CS 273A: Machine Learning Winter 2021 Lecture 10: Mid-Term Review

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh

Roy Fox | CS 273A | Winter 2021 | Lecture 10: Mid-Term Review

Mid-Term Logistics

- Format:
 - Time: Tuesday, February 9, 2–4pm
 - Canvas "quiz"
 - Many questions, feels long, but should be doable in 1 hour
 - We'll be on zoom to address questions and issues: <u>https://uci.zoom.us/j/94903054276</u>
- You can use: lacksquare
 - Self-prepared A4 / Letter-size two-sided single page with anything you'd like on it
 - A basic arithmetic calculator; no phones, no computers
 - Blank paper sheets for your calculations
 - Brainpower and good vibes
- No proctoring; the penalty for cheating is being the kind of person who cheats

Roy Fox | CS 273A | Winter 2021 | Lecture 10: Mid-Term Review

Exam suggestions

- Look at past exams
 - Train yourself by reading some solutions, evaluate yourself on held-out exams
- Organize / join study groups (e.g. on piazza)
- During the exam:
 - Start with questions you find easy
 - Don't get bogged down by exact calculations
 - Leave expressions unsolved and come back to them later
 - Optional: upload your calculation sheet(s)
 - They won't be graded, but can be used for regrading

Roy Fox | CS 273A | Winter 2021 | Lecture 10: Mid-Term Review

Learning settings (1): supervised learning

- How can we learn $f: x \mapsto y$ that achieves good performance v(x, y)?
- Supervised learning
 - Data: examples of instances x and good decisions y (labels)
 - Given a training dataset \mathcal{D} , find f that agrees with \mathcal{D} 's labels on its instances
 - Classification: y is a class in a small set
 - Regression: y is continuous

Roy Fox | CS 273A | Winter 2021 | Lecture 1: Introduction

Know thy data

- ML is a data science
 - Look at your data, know what it is, get a "feel" for it
- How many data points?
- What are the features of every data point? What are their data types?
 - Booleans (spam, inbound/outbound, control group)
 - Discrete categories (country/state, protocol, user ID)
 - Integers (1–5 stars, # of bedrooms, year of birth)
 - Reals up to digital representation (pixel intensity, price, timestamp)

Is there missing data? Unreasonable values? Surprisingly missing / repeated values?

Supervised learning

• Given some instance *x*, what is a good *y*?

What is machine learning?

Visualizing learned decision function

Inductive bias

- Without any assumptions, there is no generalization
 - Anything is possible in the test data
- Occam's razor: prefer simpler explanations of the data

Inductive bias = assumptions we make to generalize to data we haven't seen

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

How overfitting affects prediction error

- Low model complexity → underfitting
 - High test error = high training error + low generalization error
- High model complexity → overfitting
 - High test error = low training error + high generalization error

Roy Fox | CS 273A | Winter 2021 | Lecture 2: Nearest Neighbors

Nearest-Neighbor regression

- Decision function $f: x \mapsto y$ is piecewise constant (for 1D x)

Data induces f implicitly; f is never stored explicitly, but can be computed

Nearest-Neighbor classification

Nearest-Neighbor classification

k-Nearest Neighbor (kNN)

- Find the k nearest neighbors to x in the dataset
 - Given x, rank the data points by their distance from x, $d(x, x^{(j)})$

- Usually, Euclidean distance $d(x, x^{(j)}) = \sqrt{1}$

- Select the k data points which are have smallest distance to x
- What is the prediction?
 - Regression: average $y^{(j)}$ for the k closest training examples
 - Classification: take a majority vote among
 - No ties in 2-class problems when k is odd

$$\frac{1}{n} \sum_{i} (x_i - x_i^{(j)})^2$$

$$y^{(j)}$$
 for the k closest training examples

Error rates and k

training data "memorized"

- A complex model fits training data but generalizes poorly
- k = 1: perfect memorization of examples = complex
- k = m: predict majority class over entire dataset = simple
- We can select k with validation

