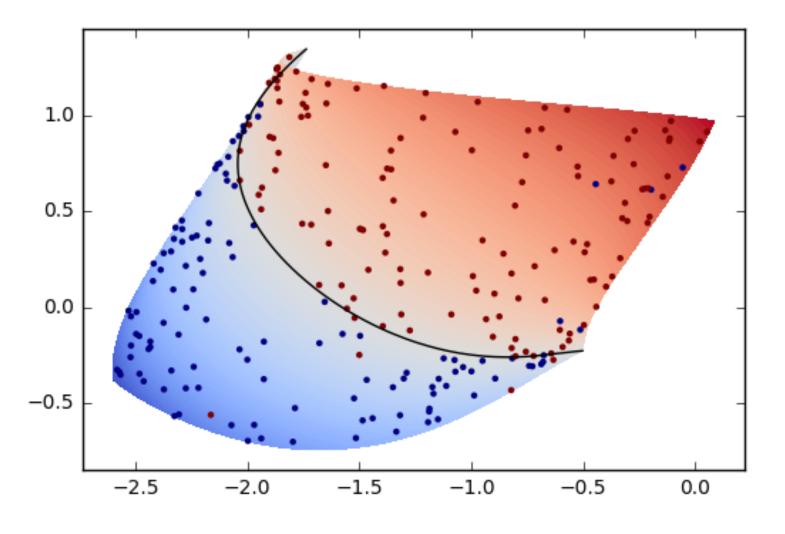
CS 273A: Machine Learning Winter 2021 Lecture 1: Introduction

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



Today's lecture

What is machine learning?

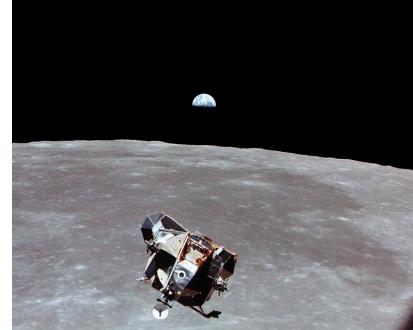
Course logistics

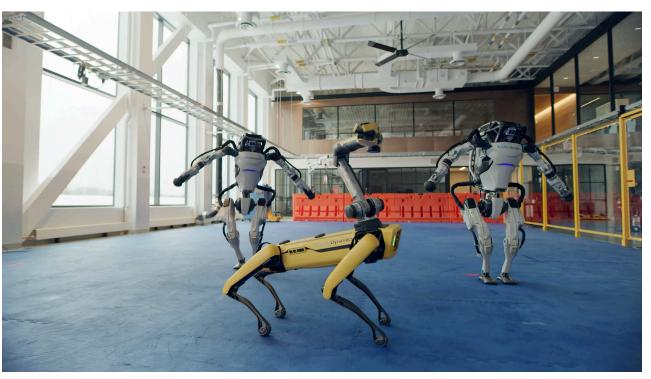
Data management and visualization

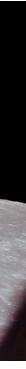
Roy Fox | CS 273A | Winter 2021 | Lecture 1: Introduction

Artificial intelligence (AI) beyond ML

- Machine learning (ML) is a way to get machines to be intelligent
- Not the only way:
 - Engineered solutions (expert systems)
 - Good old-fashioned AI (GOFAI)
 - Rule-based systems
 - Logic programming (e.g. Prolog)
 - Search algorithms
 - Model-based optimization







What is intelligence?

- Big question, beyond our scope...
- Behavioristic definition: intelligence = good decision making
 - Can all intelligent behavior be reduced to good decision making?
- Decision making: in situation x, do y (decision / prediction / action)
 - At the core of AI systems: a decision function $f: x \mapsto y$
 - Examples: visual classification, price prediction, medical diagnosis, motor control
- "Good" decision: assume a given score function $v : x, y \mapsto \mathbb{R}$, higher = better
 - Or loss function $\mathscr{C} : x, y \mapsto \mathbb{R}$, lower = better

