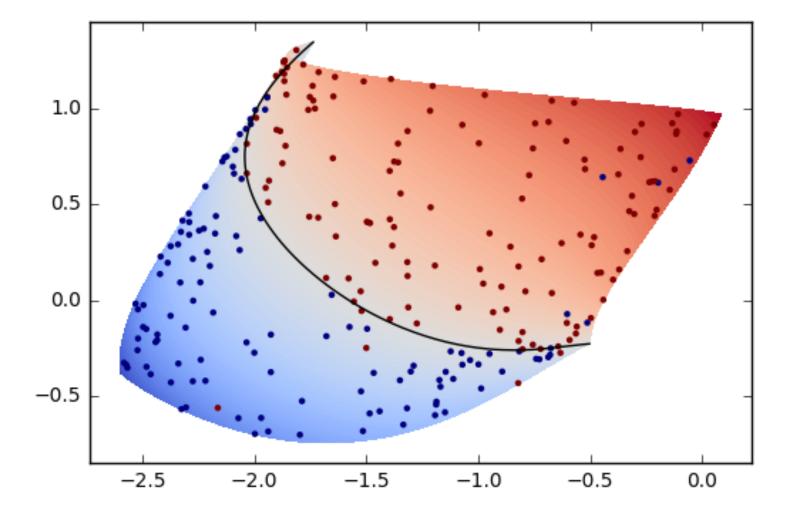
CS 273A: Machine Learning **Winter 2021** Lecture 11: Neural Networks

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



• Project abstract due Tue, Feb 16

Assignment 4 to be published soon

Today's lecture

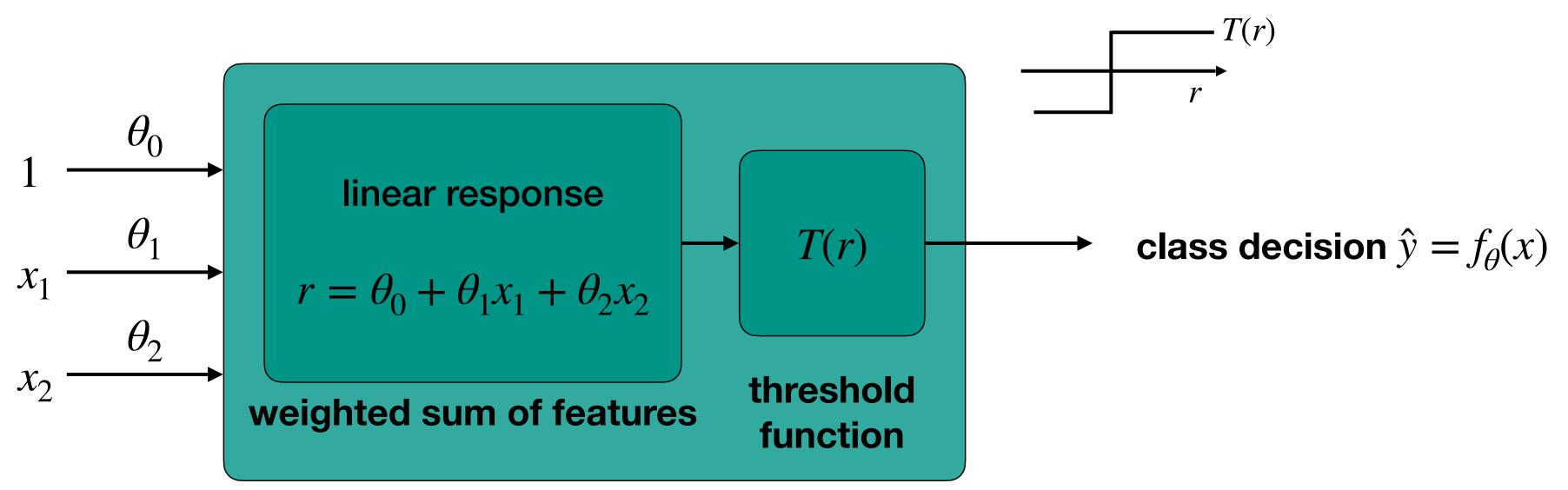
Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

Linear classifiers

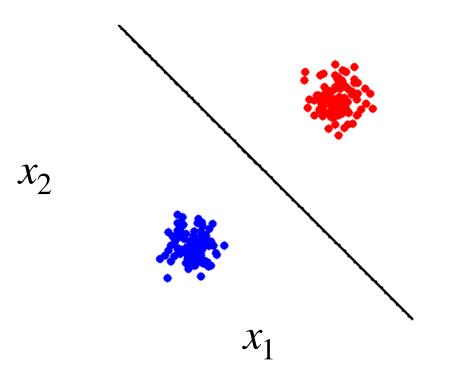
- Perceptron = use hyperplane to partition feature space \rightarrow classes
 - Soft classifiers (logistic) = sensitive to margin from decision boundary



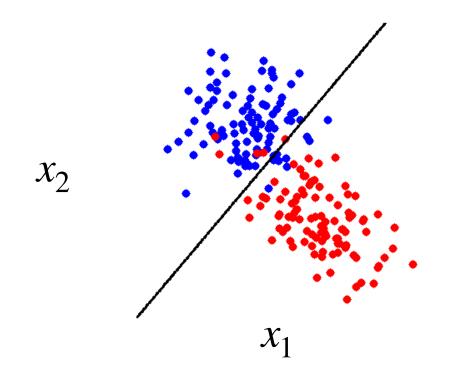
Adding features

- If data is non-separable in current feature space
 - Perhaps it will be separable in higher dimension \implies add more features
 - E.g., polynomial features: linear classifier \rightarrow polynomial classifier
- Which features to add?
 - Perhaps outputs of simpler perceptrons?