Probabilistic modeling of data

- Assume data with features x and discrete labels y
- Prior probability of each class: p(y)
 - Prior = before seeing the features
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class: p(x | y = c) \bullet
 - How likely are we to see x in applicants with good credit?
- Joint distribution: p(x, y) = p(x)p(y|x) = p(y)p(x|y)

Bayes' rule: posterior $p(y|x) = \frac{p(y)p(x)}{x}$

models:

 $y \longrightarrow x$

does not imply causality!

$$\frac{|y|}{\sum_{c} p(y)p(x|y)} = \frac{p(y)p(x|y)}{\sum_{c} p(y=c)p(x|y=c)}$$

Bayes classifiers

- Learn a "class-conditional" model for the data
 - Estimate the probability for each clas
 - Split training data by class $\mathscr{D}_c = \{x^{(\cdot)}\}$
 - Estimate from \mathscr{D}_c the conditional dist
- For discrete x, can represent as a contingency table

Features	# bad	# good		p(x y=0)	p(x y=1)		p(y=0 x)	p(y=1 x)
X=0	42	15		42/383	15/307		.7368	.2632
X=1	338	287		338/383	287/307		.5408	.4592
X=2	3	5		3/383	5/307		.3750	.6250
p(y)	383/690	307/690						

$$ss p(y = c)$$

$$(j): y^{(j)} = c$$

tribution
$$p(x | y = c)$$

Bayes-optimal decision

- Maximum posterior decision: $\hat{p}(y =$
 - Optimal for the error-rate (0–1) loss:
- What if we have different cost for different errors? α_{FP} , α_{FN}

•
$$\mathscr{L} = \mathbb{E}_{x, y \sim p}[\alpha_{\mathsf{FP}} \cdot \#(y = 0, \hat{y}(x) = 1) + \alpha_{\mathsf{FN}} \cdot \#(y = 1, \hat{y}(x) = 0)]$$

• Bayes-optimal decision: $\alpha_{FP} \cdot \hat{p}(y)$

Log probability ratio: $\log \frac{\hat{p}(y=1|x)}{\hat{p}(y=0|x)}$

$$= 0 | x) \leq \hat{p}(y = 1 | x)$$
$$\mathbb{E}_{x, y \sim p}[\hat{y}(x) \neq y]$$

$$= 0 | x) \leq \alpha_{\mathsf{FN}} \cdot \hat{p}(y = 1 | x)$$

$$\frac{x}{x} \le \log \frac{\alpha_{\mathsf{FP}}}{\alpha_{\mathsf{FN}}} = \alpha$$

Comparing classifiers

- Which classifier performs "better"?
 - A is better for high specificity
 - B is better for high sensitivity
 - Need single performance measure
- Area Under Curve (AUC)
 - ► 0.5 ≤ AUC ≤ 1
 - AUC = 0.5: random guess
 - AUC = 1: no errors

Estimating joint distributions

- Can we estimate p(x | y) from data?
- Count how many data points for each x?
 - If $m \ll 2^n$, most instances never occur
 - Do we predict that missing instances are impossible?
 - What if they occur in test data?
- Difficulty to represent and estimate go hand in hand
 - Model complexity \rightarrow overfitting!

p(A,B,C | y=1) 0 0 4/10 1/10 0 1 0/10 1 0 1 1 0/10 0 0 1/10 0 1 2/10 1 0 1/10 1 1 1/10

Regularization

- Reduce effective size of model class
 - Hope to avoid overfitting
- One way: make the model more "regular", less sensitive to data quirks
- Example: add small "pseudo-count" to the counts (before normalizing)

$$\hat{p}(x \mid y = c) = \frac{\#_c(x) + \alpha}{m_c + \alpha \cdot 2^n}$$

Not a huge help here, most cells will be uninformative

α $m_c + \alpha \cdot 2^n$

Naïve Bayes models

- We want to predict some value y, e.g. auto accident next year
- We have many known indicators for y (covariates) $x = x_1, \dots, x_n$
 - E.g., age, income, education, zip code, ...
 - Learn $p(y | x_1, ..., x_n)$ but cannot represent / estimate $O(2^n)$ values
- Naïve Bayes
 - Estimate prior distribution $\hat{p}(y)$