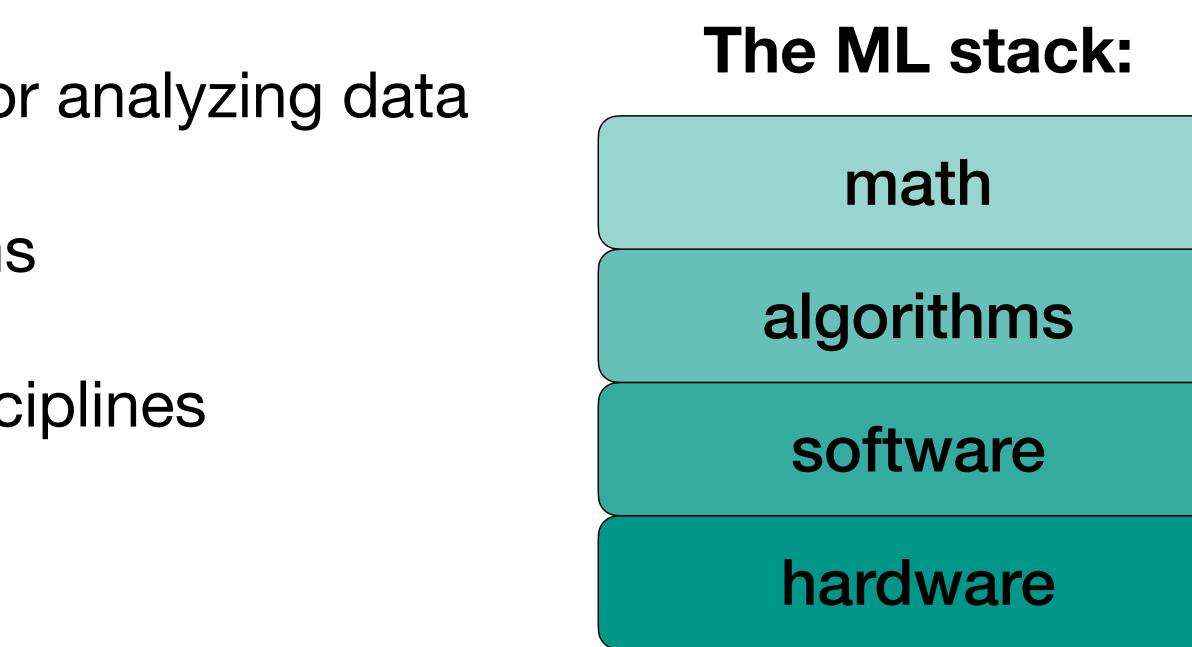
What is learning?

- Learning = taking in information to know more than you did before
 - But what is knowledge? Another big question...
- ML can help when other AI methods fail:
 - Experts are scarce
 - Rules / logic are hard to specify
 - Search space is too large
 - Models are unknown / hard to specify

• Machine learning = use data to make better decisions than before [Mitchell 1997]