Linearly separable data

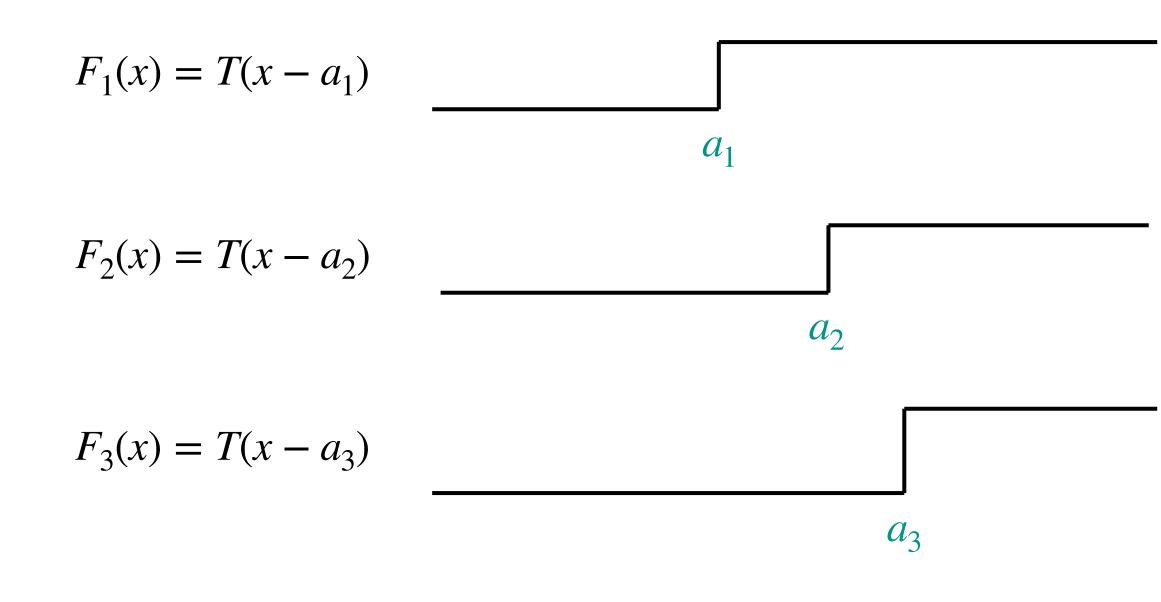


Linearly non-separable data

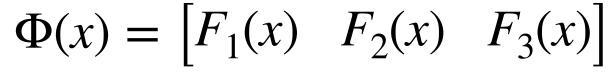


Combining step functions

Combinations of step functions allow more complex decision boundaries



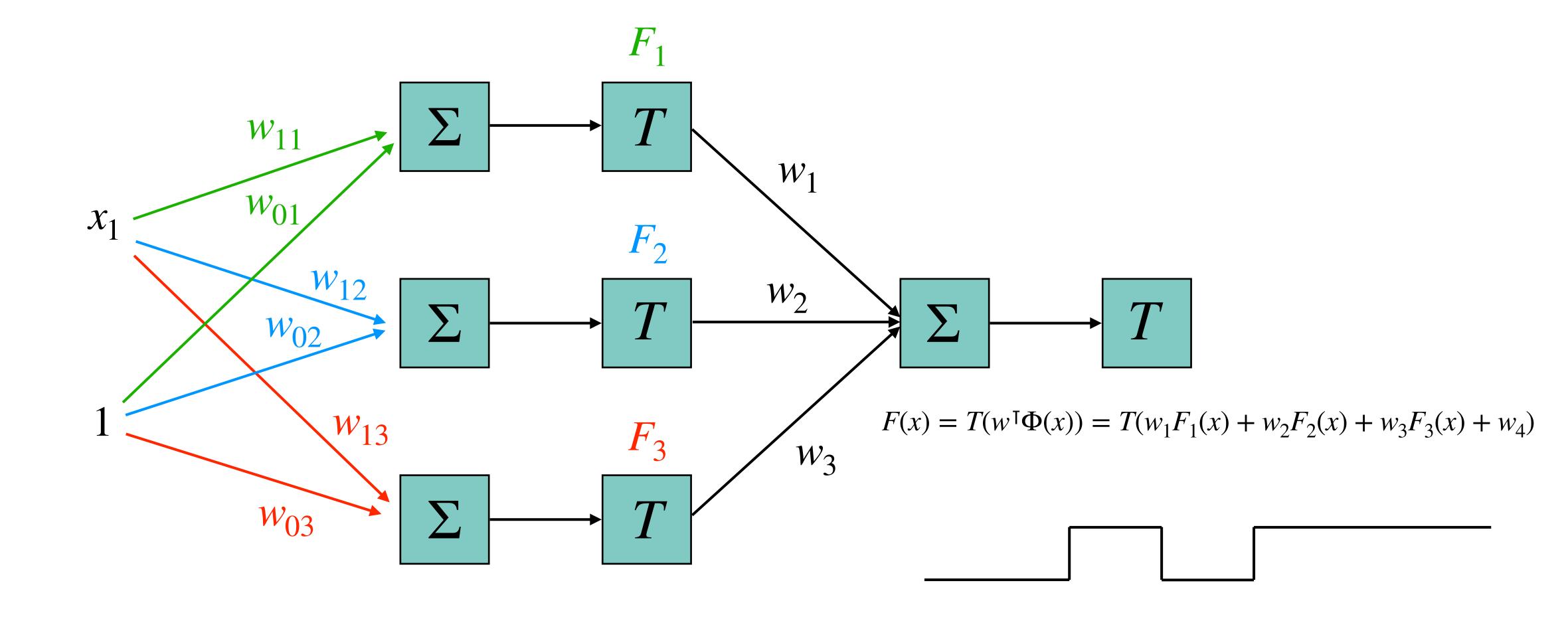
- Need to learn:
 - Thresholds a_1, a_2, a_3
 - Weights W_1, W_2, W_3, W_4



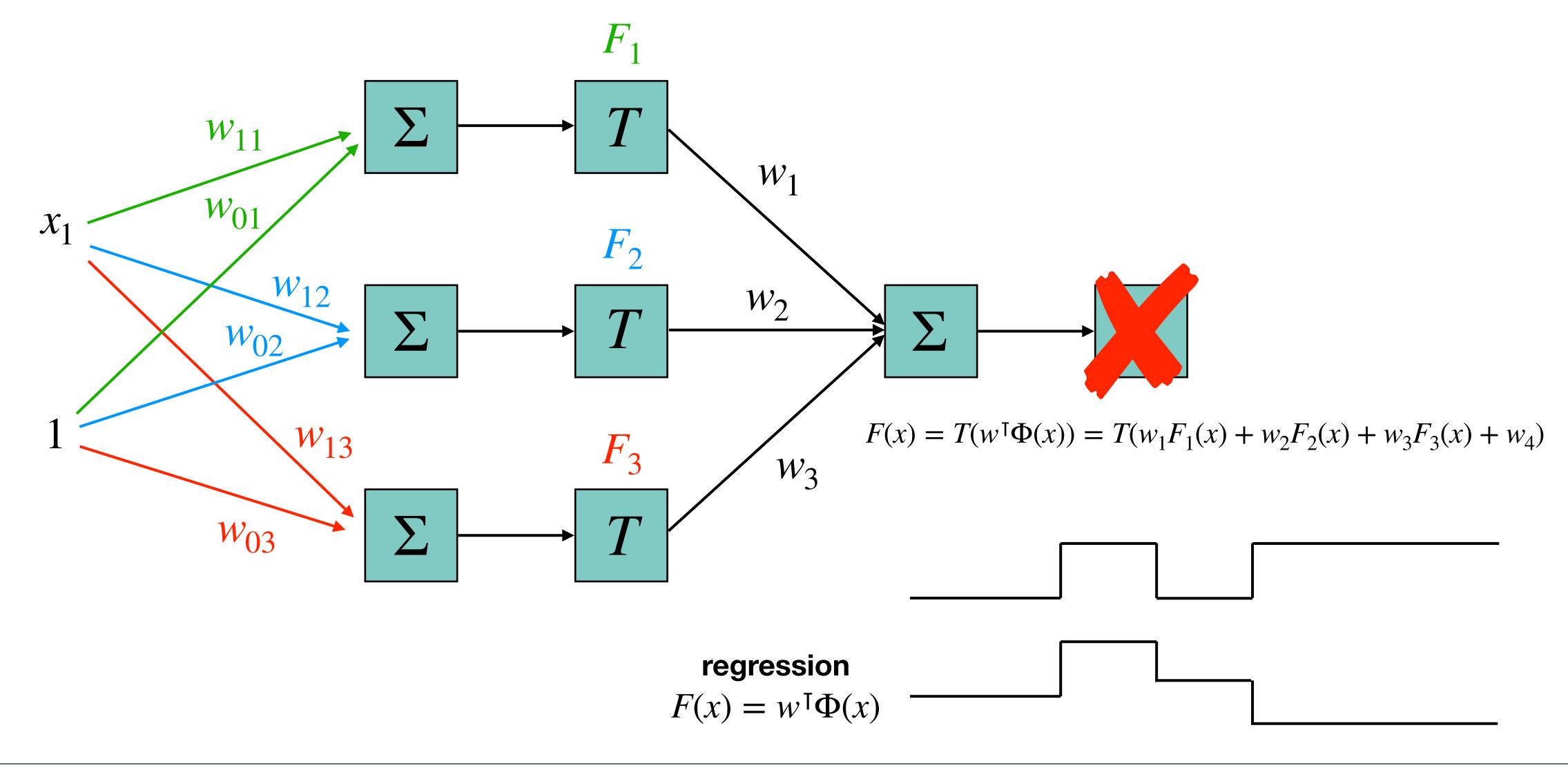
is piecewise constant

 $F(x) = T(w^{\mathsf{T}}\Phi(x)) = T(w_1F_1(x) + w_2F_2(x) + w_3F_3(x) + w_4)$

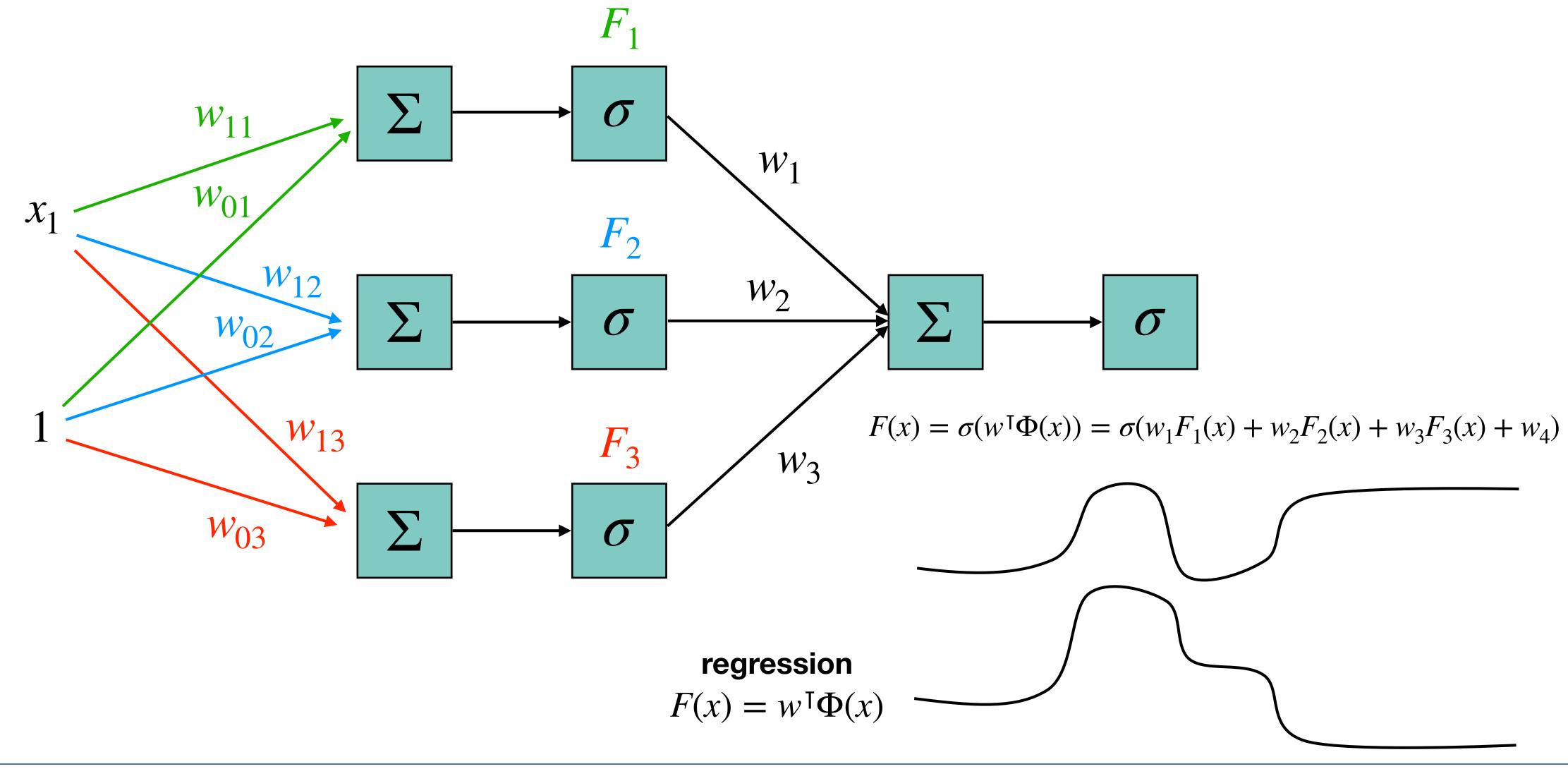
Multi-Layer Perceptron (MLP)



