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Mid-Term Logistics
• Format:


‣ Time: Tuesday, February 9, 2–4pm


‣ Canvas “quiz”


‣ Many questions, feels long, but should be doable in 1 hour


‣ We'll be on zoom to address questions and issues: https://uci.zoom.us/j/94903054276


• You can use:


‣ Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it


‣ A basic arithmetic calculator; no phones, no computers


‣ Blank paper sheets for your calculations


‣ Brainpower and good vibes


• No proctoring; the penalty for cheating is being the kind of person who cheats

https://uci.zoom.us/j/94903054276
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Exam suggestions
• Look at past exams


‣ Train yourself by reading some solutions, evaluate yourself on held-out exams


• Organize / join study groups (e.g. on piazza)


• During the exam:


‣ Start with questions you find easy


‣ Don't get bogged down by exact calculations


‣ Leave expressions unsolved and come back to them later


‣ Optional: upload your calculation sheet(s)


- They won't be graded, but can be used for regrading
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Learning settings (1): supervised learning
• How can we learn  that achieves good performance ?


• Supervised learning


‣ Data: examples of instances  and good decisions  (labels)


‣ Given a training dataset , find  that agrees with 's labels on its instances


‣ Classification:  is a class in a small set


‣ Regression:  is continuous


f : x ↦ y v(x, y)

x y

𝒟 f 𝒟

y

y
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Know thy data
• ML is a data science


‣ Look at your data, know what it is, get a “feel” for it


• How many data points?


• What are the features of every data point? What are their data types?


‣ Booleans (spam, inbound/outbound, control group)


‣ Discrete categories (country/state, protocol, user ID)


‣ Integers (1–5 stars, # of bedrooms, year of birth)


‣ Reals — up to digital representation (pixel intensity, price, timestamp)


• Is there missing data? Unreasonable values? Surprisingly missing / repeated values?
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• Data shows trend


• But also noise


• Given some instance , what is a good ?
x y

Supervised learning

100 20
0

20

40

x

y

regression classification
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What is machine learning?

Learner /
Model /

Agent


            fθθ

Training 
data

𝒟

Learning 
algorithmtrain

Score /

Loss

predictTest

data evaluate

decision 
program

"meta-program"
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Visualizing learned decision function

f(x) = θ0 + θ1x
decision boundary
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Inductive bias
• Inductive bias = assumptions we make to generalize to data we haven't seen


• Without any assumptions, there is no generalization


‣ “Anything is possible” in the test data


• Occam's razor: prefer simpler explanations of the data
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How overfitting affects prediction error

• Low model complexity → underfitting

‣ High test error = high training error + low generalization error


• High model complexity → overfitting

‣ High test error = low training error + high generalization error

underfitting overfitting

low test error

high training error high generalization error
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Nearest-Neighbor regression

• Decision function  is piecewise constant (for 1D )


• Data induces  implicitly;  is never stored explicitly, but can be computed

f : x ↦ y x

f f
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Nearest-Neighbor classification

decision boundary
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Nearest-Neighbor classification

decision boundary
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-Nearest Neighbor (kNN)k
• Find the  nearest neighbors to  in the dataset


‣ Given , rank the data points by their distance from , 


- Usually, Euclidean distance 


‣ Select the  data points which are have smallest distance to 


• What is the prediction?


‣ Regression: average  for the  closest training examples


‣ Classification: take a majority vote among  for the  closest training examples


- No ties in 2-class problems when  is odd

k x

x x d(x, x( j))

d(x, x( j)) =
1
n ∑

i

(xi − x( j)
i )2

k x

y( j) k

y( j) k

k
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Error rates and k

• A complex model fits training data but generalizes poorly


• : perfect memorization of examples = complex


• : predict majority class over entire dataset = simple


• We can select  with validation

k = 1

k = m

k

Error on Training Data

Error on Test Data

prediction error

training data “memorized”
 (# neighbors)k
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Probabilistic modeling of data
• Assume data with features  and discrete labels 


• Prior probability of each class: 


‣ Prior = before seeing the features


‣ E.g., fraction of applicants that have good credit


• Distribution of features given the class: 


‣ How likely are we to see  in applicants with good credit?