Assume $p(x_1, ..., x_n | y) = \begin{bmatrix} p(x_i | y), \text{ estimate covariates independently } \hat{p}(x_i | y) \end{bmatrix}$

Model: $\hat{p}(y|x) \propto \hat{p}(y)$ $\hat{p}(x_i|y)$

causal structure wrong! (but useful...)

Linear regression

- Decision function $f: x \mapsto y$ is linear, $f(x) = \theta^{\mathsf{T}} x$
- f is stored by its parameters θ

Measuring error

• Error / residual: $\epsilon = y - \hat{y}$

Mean square error (MSE): - \mathcal{M}

Roy Fox | CS 273A | Winter 2021 | Lecture 4: Linear Regression

Least Squares

• The minimum is achieved when the gradient is 0

$$\nabla_{\theta} \mathscr{L}_{\theta} = -\frac{2}{m} (y - \theta^{\mathsf{T}} X) X^{\mathsf{T}} = 0$$
$$\theta^{\mathsf{T}} X X^{\mathsf{T}} = y X^{\mathsf{T}}$$
$$\theta^{\mathsf{T}} = y X^{\mathsf{T}} (X X^{\mathsf{T}})^{-1}$$

- XX^{\dagger} is invertible when X has linearly independent rows = features
- $X^{\dagger} = X^{\dagger}(XX^{\dagger})^{-1}$ is the Moore-Penrose pseudo-inverse of X
 - $X^{\dagger} = X^{-1}$ when the inverse exists
 - Can define X^{\dagger} via Singular Value Decomposition (SVD) when XX^{\dagger} isn't invertible
- $\theta^{\intercal} = yX^{\dagger}$ is the Least Squares fit of the data (X, y)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

MSE and outliers

• MSE is sensitive to outliers

• Square error 16^2 throws off entire optimization

Mean Absolute Error (MAE)

What if we use the L_1 norm $||y - \theta|$

$$\|y - \theta^{\mathsf{T}} X\|_2^2 = \sum_j (y - \theta^{\mathsf{T}} X)^2$$

$$\|Y\|_{1} = \sum_{j} |y - \theta^{\mathsf{T}}X|?$$

$$y - \theta^{\intercal} X |$$

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Loss landscape

• $\mathscr{L}_{\theta}(\mathscr{D}) = \frac{1}{m}(y - \theta^{\mathsf{T}}X)(y - \theta^{\mathsf{T}}X)^{\mathsf{T}} = \frac{1}{m}(\theta^{\mathsf{T}}XX^{\mathsf{T}}\theta - 2yX^{\mathsf{T}}\theta + yy^{\mathsf{T}})$ quadratic!

Gradient descent

- How to vary $\theta \in \mathbb{R}^{n+1}$ to improve the loss \mathscr{L}_{θ} ?
 - Find a direction in parameter space in which \mathscr{L}_{θ} is decreasing

• Derivative
$$\partial_{\theta} \mathscr{L}_{\theta} = \lim_{\delta\theta \to 0} \frac{\mathscr{L}_{\theta+\delta\theta} - \mathscr{L}_{\theta}}{\delta\theta}$$

- Positive = loss increases with θ
- Negative = loss decreases with θ

Gradient descent in higher dimension

- Gradient vector: $\nabla_{\theta} \mathscr{L}_{\theta} = \left| \partial_{\theta_0} \mathscr{L}_{\theta} \cdots \partial_{\theta_n} \mathscr{L}_{\theta} \right|$
- Taylor expansion: $\mathscr{L}(\theta + \delta\theta) = \mathscr{L}(\theta) + (\delta\theta)^{\mathsf{T}} \nabla_{\theta} \mathscr{L}_{\theta} + o(||\delta\theta||^2)$
 - If we take a small step $\delta\theta$, the best one is in direction $\nabla_{\theta}\mathscr{L}_{\theta}$
 - Gradient = direction of steepest ascent (negative = steepest descent)