Multi-Layer Perceptron (MLP)

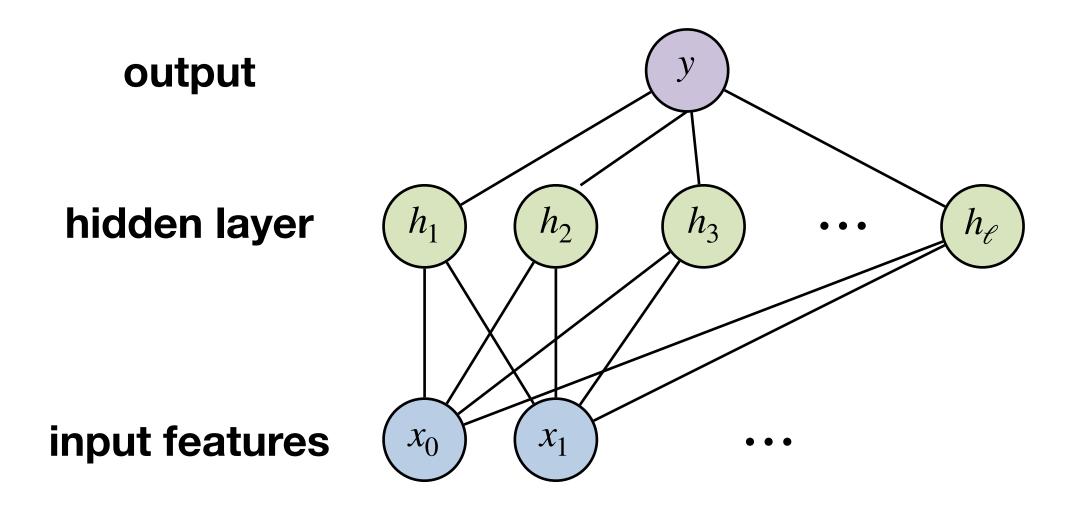


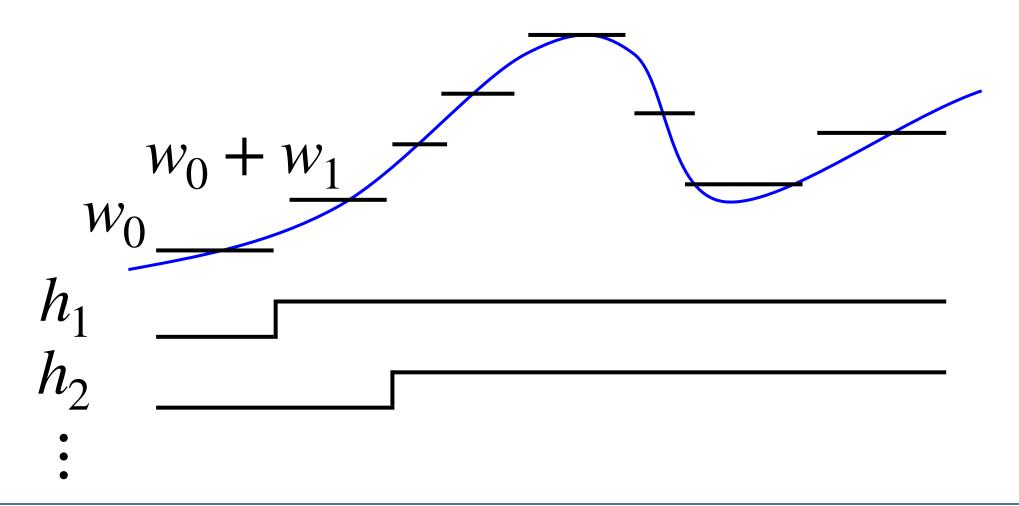
Multi-Layer Perceptron (MLP)



MLPs: properties

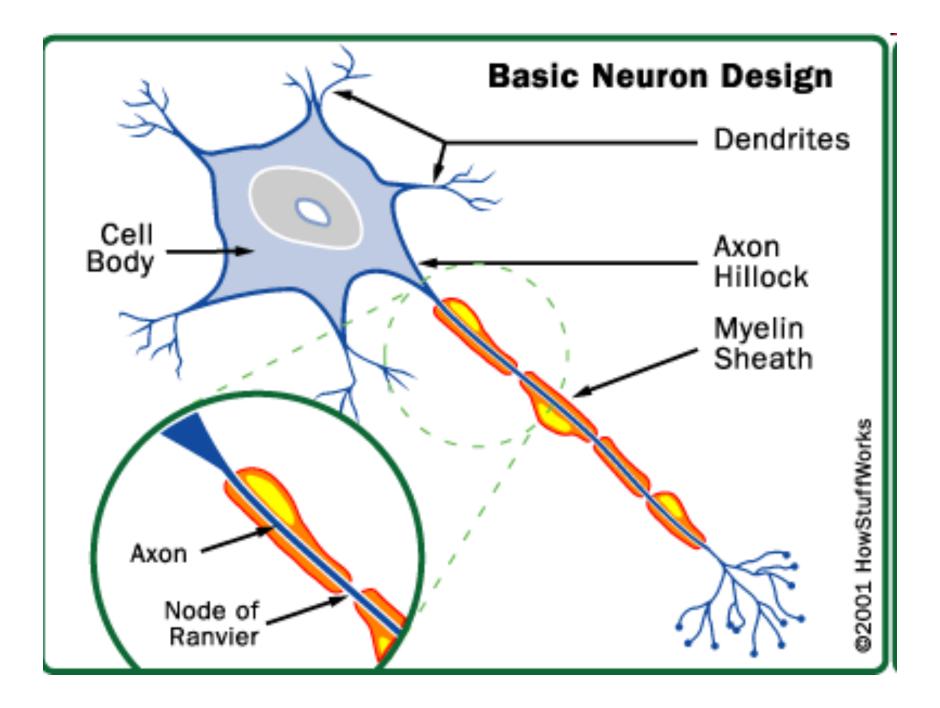
- Simple building blocks
 - Each unit is a perceptron: linear response \rightarrow non-linear activation
- MLPs are universal approximators:
 - Can approximate any function arbitrarily well, with enough units





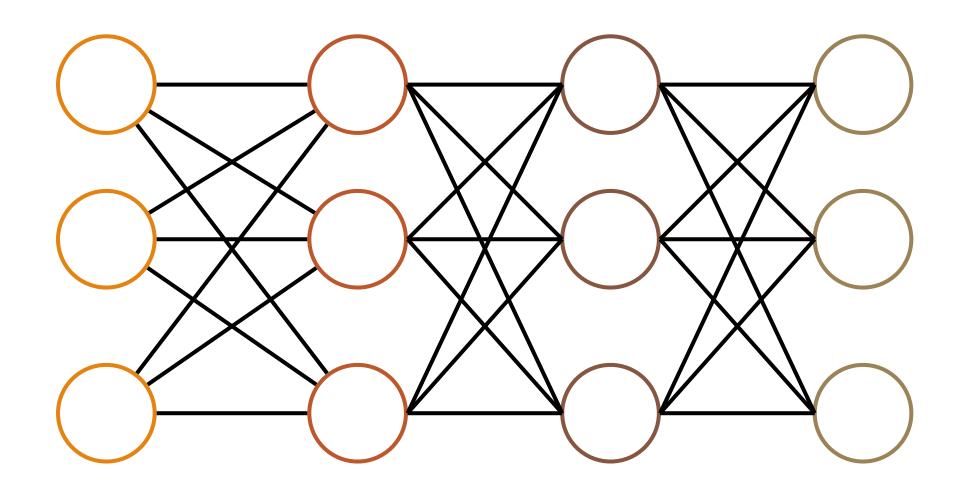
"Neural" Networks

- Biologically inspired
- Neurons:
 - "Simple" cells
 - Dendrites take input voltage
 - Cell body "weights" inputs
 - Axons "fire" voltage
 - Synapses connect to other cells



Deep Neural Networks (DNNs)