• Joint distribution: 


• Bayes' rule: posterior 

x y

p(y)

p(x |y = c)

x

p(x, y) = p(x)p(y |x) = p(y)p(x |y)

p(y |x) =
p(y)p(x |y)

p(x)
=

p(y)p(x |y)
∑c p(y = c)p(x |y = c)

x ⟶ y
y ⟶ x

models:

does not imply causality!
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• Learn a “class-conditional” model for the data


‣ Estimate the probability for each class 


‣ Split training data by class 


‣ Estimate from  the conditional distribution 


• For discrete , can represent as a contingency table


p(y = c)

𝒟c = {x( j) : y( j) = c}

𝒟c p(x |y = c)

x

Bayes classifiers

Features # bad # good

X=0 42 15

X=1 338 287

X=2 3 5
p(y) 383/690 307/690

p(y=0|x) p(y=1|x)

.7368 .2632

.5408 .4592

.3750 .6250

p(x|y=0) p(x|y=1)

42/383 15/307

338/383 287/307

3/383 5/307
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Bayes-optimal decision

• Maximum posterior decision: 


‣ Optimal for the error-rate (0–1) loss: 


• What if we have different cost for different errors? , 


‣ 


• Bayes-optimal decision: 


‣ Log probability ratio: 

̂p(y = 0 |x) ≶ ̂p(y = 1 |x)

𝔼x,y∼p[ ̂y(x) ≠ y]

αFP αFN

ℒ = 𝔼x,y∼p[αFP ⋅ #(y = 0, ̂y(x) = 1) + αFN ⋅ #(y = 1, ̂y(x) = 0)]

αFP ⋅ ̂p(y = 0 |x) ≶ αFN ⋅ ̂p(y = 1 |x)

log
̂p(y = 1 |x)
̂p(y = 0 |x)

≶ log
αFP
αFN

= α
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• Which classifier performs “better”?


‣ A is better for high specificity


‣ B is better for high sensitivity


‣ Need single performance measure


• Area Under Curve (AUC)


‣ 0.5 ≤ AUC ≤ 1


‣ AUC = 0.5: random guess


‣ AUC = 1: no errors

Comparing classifiers

small  
always 

α
̂y = 1

large  
always 

α
̂y = 0

classifier A

classifier B

random guess

Bayes-optimal
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Estimating joint distributions

• Can we estimate  from data?


• Count how many data points for each ?


• If , most instances never occur


‣ Do we predict that missing instances are impossible?


- What if they occur in test data?


• Difficulty to represent and estimate go hand in hand


‣ Model complexity → overfitting!

p(x |y)

x

m ≪ 2n

A B C p(A,B,C | y=1)

0 0 0 4/10

0 0 1 1/10

0 1 0 0/10

0 1 1 0/10

1 0 0 1/10

1 0 1 2/10

1 1 0 1/10

1 1 1 1/10
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Regularization

• Reduce effective size of model class


‣ Hope to avoid overfitting


• One way: make the model more “regular”, less sensitive to data quirks


• Example: add small “pseudo-count” to the counts (before normalizing)


‣ 


‣ Not a huge help here, most cells will be uninformative 

̂p(x |y = c) =
#c(x) + α

mc + α ⋅ 2n

α
mc + α ⋅ 2n
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Naïve Bayes models
• We want to predict some value , e.g. auto accident next year


• We have many known indicators for  (covariates) 


‣ E.g., age, income, education, zip code, ...


‣ Learn  — but cannot represent / estimate  values


• Naïve Bayes


‣ Estimate prior distribution 


‣ Assume , estimate covariates independently 


‣ Model: 

y

y x = x1, …, xn

p(y |x1, …, xn) O(2n)

̂p(y)

p(x1, …, xn |y) = ∏
i

p(xi |y) ̂p(xi |y)

̂p(y |x) ∝ ̂p(y)∏
i

̂p(xi |y)

causal structure wrong! 
(but useful...)

y ⟶ x

⟶
⟶
⟶y

x1
x2

xn

⋮
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Linear regression

• Decision function  is linear, 


•  is stored by its parameters 

f : x ↦ y f(x) = θ⊺x

f θ
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Measuring error

• Error / residual: 


• Mean square error (MSE): 

ϵ = y − ̂y

1
m ∑

j

(ϵ( j))2 =
1
m ∑

j

(y( j) − ̂y( j))2

observation y

prediction 
̂y = f(x)

ϵ
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Least Squares
• The minimum is achieved when the gradient is 0


 


•  is invertible when  has linearly independent rows = features


•  is the Moore-Penrose pseudo-inverse of 


‣  when the inverse exists


‣ Can define  via Singular Value Decomposition (SVD) when  isn't invertible


•  is the Least Squares fit of the data 

∇θℒθ = − 2
m (y − θ⊺X)X⊺ = 0

θ⊺XX⊺ = yX⊺

θ⊺ = yX⊺(XX⊺)−1

XX⊺ X

X† = X⊺(XX⊺)−1 X

X† = X−1

X† XX⊺

θ⊺ = yX† (X, y)
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MSE and outliers

• MSE is sensitive to outliers


• Square error  throws off entire optimization162

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

-20 -15 -10 -5 0 5
0

1

2

3

4

5
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Mean Absolute Error (MAE)

• MSE uses the  norm of the error 


• What if we use the  norm ?