Gradient Descent

- Initialize θ
- Do

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}$$

• While $\|\alpha \nabla_{\theta} \mathscr{L}_{\theta}\| \leq \epsilon$

- Learning rate: α
 - Can change in each iteration

Stochastic / Online Gradient Descent

- Estimate $\nabla_{\theta} \mathscr{L}_{\theta}$ fast on a sample of data points
- For each data point:

$$\nabla_{\theta} \mathscr{L}_{\theta}(x^{(j)}, y^{(j)}) = \nabla_{\theta}(y^{(j)} - \theta^{\mathsf{T}} x^{(j)})^2 = -2(y^{(j)} - \theta^{\mathsf{T}} x^{(j)})(x^{(j)})^{\mathsf{T}}$$

• This is an unbiased estimator of the gradient, i.e. in expectation

$$\mathbb{E}_{j \sim \text{Uniform}(1,...,m)} [\nabla_{\theta} \mathscr{L}_{\theta}^{(j)}] = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathscr{L}_{\theta}^{(j)} = \nabla_{\theta} \mathscr{L}_{\theta}^{(j)} (\mathscr{D})$$

- - SGD is even more noisy

• $\nabla_{\theta} \mathscr{L}_{\theta}(\mathscr{D})$ is already a noisy unbiased estimator of true gradient $\mathbb{E}_{x,y\sim p}[\nabla_{\theta} \mathscr{L}_{\theta}(x,y)]$

Stochastic Gradient Descent

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1, ..., m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathscr{L}_{\theta}^{(j)}$$

• Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{L}^{(j)}_{A}$ for a while

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Polynomial regression

- Fit the same way as linear regression
 - With more features $\Phi(x)$

How many features to add?

- The more features we add, the more complex the model class
- Learning can always fall back to simpler model with $\theta_4 = \theta_5 = \cdots = 0$
- But generally it won't, it will overfit
 - Better training data fit, worse test data fit

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)

Bias-variance tradeoff

- For given test (x, y)
 - Expected MSE over datasets decomposes into bias and variance:

$$\mathbb{E}_{\mathscr{D}}[(y - \hat{y}_{\theta(\mathscr{D})}(x))^{2}] = (\mathbb{E}_{\mathscr{D}}[\hat{y}] - y)^{2} = (\text{bias}_{\mathscr{D}}[\hat{y}])^{2} \\ + \mathbb{E}_{\mathscr{D}}[(\hat{y} - \mathbb{E}_{\mathscr{D}}[\hat{y}])^{2}] + \text{var}_{\mathscr{D}}[\hat{y}]$$

- Both components contribute equally to the quality of our algorithm
 - We can generally improve one at the expense of the other
 - Bias generally decreases with complexity
 - Variance generally increases with complexity

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

L_2 regularization

- Modify the loss function by adding a regularization term
- L_2 regularization (ridge regression)
- Optimally: $\theta^{\intercal} = yX^{\intercal}(XX^{\intercal} + \alpha I)^{-1}$

 - Shrinks θ towards 0 (as expected)
 - At the expense of training MSE
 - Regularization term $\alpha \|\theta\|^2$ independent of data = prior?

for MSE:
$$\mathscr{L}_{\theta} = \frac{1}{2}(\|y - \theta^{\mathsf{T}}X\|^2 + \alpha \|\theta\|^2)$$

• αI moves XX^{\dagger} away from singularity \rightarrow inverse exists, better "conditioned"