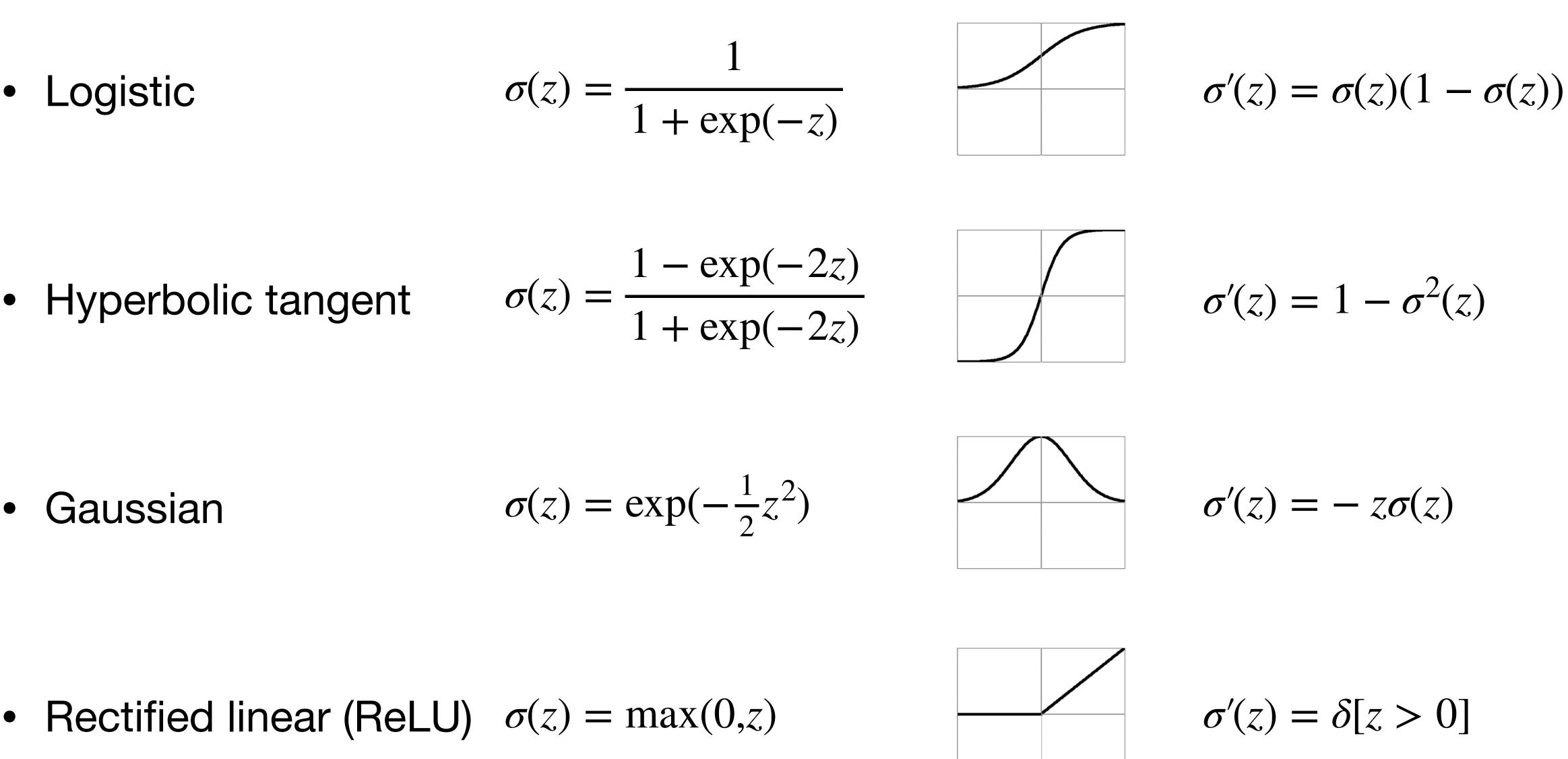
- Layers of perceptrons can be stacked deeply
 - Deep architectures are subject of much current research

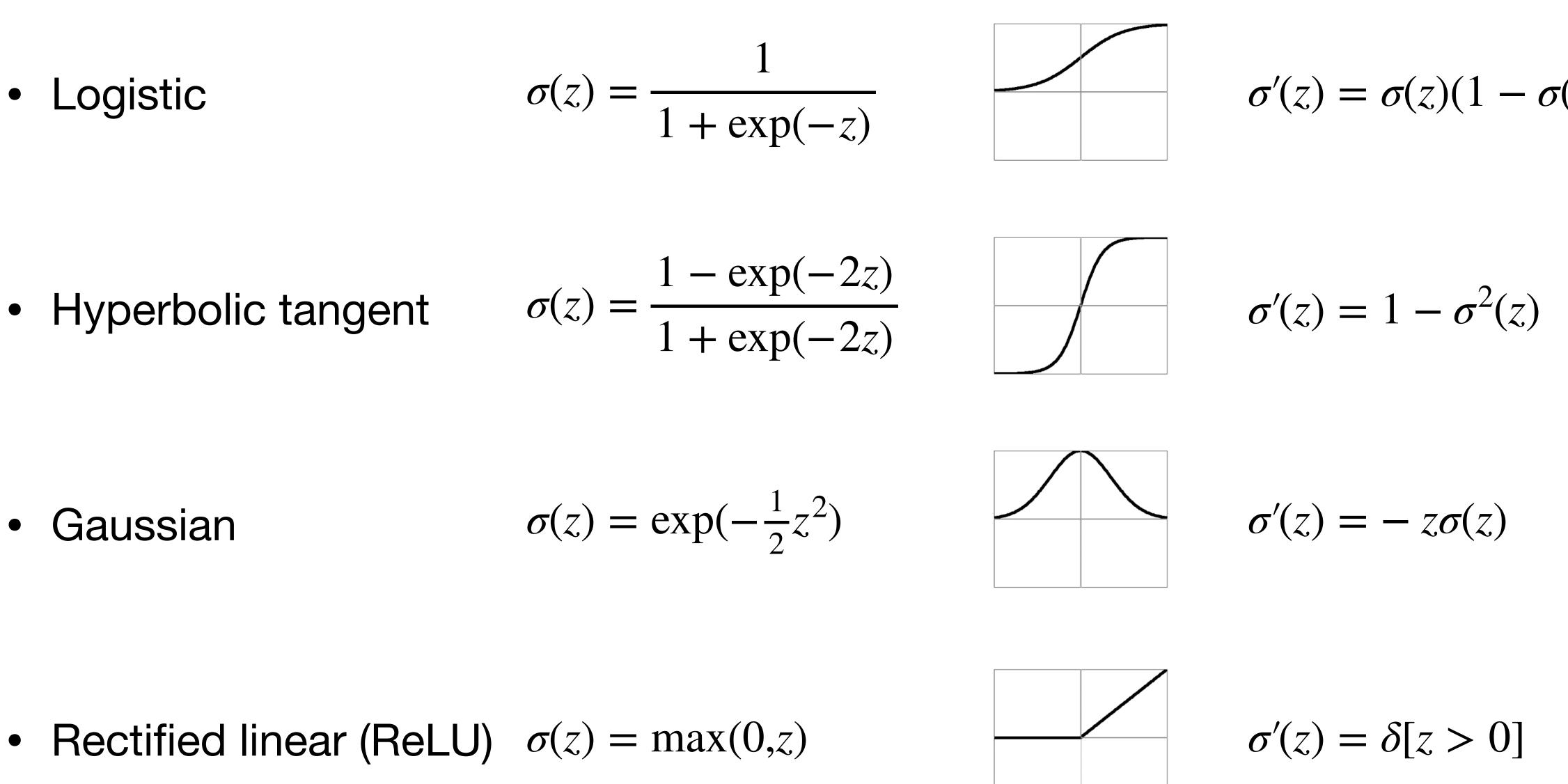


input layer 1 layer 2 layer 3 features • • •

• • •

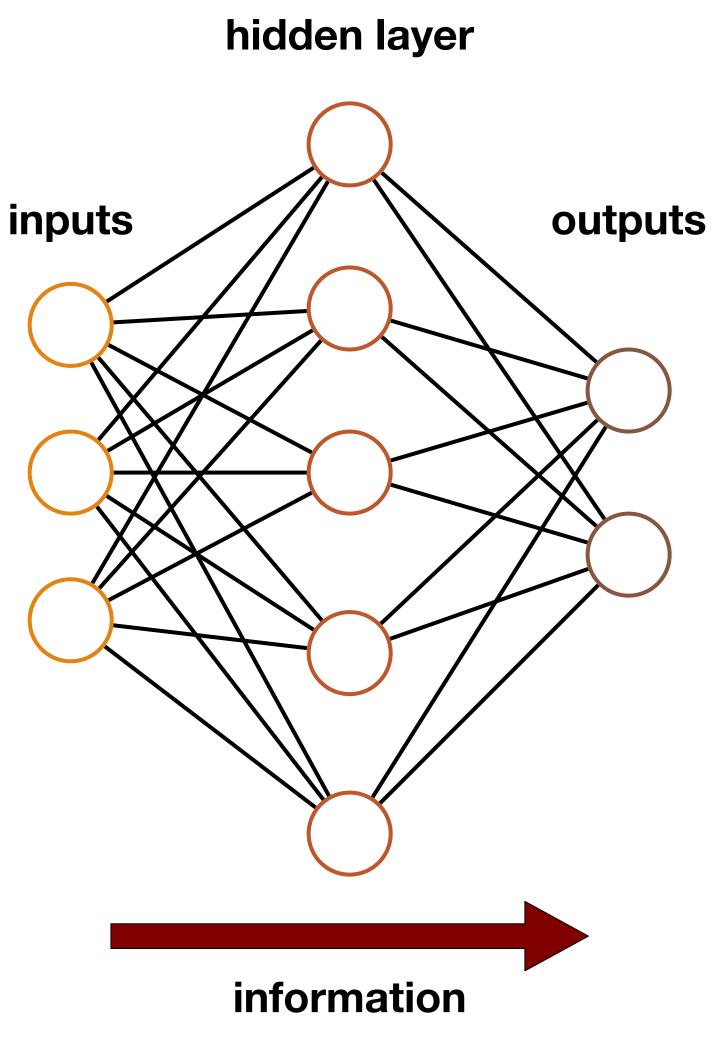
Activation functions





Feed-forward (FF) networks

- Information flow in feed-forward (FF) networks:
 - Inputs \rightarrow shallow layers \rightarrow deeper layers \rightarrow outputs
 - Alternative: recurrent NNs (information loops back)
- Multiple outputs \implies efficiency:
 - Shared parameters, less data, less computation
- Multi-class classification:
 - One-hot labels $y = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots \end{bmatrix}$
 - , Multilogistic regression (softmax): $\hat{y}_c = -$



