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Mid-Term Logistics

 Format:
> Time: Tuesday, February 9, 2-4pm
> Canvas “quiz”
> Many questions, feels long, but should be doable in 1 hour

> We'll be on zoom to address questions and issues: https://uci.zoom.us/j/94903054276

e YOu can use:
> Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
> A basic arithmetic calculator; no phones, no computers
> Blank paper sheets for your calculations

> Brainpower and good vibes

* No proctoring; the penalty for cheating is being the kind of person who cheats
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https://uci.zoom.us/j/94903054276

Exam suggestions

 Look at past exams

> Train yourself by reading some solutions, evaluate yourself on held-out exams
* Organize / join study groups (e.g. on piazza)
e During the exam:

»  Start with questions you find easy

> Don't get bogged down by exact calculations

> Leave expressions unsolved and come back to them later

» Optional: upload your calculation sheet(s)

- They won't be graded, but can be used for regrading
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Learning settings (1): supervised learning
« How can we learn f : x — y that achieves good performance v(x, y)?

* Supervised learning

» Data: examples of instances x and good decisions y (labels)

> Given a training dataset &, find f that agrees with J's labels on its instances

» Classification: y is a class in a small set
[

> Regression: y is continuous
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Know thy data

ML Is a data science
> Look at your data, know what it is, get a “feel” for it
« How many data points?
 What are the features of every data point? What are their data types?

» Booleans (spam, inbound/outbound, control group)

» Discrete categories (country/state, protocol, user |ID)

> Integers (1-5 stars, # of bedrooms, year of birth)

» Reals — up to digital representation (pixel intensity, price, timestamp)

* |s there missing data? Unreasonable values? Surprisingly missing / repeated values?
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Supervised learning

e Data shows trend

e But also noise

40

y 20

regression
®
® O
®
®
® o
®
®
®
| ]
10 20
X

« (Given some instance x, what is a good y?
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What is machine learning?

decision "'meta-program"
program

train
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predict
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Visualizing learned decision function

fx) =0,+ 0\x
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decision boundary
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Inductive bias

* |Inductive bias = assumptions we make to generalize to data we haven't seen
 Without any assumptions, there is no generalization
> “Anything is possible” in the test data

« Occam's razor: prefer simpler explanations of the data
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How overfitting affects prediction error

250 A

200 - A

150 A

MSE

high training error  1oo- high generalization error

50 -

low test error

od ¥ \ 4
2 4 6 8 10
< underfitting royremeldedreed  gyerfitting >

 Low model complexity = underfitting

> High test error = high training error + low generalization error

 High model complexity — overfitting

> High test error = low training error + high generalization error
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Nearest-Neighbor regression
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» Decision function f : x — y is piecewise constant (for 1D x)

» Data induces f implicitly; f is never stored explicitly, but can be computed
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Nearest-Neighbor classification

@:n boundary




Nearest-Neighbor classification




k-Nearest Neighbor (KNN)

 Find the k nearest neighbors to x in the dataset

» Given x, rank the data points by their distance from x, d(x, x(j))

. | .
Usually, Euclidean distance d(x, x\)) = \/ — E (x; — xl.(f))z
n -
l

» Select the k data points which are have smallest distance to x

 What is the prediction?
> Regression: average y(j) for the k closest training examples

» Classification: take a majority vote among y(j) for the k closest training examples

- No ties in 2-class problems when k is odd
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Error rates and k

A

prediction error

Error on Test Data

. ¢
o &S " -
: .'"q;\?- : Error on Training Data
IR
>

k (# neighbors)

training data “memorized”

* A complex model fits training data but generalizes poorly
e k = 1: perfect memorization of examples = complex
« k = m: predict majority class over entire dataset = simple

 \We can select k with validation
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Probabilistic modeling of data

 Assume data with features x and discrete labels y

» Prior probability of each class: p(y)

> Prior = before seeing the features

> E.g., fraction of applicants that have good credit

models:

» Distribution of features given the class: p(x|y = ¢
9 px|y =c) ¥ —y
> How likely are we to see x in applicants with good credit? y—>X

does not imply causality!