‣ Mean Absolute Error (MAE): 


L2 ∥y − θ⊺X∥2
2 = ∑

j

(y − θ⊺X)2

L1 ∥y − θ⊺X∥1 = ∑
j

|y − θ⊺X |

1
m ∑

j

|y − θ⊺X |

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18 L2, original data

L1, original data

L1, outlier data
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Loss landscape
• 
ℒθ(𝒟) = 1

m (y − θ⊺X)(y − θ⊺X)⊺ = 1
m (θ⊺XX⊺θ − 2yX⊺θ + yy⊺)

ℒθ

θ0 θ0

θ0 θ0

θ1 θ1

θ1 θ1

quadratic!

minimum loss



Roy Fox | CS 273A | Winter 2021 | Lecture 4: Linear Regression

• How to vary  to improve the loss ?


‣ Find a direction in parameter space in which  is decreasing


• Derivative 


‣ Positive = loss increases with 


‣ Negative = loss decreases with 

θ ∈ ℝn+1 ℒθ

ℒθ

∂θℒθ = lim
δθ→0

ℒθ+δθ − ℒθ

δθ

θ

θ

ℒθ

θ

Gradient descent
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Gradient descent in higher dimension
• Gradient vector: 


• Taylor expansion: 


‣ If we take a small step , the best one is in direction 


‣ Gradient = direction of steepest ascent (negative = steepest descent)


∇θℒθ = [∂θ0
ℒθ ⋯ ∂θn

ℒθ]
ℒ(θ + δθ) = ℒ(θ) + (δθ)⊺ ∇θℒθ + o(∥δθ∥2)

δθ ∇θℒθ

−∇θℒθ
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Gradient Descent

• Initialize 


• Do


‣ 


• While 


• Learning rate: 


‣ Can change in each iteration

θ

θ ← θ − α∇θℒθ

∥α∇θℒθ∥ ≤ ϵ

α

ℒθ

θ
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Stochastic / Online Gradient Descent

• Estimate  fast on a sample of data points


• For each data point:


 


• This is an unbiased estimator of the gradient, i.e. in expectation


 


•  is already a noisy unbiased estimator of true gradient 


‣ SGD is even more noisy

∇θℒθ

∇θℒθ(x( j), y( j)) = ∇θ(y( j) − θ⊺x( j))2 = − 2(y( j) − θ⊺x( j))(x( j))⊺

𝔼j∼Uniform(1,…,m)[∇θℒ( j)
θ ] = 1

m ∑
j

∇θℒ( j)
θ = ∇θℒθ(𝒟)

∇θℒθ(𝒟) 𝔼x,y∼p[∇θℒθ(x, y)]
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Stochastic Gradient Descent

• Initialize 


• Repeat:


‣ Sample 


‣ 


• Until some stop criterion; e.g., no average improvement in  for a while

θ

j ∼ Uniform(1,…, m)

θ ← θ − α∇θℒ( j)
θ

ℒ( j)
θ

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-40
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-20

-10
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20
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Polynomial regression

• Fit the same way as linear regression


‣ With more features 
Φ(x)

0 2 4 6 8 10 12 14 16 18 20
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Φ(x) = [1,x]

Φ(x) = [1,x, x2] Φ(x) = [1,x, x2, x3]
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How many features to add?
• The more features we add, the more complex the model class


• Learning can always fall back to simpler model with 


• But generally it won't, it will overfit


‣ Better training data fit, worse test data fit


θ4 = θ5 = ⋯ = 0

underfitting overfitting
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Bias–variance tradeoff
• For given test 


‣ Expected MSE over datasets decomposes into bias and variance:


 


• Both components contribute equally to the quality of our algorithm


‣ We can generally improve one at the expense of the other


- Bias generally decreases with complexity


- Variance generally increases with complexity

(x, y)

𝔼𝒟[(y − ̂yθ(𝒟)(x))2] = (𝔼𝒟[ ̂y] − y)2 = (bias𝒟[ ̂y])2

+𝔼𝒟[( ̂y − 𝔼𝒟[ ̂y])2] +var𝒟[ ̂y]
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 regularizationL2

• Modify the loss function by adding a regularization term


•  regularization (ridge regression) for MSE: 


• Optimally: 


‣  moves  away from singularity → inverse exists, better “conditioned”


‣ Shrinks  towards 0 (as expected)


- At the expense of training MSE


• Regularization term  independent of data = prior?