 $\exp(h_c)$

Today's lecture

Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

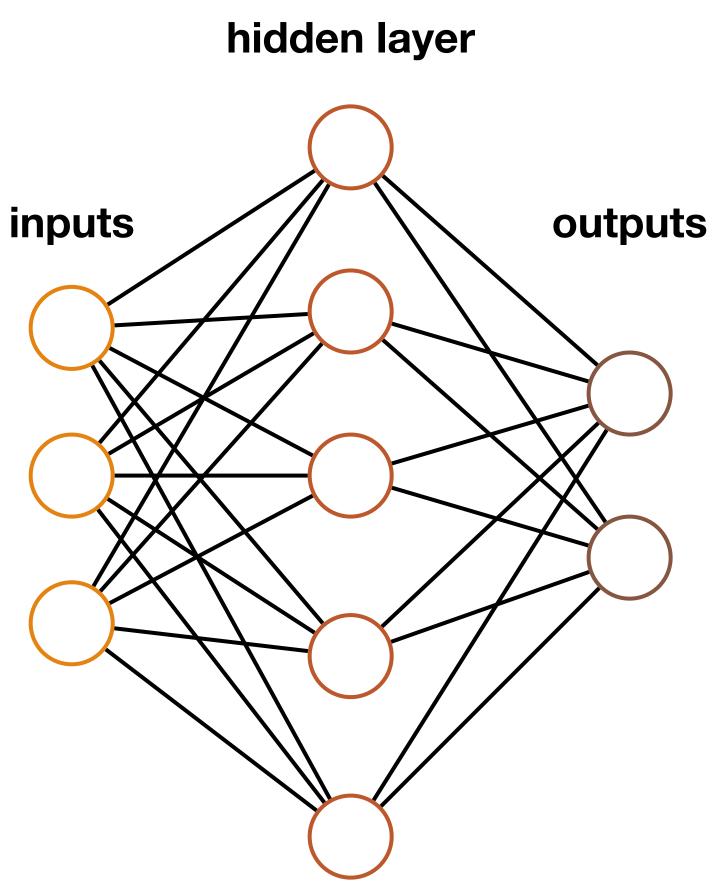
Training MLPs

- Observe instance x, target y
- Feed x forward through NN = prediction \hat{y}

• Loss =
$$\ell_w(y, \hat{y}) = (y - \hat{y})^2$$
 (or ano

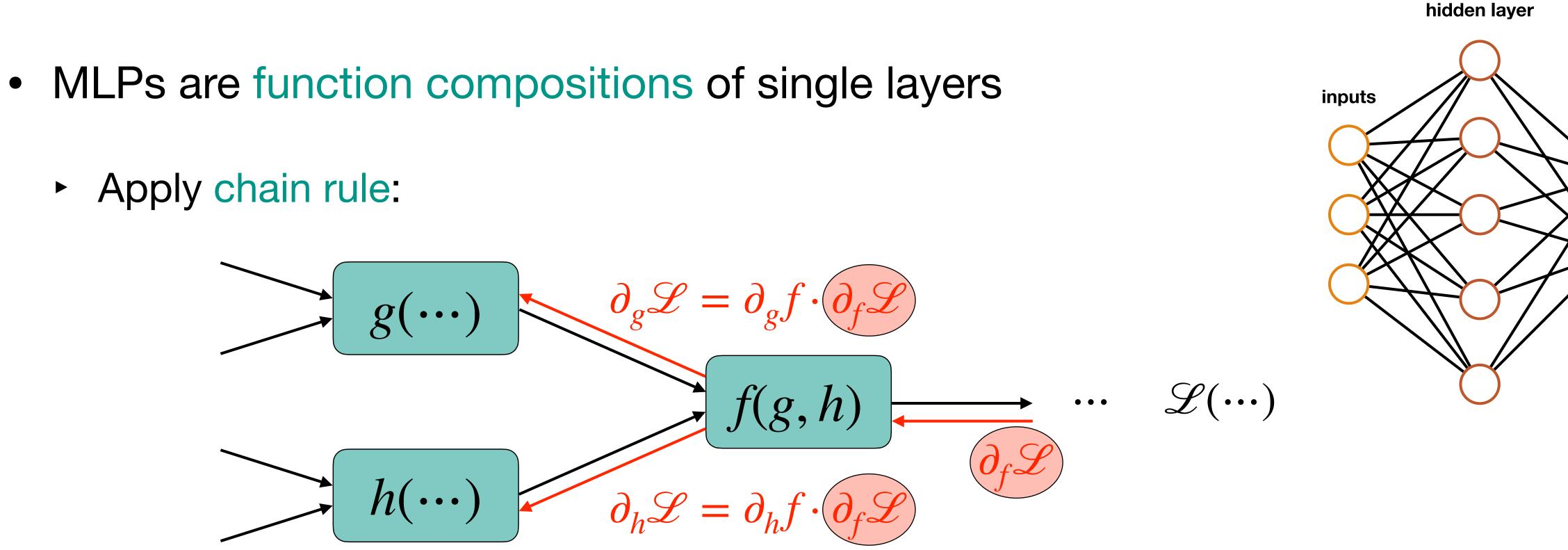
- How should we update the weights?
- Single layer:
 - Use differentiable activation function, e.g. logistic
 - Stochastic) Gradient Descent = logistic regression

other loss function)



Gradient computation

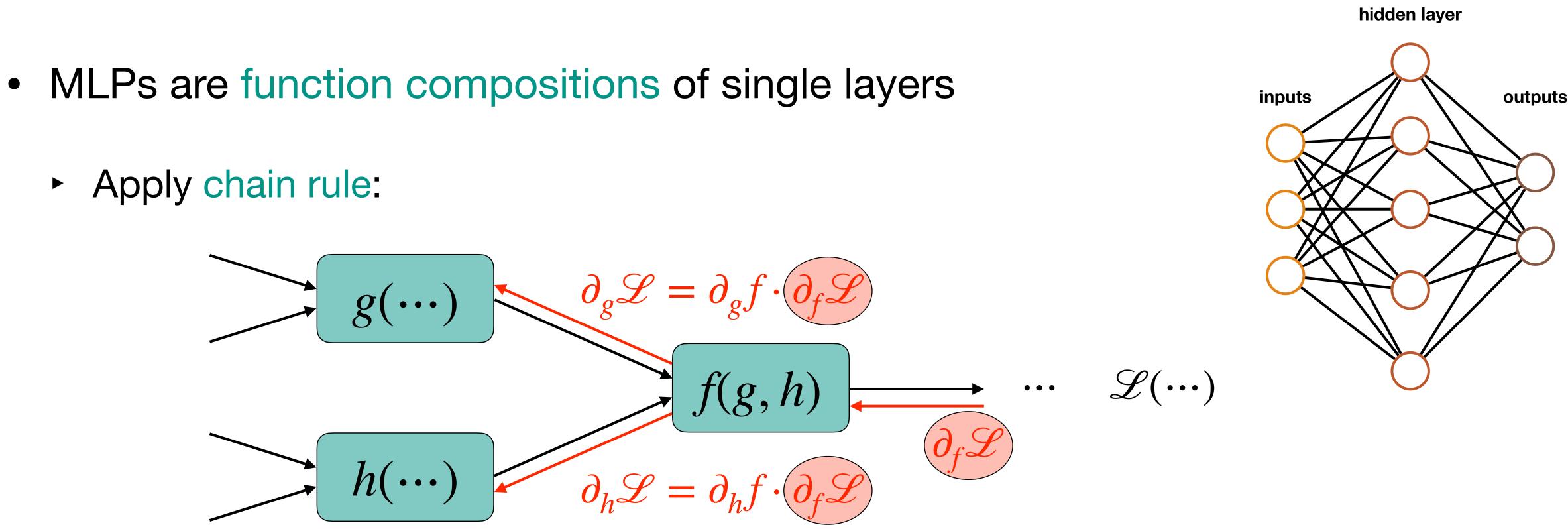
- - Apply chain rule:



Backpropagation = chain rule + dynamic programming to avoid repetitions

Gradient computation

- - Apply chain rule:



Backpropagation = chain rule + dynamic programming to avoid repetitions

example: $f(g,h) = \sigma(g+h) \implies \partial_g f = f(1-f)$ \implies reuse f from the forward pass