» Joint distribution: p(x, y) = p(xX)p(y|x) = p(y)p(x|y)

py)px|y) _ py)px|y)
p(x) > p(y=opx|y=rc)

Bayes' rule: posterior p(y | x) =
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Bayes classifiers

* Learn a “class-conditional” model for the data
> Estimate the probability for each class p(y = ¢)
» Split training data by class & = {(xV): yD) = ¢)
~ Estimate from & . the conditional distribution p(x |y = ¢)

* For discrete x, can represent as a contingency table

Fore g (rgood - [0 s
X=0 42 15 :l,> 42/383  15/307 :l,> -.2632

X=1 338 287 338/383  287/307 - 4592
K=2 3 > 3/383 5/307 3750 6250
o(y) 383/690 |307/690
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Bayes-optimal decision

« Maximum posterior decision: p(y = 0|x) S p(y = 1 | x)

- Optimal for the error-rate (0-1) loss: E, |, [V(x) # Y]

« What if we have different cost for different errors? agp, dpn

» L= _x,pr[aFP ' #(}7 — O,j\i(X) — 1) + QFN ° #(y — l,j\/(X) — O)]

» Bayes-optimal decision: agp - p(y = 0|x) S agn - p(y = 1] x)

ply=1]|x) _ log aFp _

- > a
p(y =0]x) aFN

Log probability ratio: log

>
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Comparing classifiers

* \Which classifier performs “better”?
> Ais better for high specificity

> B Is better for high sensitivity

1.0
> Need single performance measure | Bayes-optimal
B’ classifier B
>
e Area Under Curve (AUC) @ oo
Q
V)
» 0.5 <AUC < 1 | random guess
o
'_ 0.2
> AUC = 0.5: random guess
large o 0'Oo.o 0.2 0.4 0.6 0.8 1.0
» AUC = 1: no errors always $ = 0 FPR = 1 - specificity
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Estimating joint distributions

 Can we estimate p(x|y) from data?

e Count how many data points for each x? Al lc [pABCIy=
O 0 O 4/10
e If m < 2", most instances never occur I I O
O 1 O 0/10
: : : : : : O 1 1 0/10
» Do we predict that missing instances are impossible? B
1 0 1 2/10
- What if they occur in test data? 1 1 0 1/10
1 1 1 1/10

o Difficulty to represent and estimate go hand in hand

> Model complexity = overfitting!
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Regularization

e Reduce effective size of model class

> Hope to avoid overfitting

 One way: make the model more “regular”, less sensitive to data quirks

 Example: add small “pseudo-count” to the counts (before normalizing)

#.(x)+a

(x|y=c¢) = ———
. plxly =c¢) ot 2

04

_ Not a huge help here, most cells will be uninformative —————————
m.+a-2"

Roy Fox | CS 273A | Winter 2021 | Lecture 3: Bayes Classifiers



Nalve Bayes models

 We want to predict some value y, e.g. auto accident next year

« We have many known indicators for y (covariates) x = xy, ..., X,

> E.g., age, income, education, zip code, ... y—X
~ Learn p(y|Xxy, ..., X,) — but cannot represent / estimate O(2") values /l X,
y 7 %%

* Naive Bayes :
\ X,

causal structure wrong!
(but useful...)