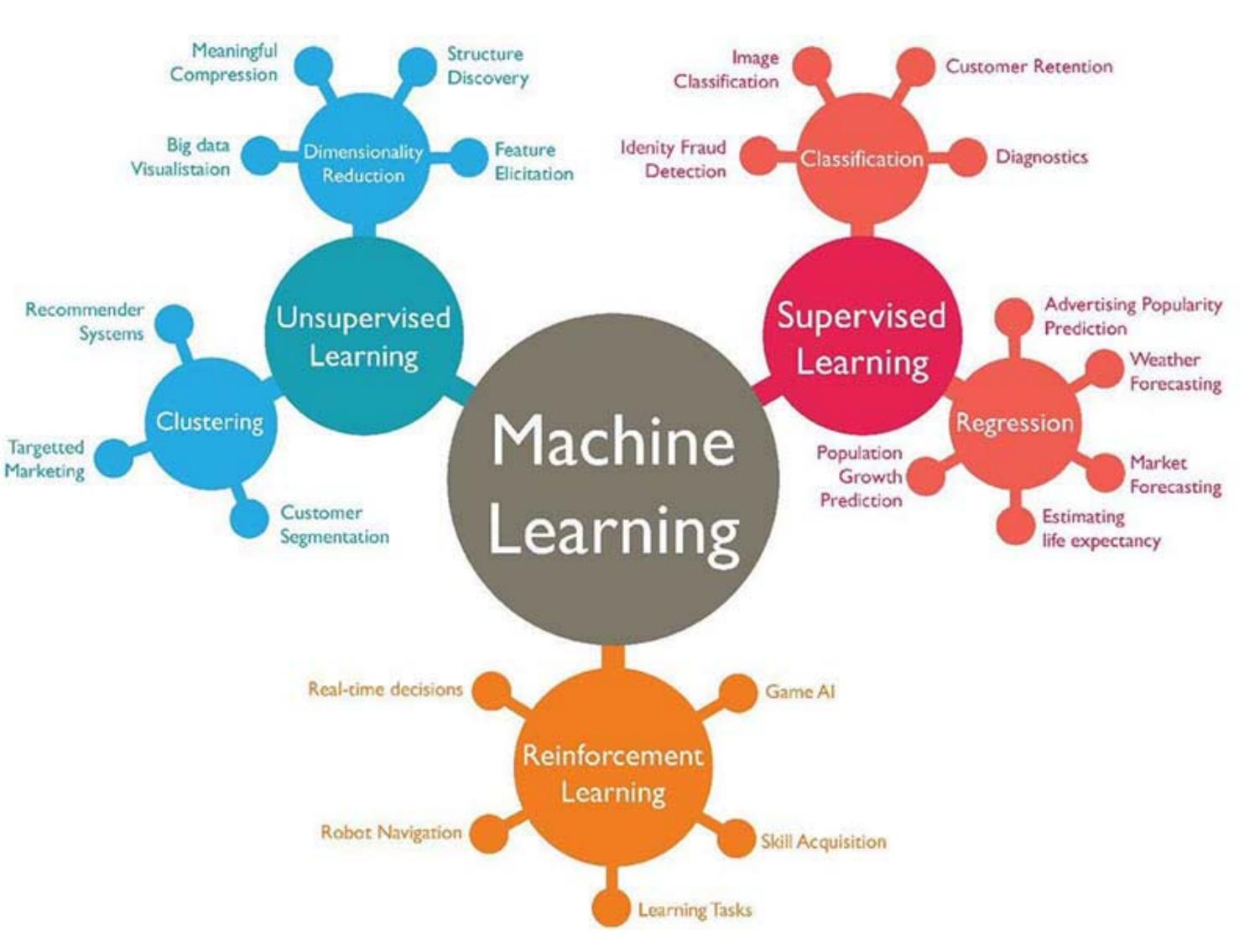
Statistics vs. ML

- Statistics = mathematical toolset for analyzing data
- ML = using data to build AI systems
- Successful ML draws on many disciplines
- The ML stack:
 - Math: probability theory, (linear) algebra, computational learning theory
 - Algorithms: ML algorithms, optimization, data structures
 - Software: ML frameworks, databases, testing, deployment



Hardware: cloud computing, distributed systems, cyber-physical systems

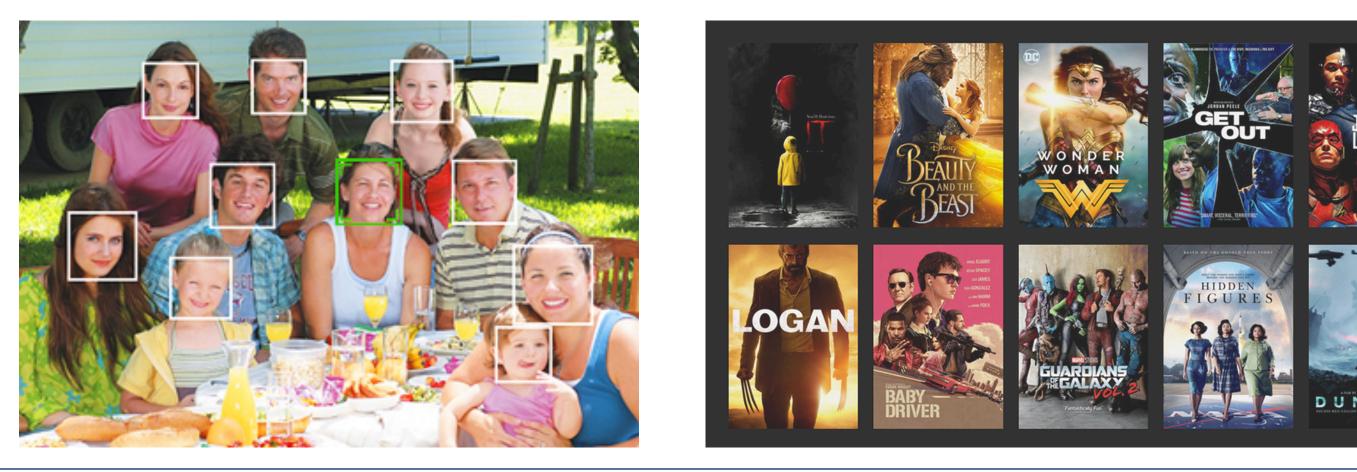
Taxonomy of ML



https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/

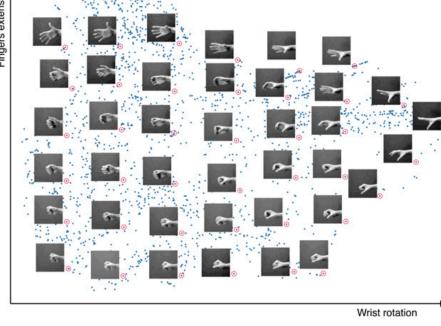
Learning settings (1): supervised learning