Roy Fox | CS 273A | Winter 2021 | Lecture 6: Regularization

Regularization: L_1 vs. L_2

- θ estimate balances training loss and regularization

• Lasso (L_1) tends to generate sparser solutions than ridge (L_2) regularizer

Model selection

Hold-out method

- Hold out some data for validation; e.g., random 30% of the data
 - Don't just sample training + validation with repetitions they must be disjoint
- How to split?
 - Too few training data points \rightarrow poor training, bad θ
 - Too few validation data points \rightarrow poor validation, bad loss estimate
- Can we use more splits?

k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model

k-fold cross-validation method

- Benefits:
 - Use all data for validation
 - Use all data to train final model
- Drawbacks:
 - Trains k (+1) models
 - Each model still gets noisy

validation from $\frac{m}{k}$ data points

- No validation for the final model
- When k = m: Leave-One-Out (LOO)

Perceptron

Adapted from Padhraic Smyth

Logistic Regression

- Think of $\sigma(\theta^{\mathsf{T}} x) = p_{\theta}(y = 1 | x)$
- Negative Log-Likelihood (NLL) loss:

$$\mathscr{L}_{\theta}(x, y) = -\log p_{\theta}(y \mid x) = -y$$

• Can we turn a linear response into a probability? Sigmoid! $\sigma : \mathbb{R} \to [0,1]$

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

Logistic Regression: gradient

• Logistic NLL loss: $\mathscr{L}_{\theta}(x, y) = -y$

Gradient:

- Compare:
 - Perceptron: $(y \hat{y})x \leftarrow constant e$
 - Logistic MSE: $-\nabla_{\theta} \mathscr{L}_{\theta}(x, y) = 2(y y)$

$$\log \sigma(\theta^{\mathsf{T}} x) - (1 - y)\log(1 - \sigma(\theta^{\mathsf{T}} x))$$

$$r$$
 $\sigma(r)$

error (
$$\pm 2$$
), insensitive to margin

$$-\sigma(\theta^{\mathsf{T}}x))\sigma'(\theta^{\mathsf{T}}x)x$$

0 gradient for bad mistakes

– I (r)

Multi-class linear models

More generally: add features — can even depend on y!

- Example: $y \in \{1, 2, ..., C\}$
 - $\Phi(x, y) = [0 \ 0 \ \cdots \ x \ \cdots \ 0] = \text{one-hot}(y) \otimes x$
 - $\bullet \ \theta = [\theta_1 \ \cdots \ \theta_C]$

 $\implies f_{\theta}(x) = \arg\max_{c} \theta_{c}^{\mathsf{T}} x \longleftarrow \text{ largest linear response}$

 $f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$

Multi-class perceptron algorithm

- While not done:
 - For each data point $(x, y) \in \mathcal{D}$:

Predict:
$$\hat{y} = \arg \max_{c} \theta_{c}^{\mathsf{T}} x$$

- Increase response for true class: $\theta_v \leftarrow \theta_v + \alpha x$
- Decrease response for predicted class: $\theta_{\hat{v}} \leftarrow \theta_{\hat{v}} \alpha x$
- More generally:

• Predict:
$$\hat{y} = \arg \max_{y} \theta^{\mathsf{T}} \Phi(x, y)$$

• Update: $\theta \leftarrow \theta + \alpha(\Phi(x, y) - \Phi(x, \hat{y}))$

Multilogit Regression

D

befine multi-class probabilities:
$$p_{\theta}(y \mid x) = \frac{\exp(\theta_{y}^{\mathsf{T}}x)}{\sum_{c} \exp(\theta_{c}^{\mathsf{T}}x)} = \operatorname{soft} \max_{c} \left. \theta_{c}^{\mathsf{T}}x \right|_{y}$$

 $p_{\theta}(y = 1 \mid x) = \frac{\exp(\theta_{1}^{\mathsf{T}}x)}{\exp(\theta_{1}^{\mathsf{T}}x) + \exp(\theta_{2}^{\mathsf{T}}x)}$
For binary y:
 $= \frac{1}{1 + \exp((\theta_{2} - \theta_{1})^{\mathsf{T}}x)} = \sigma((\theta_{1} - \theta_{2})^{\mathsf{T}}x)$