L2 ℒθ = 1
2 (∥y − θ⊺X∥2 + α∥θ∥2)

θ⊺ = yX⊺(XX⊺ + αI)−1

αI XX⊺

θ

α∥θ∥2
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Regularization:  vs. L1 L2

•  estimate balances training loss and regularization


• Lasso ( ) tends to generate sparser solutions than ridge ( ) regularizer


θ

L1 L2

Lasso ( )L1 ridge ( )L2

without regularization

regularized solution

some parameters may be 0
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Learning 
algorithm


Model selection

Model


            fθθ

Training 
data

Model 
selection

Score /

Loss

predict

Test

data

evaluate

k

Validation
data

validate

train

training time {
execution time
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Hold-out method
• Hold out some data for validation; e.g., random 30% of the data


‣ Don't just sample training + validation with repetitions — they must be disjoint


• How to split?


‣ Too few training data points → poor training, bad 


‣ Too few validation data points → poor validation, bad loss estimate


• Can we use more splits?


θ x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94

MSE = 331.8

training data

validation data
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-fold cross-validation methodk
• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 331.8

Split 2:

MSE = 361.2

Split 3:

MSE = 669.8

3-Fold X-Val MSE 

       = 464.1

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94
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• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 280.5

Split 2:

MSE = 3081.3

Split 3:

MSE = 1640.1

3-Fold X-Val MSE 

       = 1667.3

-fold cross-validation methodk

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94
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Perceptron

linear response


r = θ0 + θ1x1 + θ2x2

T(r)

classifier fθ(x)

weighted sum of features threshold 
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

T(r)

r
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Example

x1

x2
θ = [1, 1

2 ,− 1
2 ]

θ⊺x > 0 ⟹ ̂y(x) = + 1

θ⊺x < 0 ⟹ ̂y(x) = − 1
θ⊺x = 0 ⟺ 1+ 1

2 x1−
1
2 x2 = 0

Adapted from Padhraic Smyth
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Logistic Regression

• Can we turn a linear response into a probability? Sigmoid! 


• Think of 


• Negative Log-Likelihood (NLL) loss:


 


σ : ℝ → [0,1]

σ(θ⊺x) = pθ(y = 1 |x)

ℒθ(x, y) = − log pθ(y |x) = − y log σ(θ⊺x) − (1 − y)log(1 − σ(θ⊺x))
for y = 1 for y = 0

−log 0.99

−log 0.7 −log 0.98

−log 0.1−log 0.7−log 0.99
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Logistic Regression: gradient
• Logistic NLL loss: 


•
Gradient: 


• Compare:


‣ Perceptron: 


‣ Logistic MSE: 

ℒθ(x, y) = − y log σ(θ⊺x) − (1 − y)log(1 − σ(θ⊺x))

−∇θℒθ(x, y) = (y
σ′￼(θ⊺x)
σ(θ⊺x)

− (1 − y)
σ′￼(θ⊺x)

1 − σ(θ⊺x) ) x

= (y (1 − σ(θ⊺x)) − (1 − y)σ(θ⊺x))x

= (y − pθ(y = 1 |x))x

(y − ̂y)x

−∇θℒθ(x, y) = 2(y − σ(θ⊺x))σ′￼(θ⊺x)x

error for y = 1 error for y = 0

but update toward −x

constant error ( ), insensitive to margin±2

0 gradient for bad mistakes

T(r)

r

σ(r)

r
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Multi-class linear models

• More generally: add features — can even depend on !


 


• Example: 


‣ 


‣ 


 

y

fθ(x) = arg max
y

θ⊺Φ(x, y)

y ∈ {1,2,…, C}

Φ(x, y) = [0 0 ⋯ x ⋯ 0] = one-hot(y) ⊗ x

θ = [θ1 ⋯ θC]

⟹ fθ(x) = arg max
c

θ⊺
c x largest linear response
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Multi-class perceptron algorithm
• While not done:


‣ For each data point :


- Predict: 


- Increase response for true class: 


- Decrease response for predicted class: 


• More generally:


‣ Predict: 


‣ Update: 

(x, y) ∈ 𝒟

̂y = arg max
c

θ⊺
c x

θy ← θy + αx

θ ̂y ← θ ̂y − αx

̂y = arg max
y

θ⊺Φ(x, y)