Backpropagation

• Use chain rule (efficiently) to propagate gradients:

•
$$w_{ij}^{\ell} = \text{unit } i \text{ in layer } (\ell - 1) \rightarrow \text{unit } j \text{ in}$$

$$\partial_{w_{jk}^L} \mathscr{L}_w = -2 \sum_{k'} (y_{k'} - \hat{y}_{k'}) \partial_{w_{jk}^L} \hat{y}_{k'}$$
same as logistic
$$MSE \text{ regression} = -2(y_k - \hat{y}_k)\sigma'(r_k^L)h_j^{L-1}$$

$$\partial_{w_{ij}^{L-1}} \mathscr{L}_w = \sum_k -2(y_k - \hat{y}_k)\partial_{w_{ij}^{L-1}} \hat{y}_k$$

$$= \sum_k -2(y_k - \hat{y}_k)\sigma'(r_k^L)w_k$$

$$\beta_k^L = \sum_k -2(y_k - \hat{y}_k)\sigma'(r_k^L)w_k$$

layer ℓ

Forward pass:

loss function:

$$\mathscr{L}_w = \sum_k (y_k - \hat{y}_k)^2$$

output layer:

$$\hat{y}_k = \sigma(r_k^L) = \sigma\left(\sum_j h_j^{L-1} w_{jk}^L\right)$$

hidden layer:

$$h_j^{L-1} = \sigma(r_j^{L-1}) = \sigma\left(\sum_i h_i^{L-2} w_{ij}^{L-1}\right)$$

 $W_{jk}^L \partial_{W_{ii}^{L-1}} h_j^{L-1}$

 $w_{jk}^L \sigma'(r_j^{L-1}) h_i^{L-2}$

Backpropagation

• Use chain rule (efficiently) to propagate gradients:

•
$$w_{ij}^{\ell} = \text{unit } i \text{ in layer } (\ell - 1) \rightarrow \text{unit } j \text{ in}$$

$$\partial_{w_{jk}^L} \mathscr{L}_w = -2 \sum_{k'} (y_{k'} - \hat{y}_{k'}) \partial_{w_{jk}^L} \hat{y}_{k'}$$
same as logistic
MSE regression

$$\int_{\beta_k^L} = -2(y_k - \hat{y}_k)\sigma'(r_k^L)h_j^{L-1}$$

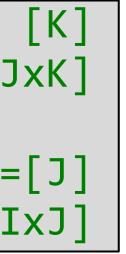
$$\int_{w_{jj}^L} = \sum_{k'} -2(y_k - \hat{y}_k)\partial_{w_{ij}^L-1} \hat{y}_k$$

$$= \sum_{k'} -2(y_k - \hat{y}_k)\sigma'(r_k^L)w_{jk}^L \partial_{w_{ij}^L-1}h_j^{L-1}$$

$$\int_{k'} \int_{k'} \int_{k'} \frac{\beta_k^L}{\sum_{k'}} = \sum_{k'} -2(y_k - \hat{y}_k)\sigma'(r_k^L)w_{jk}^L \partial_{w_{ij}^L-1}h_j^{L-1}$$

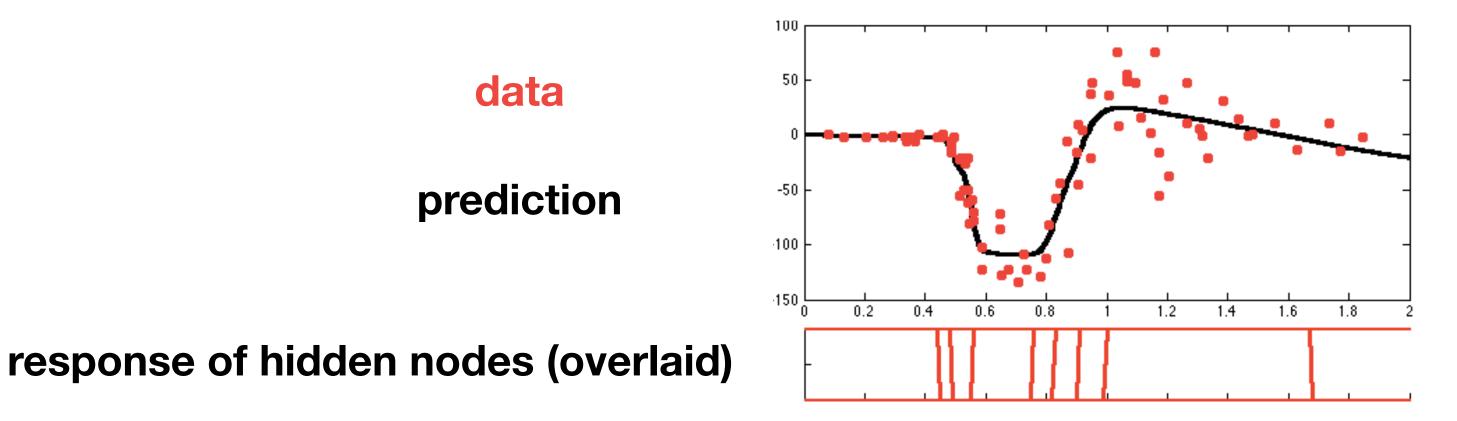
layer ℓ

L–2



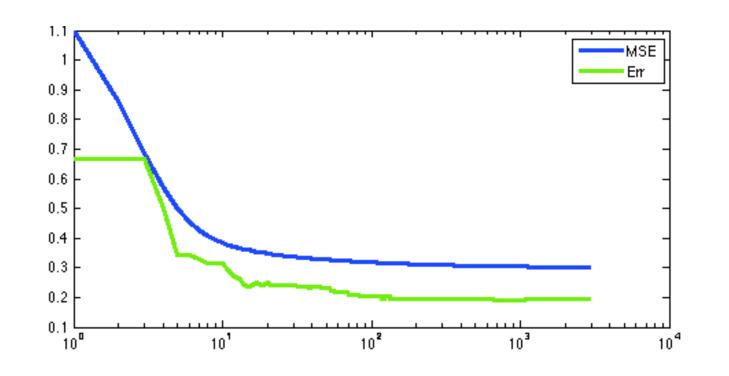
Example: MCycle data (regression)

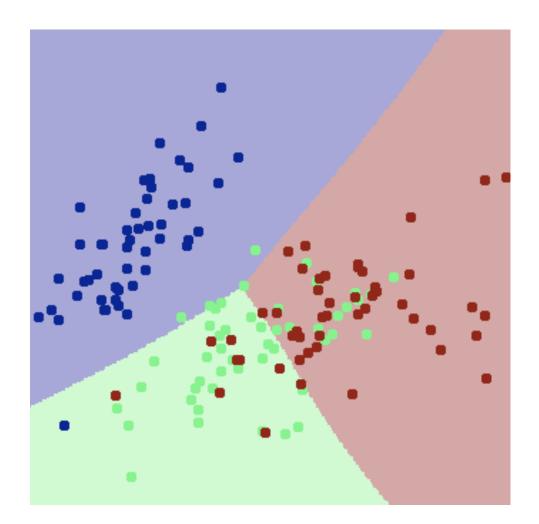
- Train NN model, 2 layer
 - 1 input features = 1 input units
 - 10 hidden units
 - 1 target = 1 output units
 - Logistic sigmoid activation for hidden layer, linear for output layer



Example: Iris data (classification)

- Train NN model, 2 layer
 - 2 input features = 2 input units, 10 hidden units
 - 3 classes = 3 output units (e.g., $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$)
 - Logistic sigmoid activation functions
 - Optimize MSE of predictions using stochastic gradient





<u>http://playground.tensorflow.org/</u>

Today's lecture

Multilayer Perceptrons

Backpropagation

Advanced Neural Networks

MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - ▶ 784 pixels \Leftrightarrow 500 mid layer \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels

Hinton's Neu	O 1 5 6	23 78	4 9		
0123456789	0 (オ ス ダ ジ は ア ス タ ジ タ タ	0 8 0 1 1 2 3 3 4 3 4 5 5 6 5 6 7 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0 2 5 4 3 6 7 5 9		
	КМ	DECREA	SE SPE	ED	ļ

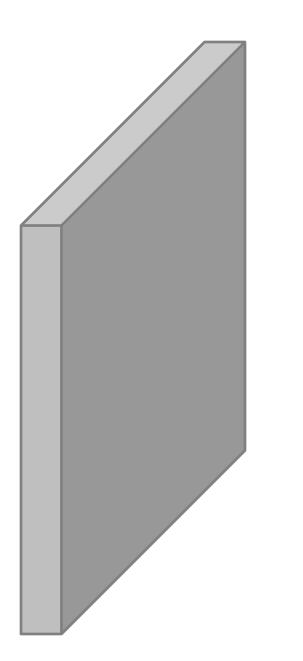
MLPs in practice

- Example: Deep belief nets
 - Handwriting recognition
 - ▶ 784 pixels \Leftrightarrow 500 mid layer \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels

- Group and share weights to use inductive bias:
 - Images are translation invariant