» Estimate prior distribution p(y)

>

Assume p(xq, ..., X, |y) = H p(x;|y), estimate covariates independently p(x; | y)

l

~ Model: Py |x) ﬁ(y)Hﬁ(xi‘Y)

Roy Fox | CS 273A | Winter 2021 | Lecture 3: Bayes Classifiers



Linear regression
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» Decision function f: x — yis linear, f(x) = 0'x

» fis stored by its parameters @
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Measuring error
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e Error/residual: e =y —y

Mean square error (MSE):

Z (eV)? = I Z (yO) — $())2
J
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L east Squares

 The minimum is achieved when the gradient is O

VoLp=—=(y—0TX)XT =0
OTXXT = yXT

AT = yXT(XXT)™!
« XX is invertible when X has linearly independent rows = features

e X" = XT(XXT)~!is the Moore-Penrose pseudo-inverse of X

» X" = X~ when the inverse exists

> Can define X via Singular Value Decomposition (SVD) when XX isn't invertible

e AT = yXJf is the Least Squares fit of the data (X, y)
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MSE and outliers

e MSE is sensitive to outliers

5 ‘ . ‘

al i
3l i
2+ i
1+ i
0 - !

-20 -15 -10 -5 0 5

e Square error 167 throws off entire optimization
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Mean Absolute Error (MAE)

MSE uses the L, norm of the error ||y — HTX||% = Z (y — 07X)?

J

What if we use the L, norm ||y — 01X]|, = Z |y —01X]|?

J

>

Mean Absolute Error (MAE): - ) |y — 67X

L2, original data

L1, original data

L1, outlier data
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Loss landscape

e LYD) = ~(y—O0TX)(y — 0TX)T = —(0TXXT0 — 2yX"0 + yyT) ~—— quadratic

minimum loss
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Gradient descent

. How to vary @ € R"*! to improve the loss Z,?

~ Find a direction in parameter space in which £, is decreasing

A — <L
o Derivative 6939 — llm M P
50— 0 00 .

» Positive = loss increases with @

» Negative = loss decreases with @
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Gradient descent in higher dimension
o Gradient vector: VHSZ@ — [0905/” o agnff 9]
» Taylor expansion: Z(0 + 60) = £(0) + (00)' V,Z 5 + o(||60||%)

~ If we take a small step 00, the best one is in direction V,Zy

> Gradient = direction of steepest ascent (negative = steepest descent)
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Gradient Descent

e |nitialize @
e Do

e Learning rate:

> Can change in each iteration
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Stochastic / Online Gradient Descent

. Estimate V,Z, fast on a sample of data points

 For each data point:
Vege(x(j),y(j)) — Vg(y(j) — @TxV)? = —2(yV) — GTxD)(x)T

 This is an unbiased estimator of the gradient, I.e. in expectation

. i .
_jNUniform(l,...,m)[ Veg((gj)] — Z V@g(g]) — VHSZH(QZ)
J

. V,Z(9) is already a noisy unbiased estimator of true gradient -x,pr[ VoL y(x,y)]

> SGD is even more noisy
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while
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Polynomial regression

* Fit the same way as linear regression

8l
. 6l
> With more features ®(x) |
2
0 - @ . . . . . .
0 2 4 6 8 10 12 14 16 18 20
18 . . . . . . 18 . . . . . . . .
o0 D(x) = [1,x,x%] C o) D(x) = [1,x,x% x°] o
14} 14]
2 12
10}
10}
sl
8
61l
6
41
2 41
Ot 2
2 - - - - - - 0 , N I . . . . . .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

- D(x) = [1,x] ®
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How many features to add?

 The more features we add, the more complex the model class

» Learning can always fall back to simpler model with 6, = 05 = --- =0

 But generally it won't, it will overfit

> Better training data fit, worse test data fit
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Bias—variance tradeoft

» For given test (x, y)

» Expected MSE over datasets decomposes into bias and variance:

—ol(y — ye(gz)(x))z] = (Egly] - Y)z — (biasg@[y])z
+Eg[(F — Eg[3])] +varg[V]

 Both components contribute equally to the quality of our algorithm

> We can generally improve one at the expense of the other

- Bias generally decreases with complexity

- Variance generally increases with complexity
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L, regularization

 Modify the loss function by adding a regularization term

. L, regularization (ridge regression) for MSE: &£, = %(Hy — 07X||” + a||0]?)

e Optimally: 87 = yXT(XXT + al)™!
» al moves XX away from singularity — inverse exists, better “conditioned”