Benefits: \bullet

Probabilistic predictions: knows its confidence

Linear decision boundary: $\arg \max \exp(\theta_{y}^{T})$

NLL is convex

$$f(x) = \arg\max_{y} \theta_{y}^{\mathsf{T}} x$$

Shattering

- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, \ldots, x^{(h)}$

if for <u>any</u> labeling $y^{(1)}, \ldots, y^{(h)}$

there <u>exists</u> a model that classifies all of them correctly

• Separability / realizability: there's a model that classifies all points correctly

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

Vapnik–Chervonenkis (VC) dimension

- A game:
 - Fix a model class $f_{\theta} : x \to y \quad \theta \in \Theta$
 - Player 1: choose h points $x^{(1)}, \ldots, x^{(h)}$
 - Player 2: choose labels $y^{(1)}, \ldots, y^{(h)}$
 - Player 1: choose model θ
- $h \leq H \implies$ Player 1 can win, otherwise cannot win

• VC dimension: maximum number H of points that can be shattered by a class

• Are all $y^{(j)} = f_{\theta}(x^{(j)})$? \Longrightarrow Player 1 wins $\exists x^{(1)}, \dots, x^{(h)}: \forall y^{(1)}, \dots, y^{(h)}: \exists \theta: \forall j: y^{(j)} = f_{\theta}(x^{(j)})$

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

VC dimension: example (2)

- Example: $f_{\theta}(x) = \operatorname{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - We can place 3 points and shatter them
 - We can prevent shattering <u>any 4 points</u>:
 - If they form a convex shape, alternate labels
 - Otherwise, label differently the point in the triangle
 - H = 3
- Linear classifiers (perceptrons) of d features have VC-dim d + 1
 - But VC-dim is generally not #parameters

Roy Fox | CS 273A | Winter 2021 | Lecture 8: VC Dimension

Model selection with VC-dim

- Using validation / cross-validation:
 - Estimate loss on held out set
 - Use validation loss to select model

- Using VC dimension:
 - Use generalization bound to select model
 - Structural Risk Minimization (SRM)
 - Bound not tight, must too conservative

Learning Decision Trees

- Start from empty decision tree
- Split on max-info-gain feature x_i
 - $\operatorname{arg\,max}_{i} \mathbb{I}[x_{i}; y \mid b] = \operatorname{arg\,max}_{i} \mathbb{H}[y \mid b] \mathbb{H}[y \mid b, x_{i}]$
- Repeat for each sub-tree, until:
 - Entropy = 0 (all y are the same)
 - No more features
 - Information gain very small?
- Label leaf with majority y \bullet

Entropy reduction

- Select feature that most decreases uncertainty
- Entropy of y in branch b (before the next split):

• Entropy after splitting by
$$x_1$$
:

$$\mathbb{H}[y \mid b, x_1] = \mathbb{E}_{x_1 \mid b}[\mathbb{H}[y \mid b, x_1]] = -\sum_{v} p(x_1 = v \mid b) \sum_{c} p(y = c \mid b, x_1 = v) \log p(y = c \mid b, x_1 = v)$$
$$= -\frac{4}{8}(\frac{4}{4}\log\frac{4}{4} + \frac{0}{4}\log\frac{0}{4}) - \frac{4}{8}(\frac{1}{4}\log\frac{1}{4} + \frac{3}{4}\log\frac{3}{4}) = 0.28$$

X ₁	X ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Information gain

- Information gain = reduction in entropy from conditioning y on x_1
 - The amount of new information that x_1 has on y

$$\mathbb{I}[x_1; y \mid b] = \mathbb{H}[y \mid b] - \mathbb{H}$$

- Information gain is always non-negative
 - By convexity of the entropy

 $= \mathbb{H}[y|b] - \mathbb{H}[y|b, x_1] = 0.66 - 0.28 = 0.38$ F T F F F F $[x_2; y|b] = 0.66 - 0.63 = 0.03$ select x_1 for Decision Tree

Controlling complexity