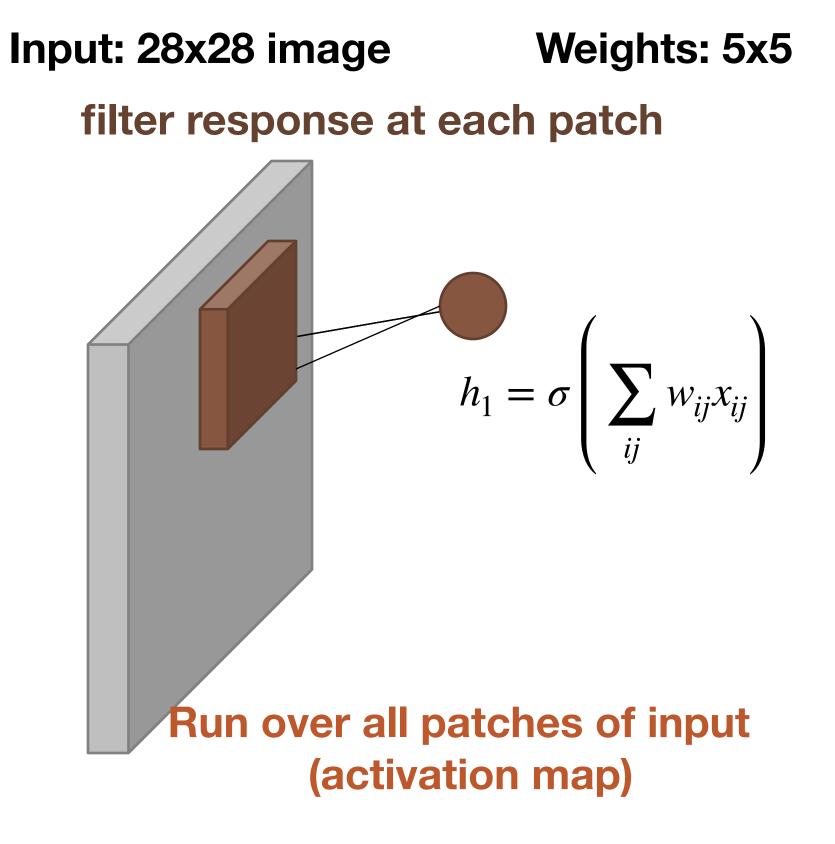
Input: 28x28 image

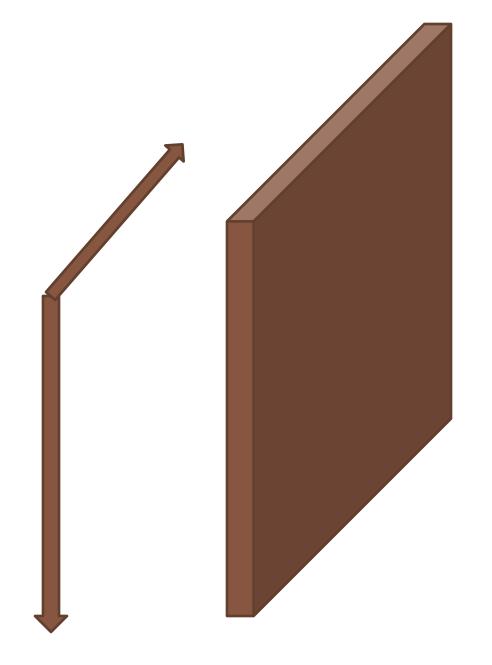
Weights: 5x5





- Group and share weights to use inductive bias:
 - Images are translation invariant

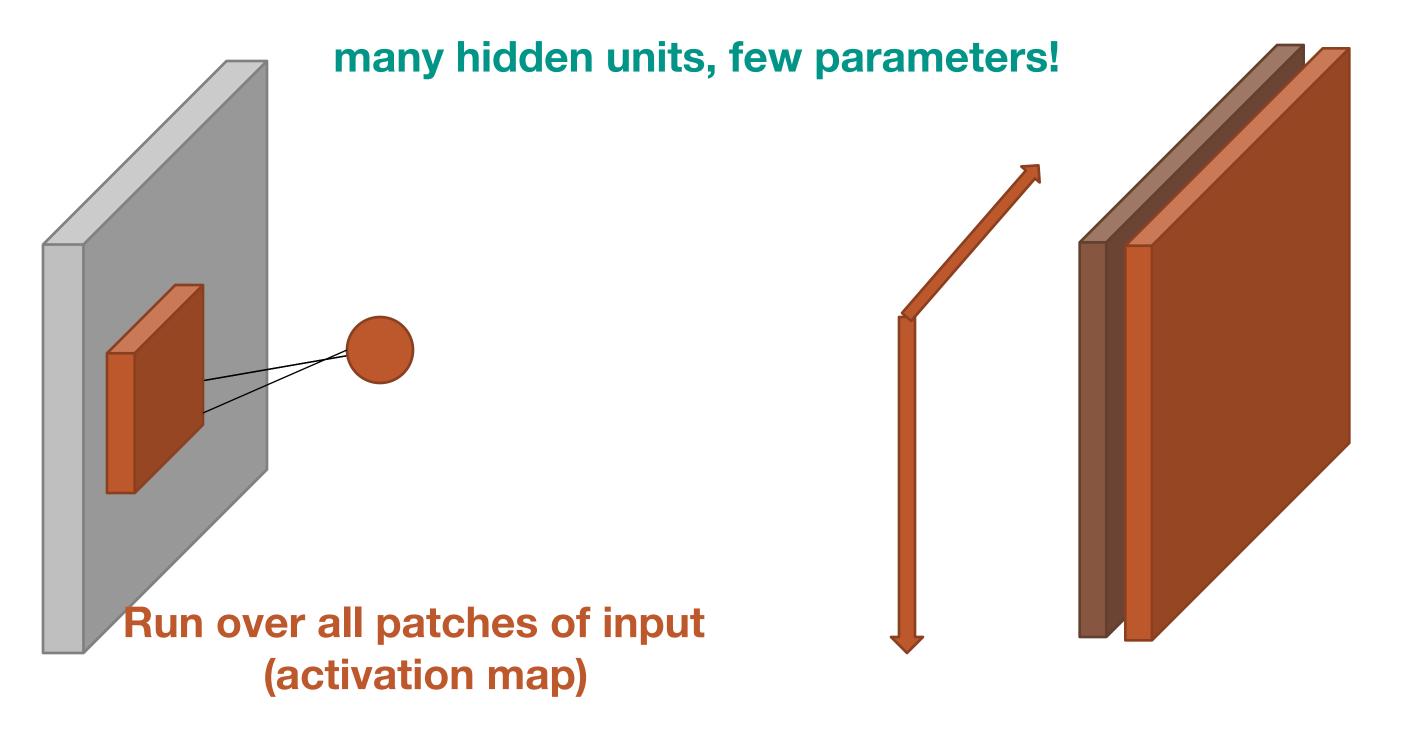




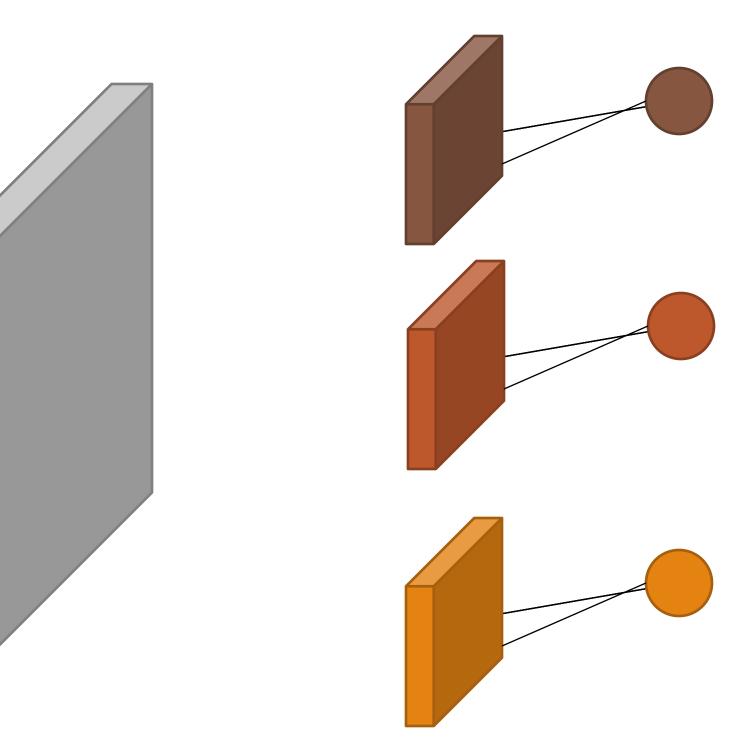
- Group and share weights to use inductive bias:
 - Images are translation invariant