» Shrinks @ towards 0 (as expected)

- At the expense of training MSE

. Regularization term a||0||? independent of data = prior?
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Regularization: L, vs. L,

@ estimate balances training loss and regularization

» Lasso (L) tends to generate sparser solutions than ridge (L,) regularizer

without regularization

some parameters may be 0

T~

Lasso (L) ridge (L) K — regularized solution

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization



Model selection

training time

validate

N

evaluate

execution time
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Hold-out method

 Hold out some data for validation; e.g., random 30% of the data

> Don't just sample training + validation with repetitions — they must be disjoint

e How to split?

» Too few training data points — poor training, bad € X0 |y
88 79
. : : : . . 32 -2
> Too few validation data points — poor validation, bad loss estimate =
68 /3
e Can we use more splits? o 7 -16
daining aata 70 43
53 77

1 validation data 17 16
87 94

MSE = 331.8
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k-fold cross-validation method

e Benefits:
» Use all data for validation
o 1 Split 1:
» Use all data to train final model { MSE = 331.8
| Split 2: 88 /3
1 MSE = 361.2 32 -2
‘ 27 30
68 73
7  -16
U 20 43
1 Split 3:
1 MSE = 669.8 >3 77
: 17 16
_ o _
e, . . . . . . I3-FoldX-Val MSE 87 | 94
= 464.1
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k-fold cross-validation method

e Benefits:

» Use all data for validation

| split 1:

» Use all data to train final model | MSE = 2805

e Drawbacks:

EINETE

> Trains k (+1) models | Split 2: 88 79
| MSE =3081.3 32 -2

> Each model still gets noisy 27 30
68 73

validation from — data points I

k : 20 43

| Split 3: 3 -

> No validation for the final model | MSE =1640.1 —
3-Fold X-Val MSE (87411194

e When k = m: Leave-One-Out (LOO) - = 1667.3
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Perceptron

classifier f,(x) T(r)
< . >

O
|
. 0, > class decision y = f,(x)

1

0,

X2
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Xy s 2
//
Olx <0 = yx)=—-1 //
W / \
7
/7 N
\/ A
) Olx>0 = yx)=+1
7
7
7
) 2
7
—_— () >
/ A4
/ A1
7
7

Adapted from Padhraic Smyth
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Logistic Regression

« Can we turn a linear response into a probability? Sigmoid! ¢ : R — [0,]1]
e Think of 6(0'x) = py(y = 1 |x)
 Negative Log-Likelihood (NLL) loss:

Zyx,y) = —logpy(y|x) = — ylogo(@'x) — (1 — y)log(l — 6(0'x))
fory =1 fory =0

_log07  —log0.98

W [
//'/f —1og 0.99

%
00— 00 O
—10g 0.99 —10g 0.7 —log0.1




Logistic Regression: gradient

» Logistic NLL loss: £ y(x,y) = — ylogo(0'x) — (1 — y)log(1l — 6(0'x))

V. L) o'(07x) (1— ) o'(07x)
— X,y) = —(1l—-y)y———— ) x
R ST T = o(0)
sradient = (v (1 = 0(6"x)) = (1 = »)o(0T0))x
° errorfory=]1 ——on — \ error for y = 0
— (y — p(g(y — 1 ‘X))X but update toward —x
» Compare: j»ﬁm
> Perceptron: (y — j}) X < constant error (*2), insensitive to margin — r »T(r)

» Logistic MSE: —V,Zy(x,y) = 2(y — 6(0'x))c'(0'x)x - 0 gradient for bad mistakes




Multi-class linear models

 More generally: add features — can even depend on y!

fo(x) = arg max 0'd(x, y)
y

» Example:y € {1,2,...,C}
» O(x,y)=[00 - x - 0] = one-hot(y) @ x

- 0=10, - 0]

— fe(x) = arg max @J X < largest linear response
C




Multi-class perceptron algorithm

e While not done:

> For each data point (x,y) € 9:

_ Predict: = argmax 0 x
C

- Increase response for true class: 6’y «— Hy + ax
- Decrease response for predicted class: Qy «— Hy — ax

* More generally:

Predict: y = arg max 81d(x, y)
y

>

» Update: 8 < 0+ a(D(x,y) — D(x,y))
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Multilogit Regression

exp(6)x)
_ Define multi-class probabilities: py(y | x) = — = soft max 6!x
2..€xp(0]x) c ,
exp(0,x)
Py =1]x) = ———— » o
| exp(0,x) + exp(6,x) Logistic Regression with 6 = 6, — 6,
For binary y: | /
" — 6((6’1 — ez)TX)

T4 exp((6, — 61)1x)
e Benefits:

> Probabillistic predictions: knows its confidence

Linear decision boundary: arg max exp(6/x) = arg max 6x
y y

>

» NLL Is convex
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Shattering

o Separability / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), . xM

if for any labeling y(l), Cens y(h)

there exists a model that classifies all of them correctly

» Example: can f,(x) = s1gn(6, + 0,x; + 6,x,) shatter these points?

O O O o O

0 0 \.V - T
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Vapnik—-Chervonenkis (VC) dimension

« \/C dimension: maximum number H of points that can be shattered by a class
A game:

» Fixamodelclassfy,:x—y 6€0

> Player 1: choose 4 points x, xW
> Player 2: choose labels y(l), e y(h)
> Player 1: choose model &

> Are all yV) = £,(x)? = Player 1 wins  3x1,..,x® : vy® y®: 39: vj: yO) = f(xD)

« h < H = Player 1 can win, otherwise cannot win
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VC dimension: example (2)

o Example:fé(X) — Sign(e() + (91)61 + 92)(:2)

> We can place 3 points and shatter them j.
> We can prevent shattering any 4 points:
- If they form a convex shape, alternate labels o | @
O
- Otherwise, label differently the point in the triangle O
- H=3

 Linear classifiers (perceptrons) of d features have VC-dim d + 1

> But VC-dim is generally not #parameters
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Model selection with VC-dim

» Using validation / cross-validation:

' model complexit training loss validation loss
» Estimate loss on held out set plexity g

[ ] [ ]
| | [ ] [ ]
» Use validation loss to select model ] ]
[ 1] [ ]
[] [ ]
v ] L ]
* USing VC dimension: model complexity training loss VC bound testloss bound
o s ) [
> Use generalization bound to select model ] N [
] [] 1
> Structural Risk Minimization (SRM) . — .
v 1 B [

> Bound not tight, must too conservative
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Learning Decision Irees

e Start from empty decision tree
 Split on max-info-gain feature x;

. argmax l[x; y|b] = argmax H[y|b] — H[y|b, x;]

l

 Repeat for each sub-tree, until:

> Entropy = 0 (all y are the same)

> No more features

> |Information gain very small?

o Label leaf with majority y
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Entropy reduction

e

o Select feature that most decreases uncertainty

» Entropy of y in branch b (before the next split):

Hy bl = = ), p(y = c|b)logp(y = c|b)

— _ 21002 — 31002 =
= 810g8 8logg—().66

T
T
T
T
F
F
F
F

||| |m| 4|7

» Entropy after splitting by x;:

Hiy|b,x,] = E, p[Hy|b.x,]1 = = ) plx, =v|b) ) p(y = c|b,x; = )logp(y = c|b,x; = V)

4 .4 4 0 0. 4,1 1, 3 N
—<(7log 2+ log 7)—=(7log - + 7 log7) = 0.28
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Information gain

be

 Information gain = reduction in entropy from conditioning y on x;

> The amount of new information that x; has on y

/

I][xz; Yy ‘ b] = 0.66 — 0.63 = 0.03 select x, for Decision Tree

T
T
T
T
F
F
F
F

||| AT

* |nformation gain is always non-negative

> By convexity of the entropy
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Controlling complexity
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