; usually, #SVs = #parameters
- Kernel SVMs
 - K(x, x') may correspond to high- (possibly infinite-) dimensional $\Phi(x)$
 - Typically more efficient to store the SVs $x^{(j)}$ (not $\Phi(x^{(j)})$)
 - And their corresponding λ_i

Recap

- Maximize margin for separable data
 - Primal QP: maximize $||w||^2$ subject to linear constraints
 - Dual QP: *m* variables, m^2 dot products
- Soft margin for non-separable data
 - Primal problem: regularized hinge loss
 - Dual problem: *m*-dimensional QP
- **Kernel Machines**
 - Dual form involves only pairwise similarity
 - Mercer kernels: equivalent to dot products in implicit high-dimensional space

assignments

• Project abstract due today

• Assignment 4 due next Tue, Feb 23