
Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

CS 273A: Machine Learning
Winter 2021

Lecture 11: Neural Networks

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Logistics

project • Project abstract due Tue, Feb 16

assignments • Assignment 4 to be published soon

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Today's lecture

Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Linear classifiers

• Perceptron = use hyperplane to partition feature space classes

‣ Soft classifiers (logistic) = sensitive to margin from decision boundary

→

linear response

r = θ0 + θ1x1 + θ2x2

T(r)

weighted sum of features threshold
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

T(r)

r

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Adding features
• If data is non-separable in current feature space

‣ Perhaps it will be separable in higher dimension add more features

‣ E.g., polynomial features: linear classifier polynomial classifier

• Which features to add?

‣ Perhaps outputs of simpler perceptrons?

⟹

→

x1 x1

x2 x2

Linearly separable data Linearly non-separable data

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Combining step functions
• Combinations of step functions allow more complex decision boundaries

• Need to learn:

‣ Thresholds

‣ Weights

a1, a2, a3

w1, w2, w3, w4

F1(x) = T(x − a1)

a1

a2

a3

F2(x) = T(x − a2)

F3(x) = T(x − a3)
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

is piecewise constant

Φ(x) = [F1(x) F2(x) F3(x)]

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

T

T

T

w1

w2

w3

Σ T
F(x) = T(w⊺Φ(x)) = T(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Multi-Layer Perceptron (MLP)

x1

1

F1

F2

F3

w11

w01

w12
w02

w13

w03

Σ

Σ

Σ

σ
w1

w2

w3

Σ
F(x) = σ(w⊺Φ(x)) = σ(w1F1(x) + w2F2(x) + w3F3(x) + w4)

regression
F(x) = w⊺Φ(x)

σ

σ

σ

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

MLPs: properties

• Simple building blocks

‣ Each unit is a perceptron: linear response non-linear activation

• MLPs are universal approximators:

‣ Can approximate any function arbitrarily well, with enough units

→

x0 x1

h1 h2 h3 hℓ

y

w0
w0 + w1

h1
h2
⋮

⋯

⋯

output

hidden layer

input features

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

“Neural” Networks

• Biologically inspired

• Neurons:

‣ “Simple” cells

‣ Dendrites take input voltage

‣ Cell body “weights” inputs

‣ Axons “fire” voltage

‣ Synapses connect to other cells

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Deep Neural Networks (DNNs)
• Layers of perceptrons can be stacked deeply

‣ Deep architectures are subject of much current research

input
features

layer 1 layer 2 layer 3

⋯

⋯

r1 = w[0].T @ x + b[0] # linear response
h1 = sig(r1) # activation function

r2 = w[1].T @ h1 + b[1] # linear response
h2 = sig(r2) # activation function

 # ...

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Activation functions

• Logistic

• Hyperbolic tangent

• Gaussian

• Rectified linear (ReLU)

σ(z) =
1

1 + exp(−z)

σ(z) =
1 − exp(−2z)
1 + exp(−2z)

σ(z) = exp(− 1
2 z2)

σ(z) = max(0,z)

σ′ (z) = σ(z)(1 − σ(z))

σ′ (z) = 1 − σ2(z)

σ′ (z) = − zσ(z)

σ′ (z) = δ[z > 0]

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Feed-forward (FF) networks
• Information flow in feed-forward (FF) networks:

‣ Inputs shallow layers deeper layers outputs

‣ Alternative: recurrent NNs (information loops back)

• Multiple outputs efficiency:

‣ Shared parameters, less data, less computation

• Multi-class classification:

‣ One-hot labels

‣ Multilogistic regression (softmax):

→ → →

⟹

y = [0 0 1 0 ⋯]

̂yc =
exp(hc)

∑c̄ exp(hc̄)

information

inputs

hidden layer

outputs

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Today's lecture

Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Training MLPs

• Observe instance , target

• Feed forward through NN = prediction

• Loss = (or another loss function)

• How should we update the weights?

• Single layer:

‣ Use differentiable activation function, e.g. logistic

‣ (Stochastic) Gradient Descent = logistic regression

x y

x ̂y

ℓw(y, ̂y) = (y − ̂y)2

inputs

hidden layer

outputs

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Gradient computation

• MLPs are function compositions of single layers

‣ Apply chain rule:

• Backpropagation = chain rule + dynamic programming to avoid repetitions

f(g, h)

g(⋯)

h(⋯)

⋯ ℒ(⋯)
∂fℒ

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ

inputs

hidden layer

outputs

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Gradient computation

• MLPs are function compositions of single layers

‣ Apply chain rule:

• Backpropagation = chain rule + dynamic programming to avoid repetitions

f(g, h)

g(⋯)

h(⋯)

⋯ ℒ(⋯)
∂fℒ

∂gℒ = ∂g f ⋅ ∂fℒ

∂hℒ = ∂h f ⋅ ∂fℒ

inputs

hidden layer

outputs

example:
 reuse from the forward pass

f(g, h) = σ(g + h) ⟹ ∂g f = f(1 − f)
⟹ f

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Backpropagation
• Use chain rule (efficiently) to propagate gradients:

‣ = unit in layer unit in layer

wℓ
ij i (ℓ − 1) → j ℓ

∂wL
jk
ℒw = − 2∑

k′

(yk′
− ̂yk′

)∂wL
jk

̂yk′

= − 2(yk − ̂yk)σ′ (rL
k)hL−1

j

∂wL−1
ij

ℒw = ∑
k

− 2(yk − ̂yk)∂wL−1
ij

̂yk

= ∑
k

− 2(yk − ̂yk)σ′ (rL
k)wL

jk∂wL−1
ij

hL−1
j

= ∑
k

− 2(yk − ̂yk)σ′ (rL
k)wL

jkσ′ (rL−1
j)hL−2

i

Forward pass:
loss function:

output layer:

hidden layer:

ℒw = ∑
k

(yk − ̂yk)2

̂yk = σ(rL
k) = σ ∑

j

hL−1
j wL

jk

hL−1
j = σ(rL−1

j) = σ (∑
i

hL−2
i wL−1

ij)

same as logistic
MSE regression

βL
k

βL
k

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Backpropagation
• Use chain rule (efficiently) to propagate gradients:

‣ = unit in layer unit in layer

wℓ
ij i (ℓ − 1) → j ℓ

∂wL
jk
ℒw = − 2∑

k′

(yk′
− ̂yk′

)∂wL
jk

̂yk′

= − 2(yk − ̂yk)σ′ (rL
k)hL−1

j

∂wL−1
ij

ℒw = ∑
k

− 2(yk − ̂yk)∂wL−1
ij

̂yk

= ∑
k

− 2(yk − ̂yk)σ′ (rL
k)wL

jk∂wL−1
ij

hL−1
j

= ∑
k

− 2(yk − ̂yk)σ′ (rL
k)wL

jkσ′ (rL−1
j)hL−2

i

same as logistic
MSE regression

βL
k

βL
k

b2 = -2 * (y - y_hat) * d_sig(r2) # beta2: [K]
g2 = h.T @ b2 # w2_jk gradient: [J,1]@[1,K]=[JxK]

b1 = d_sig(r1) * w2 @ b2 # beta1: [J]*[JK]@[K]=[J]
g1 = x.T @ b1 # w1_ij gradient: [I,1]@[1,J]=[IxJ]

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Example: MCycle data (regression)
• Train NN model, 2 layer

‣ 1 input features = 1 input units

‣ 10 hidden units

‣ 1 target = 1 output units

‣ Logistic sigmoid activation for hidden layer, linear for output layer

data

prediction

response of hidden nodes (overlaid)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Example: Iris data (classification)
• Train NN model, 2 layer

‣ 2 input features = 2 input units, 10 hidden units

‣ 3 classes = 3 output units (e.g.,)

‣ Logistic sigmoid activation functions

‣ Optimize MSE of predictions using stochastic gradient

y = [0 0 1]

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Demo

• http://playground.tensorflow.org/

http://playground.tensorflow.org/

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Today's lecture

Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

MLPs in practice
• Example: Deep belief nets

‣ Handwriting recognition

‣ 784 pixels ⬄ 500 mid layer ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

• Example: Deep belief nets

‣ Handwriting recognition

‣ 784 pixels ⬄ 500 mid layer ⬄ 500 high ⬄ 2000 top ⬄ 10 labels

MLPs in practice

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:

‣ Images are translation invariant

Input: 28x28 image Weights: 5x5

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:

‣ Images are translation invariant

Input: 28x28 image Weights: 5x5
filter response at each patch

Run over all patches of input
 (activation map)

h1 = σ ∑
ij

wijxij

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:

‣ Images are translation invariant

Input: 28x28 image Weights: 5x5

many hidden units, few parameters!

Run over all patches of input
 (activation map)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Convolutional Networks (ConvNets)
• Group and share weights to use inductive bias:

‣ Images are translation invariant

Input: 28x28 image Weights: 5x5

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Convolutional Networks (ConvNets)
• As before: view components as composable building blocks

‣ Design deep structure from parts

- Convolutional layers

- Max-pooling (sub-sampling) layers

- Densely connected layers

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Example: AlexNet
• Deep NN model for ImageNet classification

‣ 650k units; 60m parameters

‣ 1m data; 1 week training (GPUs)

‣ Can be use pre-trained, or fine-tuned (trained again on new data)

5 convolutional layers 3 dense layers

input
224x224x3

output
(1000 classes)

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Hidden layers as “features”
• Visualizing a convolutional network’s filters:

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

• Multi-layer perceptrons (MLPs); other neural networks architectures

• Composition of simple perceptrons

‣ Each just a linear response + non-linear activation

‣ Hidden units used to create new features

‣ Jointly form universal function approximators: enough units any function

• Training via backprop = gradient chain rule + dynamic programming

• Much more: deep nets (DNNs), ConvNets, ...

→

Recap

Roy Fox | CS 273A | Winter 2021 | Lecture 11: Neural Networks

Logistics

project • Project abstract due Tue, Feb 16

assignments • Assignment 4 to be published soon