θ ← θ + α(Φ(x, y) − Φ(x, ̂y))
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Multilogit Regression

• Define multi-class probabilities: 


‣
For binary : 


• Benefits:


‣ Probabilistic predictions: knows its confidence


‣ Linear decision boundary: 


‣ NLL is convex

pθ(y |x) =
exp(θ⊺

y x)
∑c exp(θ⊺

c x)
= soft max

c
θ⊺

c x
y

y
pθ(y = 1 |x) =

exp(θ⊺
1x)

exp(θ⊺
1x) + exp(θ⊺

2x)

=
1

1 + exp((θ2 − θ1)⊺x)
= σ((θ1 − θ2)⊺x)

arg max
y

exp(θ⊺
y x) = arg max

y
θ⊺

y x

Logistic Regression with θ = θ1 − θ2
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Shattering
• Separability / realizability: there's a model that classifies all points correctly


• Shattering: the points are separable regardless of their labels


‣ Our model class can shatter points  


if for any labeling 


there exists a model that classifies all of them correctly


• Example: can  shatter these points?


x(1), …, x(h)

y(1), …, y(h)

fθ(x) = sign(θ0 + θ1x1 + θ2x2)
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Vapnik–Chervonenkis (VC) dimension
• VC dimension: maximum number  of points that can be shattered by a class


• A game:


‣ Fix a model class 


‣ Player 1: choose  points 


‣ Player 2: choose labels 


‣ Player 1: choose model 


‣ Are all ?  Player 1 wins


• Player 1 can win, otherwise cannot win

H

fθ : x → y θ ∈ Θ

h x(1), …, x(h)

y(1), …, y(h)

θ

y( j) = fθ(x( j)) ⟹

h ≤ H ⟹

∃x(1), …, x(h) : ∀y(1), …, y(h) : ∃θ : ∀j : y( j) = fθ(x( j))
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VC dimension: example (2)
• Example: 


‣ We can place 3 points and shatter them


‣ We can prevent shattering any 4 points:


- If they form a convex shape, alternate labels


- Otherwise, label differently the point in the triangle


‣ 


• Linear classifiers (perceptrons) of  features have VC-dim 


‣ But VC-dim is generally not #parameters

fθ(x) = sign(θ0 + θ1x1 + θ2x2)

H = 3

d d + 1
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Model selection with VC-dim
• Using validation / cross-validation:


‣ Estimate loss on held out set


‣ Use validation loss to select model


• Using VC dimension:


‣ Use generalization bound to select model


‣ Structural Risk Minimization (SRM)


‣ Bound not tight, must too conservative

training loss validation lossmodel complexity

training loss VC bound test loss boundmodel complexity
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Learning Decision Trees
• Start from empty decision tree


• Split on max-info-gain feature 


‣ 


• Repeat for each sub-tree, until:


‣ Entropy = 0 (all  are the same)


‣ No more features


‣ Information gain very small?


• Label leaf with majority 

xi

arg max
i

𝕀[xi; y |b] = arg max
i

ℍ[y |b] − ℍ[y |b, xi]

y

y
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Entropy reduction
• Select feature that most decreases uncertainty


• Entropy of  in branch  (before the next split):


 


• Entropy after splitting by :

 

y b

ℍ[y |b] = − ∑
c

p(y = c |b)log p(y = c |b)

= − 5
8 log 5

8 − 3
8 log 3

8 = 0.66

x1

ℍ[y |b, x1] = 𝔼x1|b[ℍ[y |b, x1]] = − ∑
v

p(x1 = v |b)∑
c

p(y = c |b, x1 = v)log p(y = c |b, x1 = v)

= − 4
8 ( 4

4 log 4
4 + 0

4 log 0
4 )− 4

8 ( 1
4 log 1

4 + 3
4 log 3

4 ) = 0.28

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F
F T F
F F F
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Information gain

• Information gain = reduction in entropy from conditioning  on 


‣ The amount of new information that  has on 


 


 


• Information gain is always non-negative


‣ By convexity of the entropy

y x1

x1 y

𝕀[x1; y |b] = ℍ[y |b] − ℍ[y |b, x1] = 0.66 − 0.28 = 0.38

𝕀[x2; y |b] = 0.66 − 0.63 = 0.03 select  for Decision Treex1

X1 X2 Y
T T T
T F T
T T T
T F T
F T T
F F F
F T F
F F F
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Controlling complexity

Depth 1 Depth 2

Depth 3 Depth 4 Depth 5

No limit