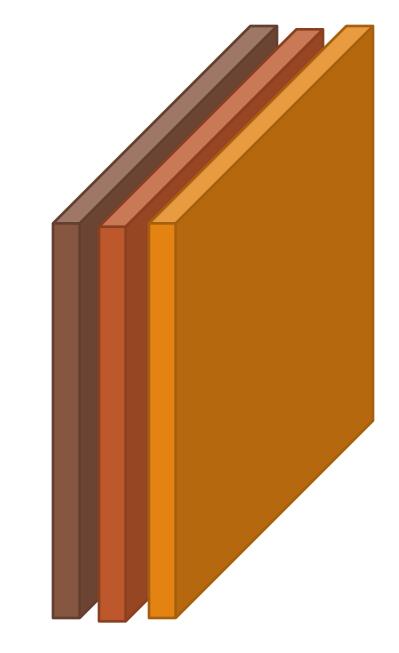
Input: 28x28 image

Weights: 5x5

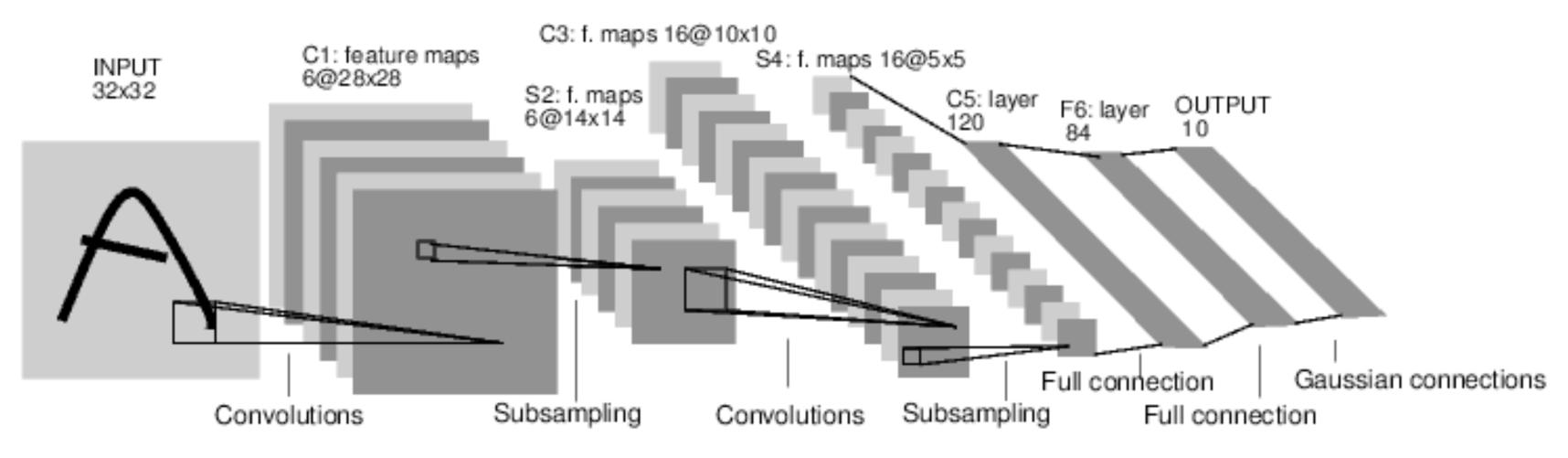


- Group and share weights to use inductive bias:
 - Images are translation invariant



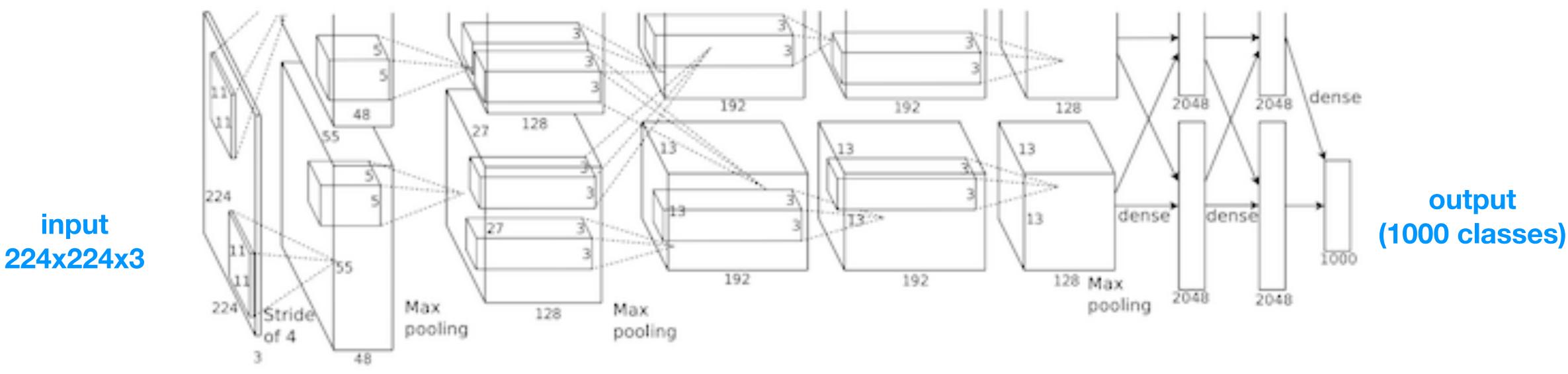


- As before: view components as composable building blocks
 - Design deep structure from parts
 - **Convolutional layers**
 - Max-pooling (sub-sampling) layers
 - **Densely connected layers**



Example: AlexNet

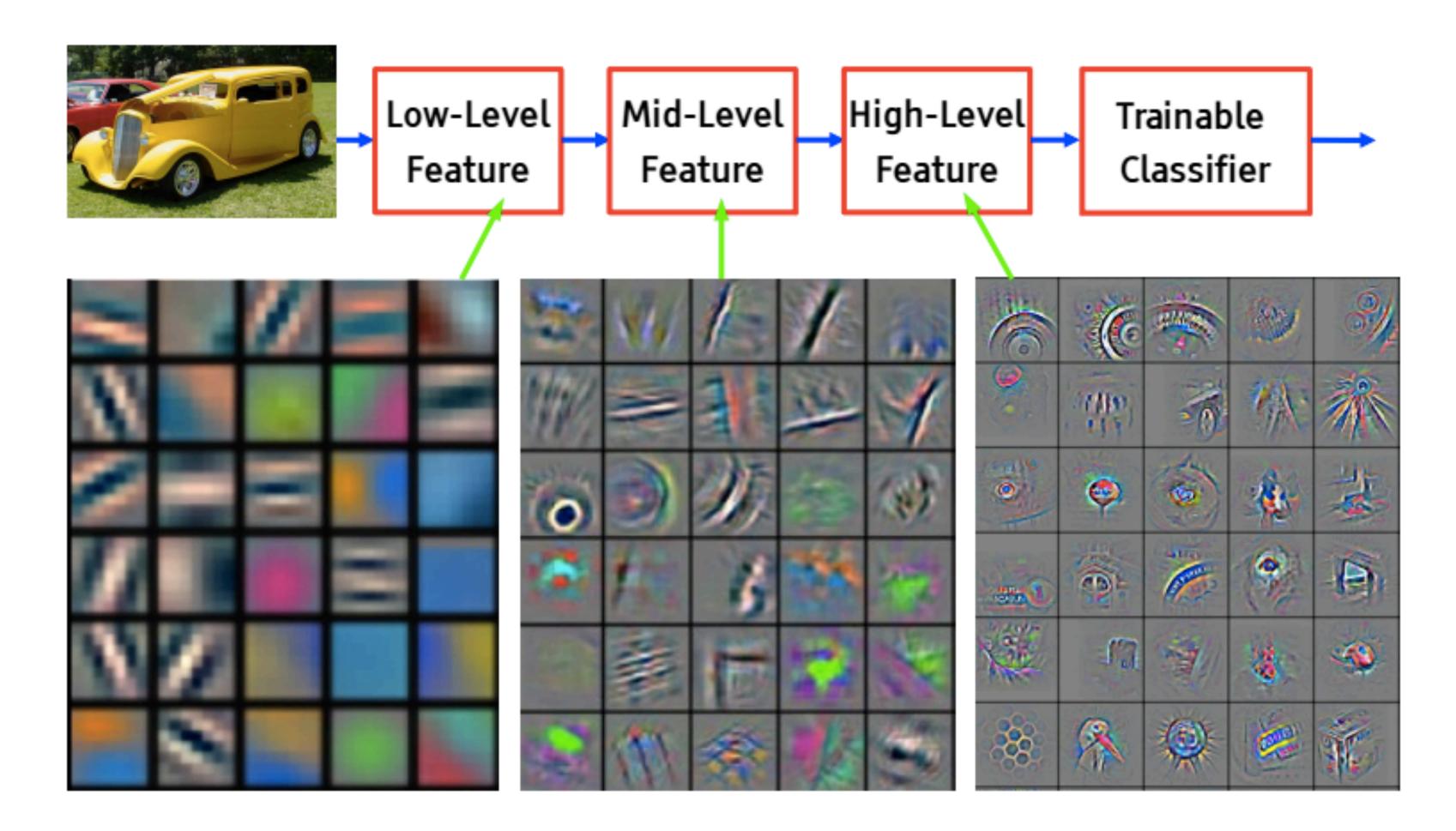
- Deep NN model for ImageNet classification \bullet
 - 650k units; 60m parameters
 - Im data; 1 week training (GPUs)
 - Can be use pre-trained, or fine-tuned (trained again on new data) **5 convolutional layers**



3 dense layers

Hidden layers as "features"

• Visualizing a convolutional network's filters:



- Multi-layer perceptrons (MLPs); other neural networks architectures
- Composition of simple perceptrons
 - Each just a linear response + non-linear activation
 - Hidden units used to create new features
- Training via backprop = gradient chain rule + dynamic programming
- Much more: deep nets (DNNs), ConvNets, …

• Jointly form universal function approximators: enough units \rightarrow any function

• Project abstract due Tue, Feb 16

Assignment 4 to be published soon