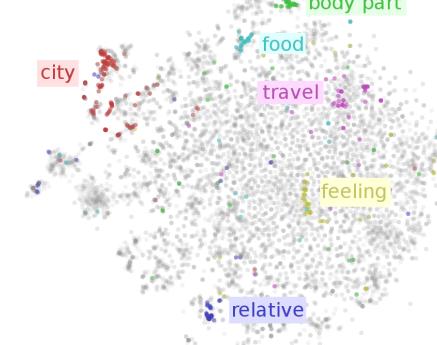
- How can we learn $f: x \mapsto y$ that achieves good performance v(x, y)?
- Supervised learning
 - Data: examples of instances x and good decisions y (labels)
 - Given a training dataset \mathcal{D} , find f that agrees with \mathcal{D} 's labels on its instances
 - Classification: y is a class in a small set
 - Regression: y is continuous

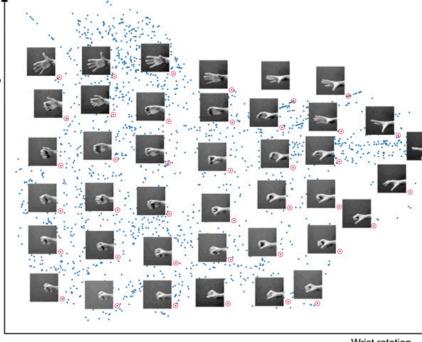


Learning settings (2): unsupervised learning

- How can we learn $f: x \mapsto y$ that achieves good performance v(x, y)?
- Unsupervised learning
 - Data: examples of instances x (no labels y)
 - What are we looking for? Some insight, discover pattern / structure of the data
 - Performance measure v / ℓ is often global rather than per-instance
 - Clustering: y is a cluster in a small set
 - Dimensionality reduction: y is a low-dimensional representation
 - Density estimation, anomaly detection, ...







Learning settings (3): reinforcement learning

- How can we learn $f: x \mapsto y$ that achieves good performance v(x, y)?
- Reinforcement learning
 - Decisions are actions that the agent takes in the environment
 - No dataset, data is collected through this interaction
 - Several new challenges:
 - Online learning: score v (reward) is only revealed for actual experience
 - Active learning: the agent also decides on which instances x to visit

- Sequential decisions: how to assign the credit for v to parts of the decision sequence?

4

Mixed supervision

- Learning settings can be mixed
- Semi-supervised learning:
 - Mixture of supervised and unsupervised learning
 - Benefit from seeing labels y on some instances x
 - Benefit from seeing a large set of (unlabeled) instances x
 - Examples: image tagging, document retrieval, medical diagnosis

- Machine learning: data-driven approach to building Al
 - Use experience to improve performance on decision / prediction task
- Common learning settings:
 - Supervised learning: $\mathcal{D} = \{(x^{(1)}, y^{(1)}, y^{(1$
 - Unsupervised learning: $\mathcal{D} = \{x^{(1)}, \dots, x^{(m)}\}$
 - Semi-supervised learning: only some instances are labeled
 - Reinforcement learning: experience gathered by agent

$$(1), \dots, (x^{(m)}, y^{(m)}) \}$$

Today's lecture

What is machine learning?

Course logistics

Data management and visualization

Roy Fox | CS 273A | Winter 2021 | Lecture 1: Introduction

Course logistics

- When: Tuesdays and Thursdays, 2–3:20pm
 - Lectures will be recorded and published afterwards
- Where: <u>https://uci.zoom.us/j/94903054276</u>
- Website: <u>https://royf.org/crs/W21/CS273A/</u> ← <u>Schedule!</u>
- Forum: <u>https://piazza.com/uci/winter2021/cs273a</u>
 - For announcement and questions (no email please!)
- Assignments: <u>https://www.gradescope.com/courses/220628</u>
 - Published biweekly

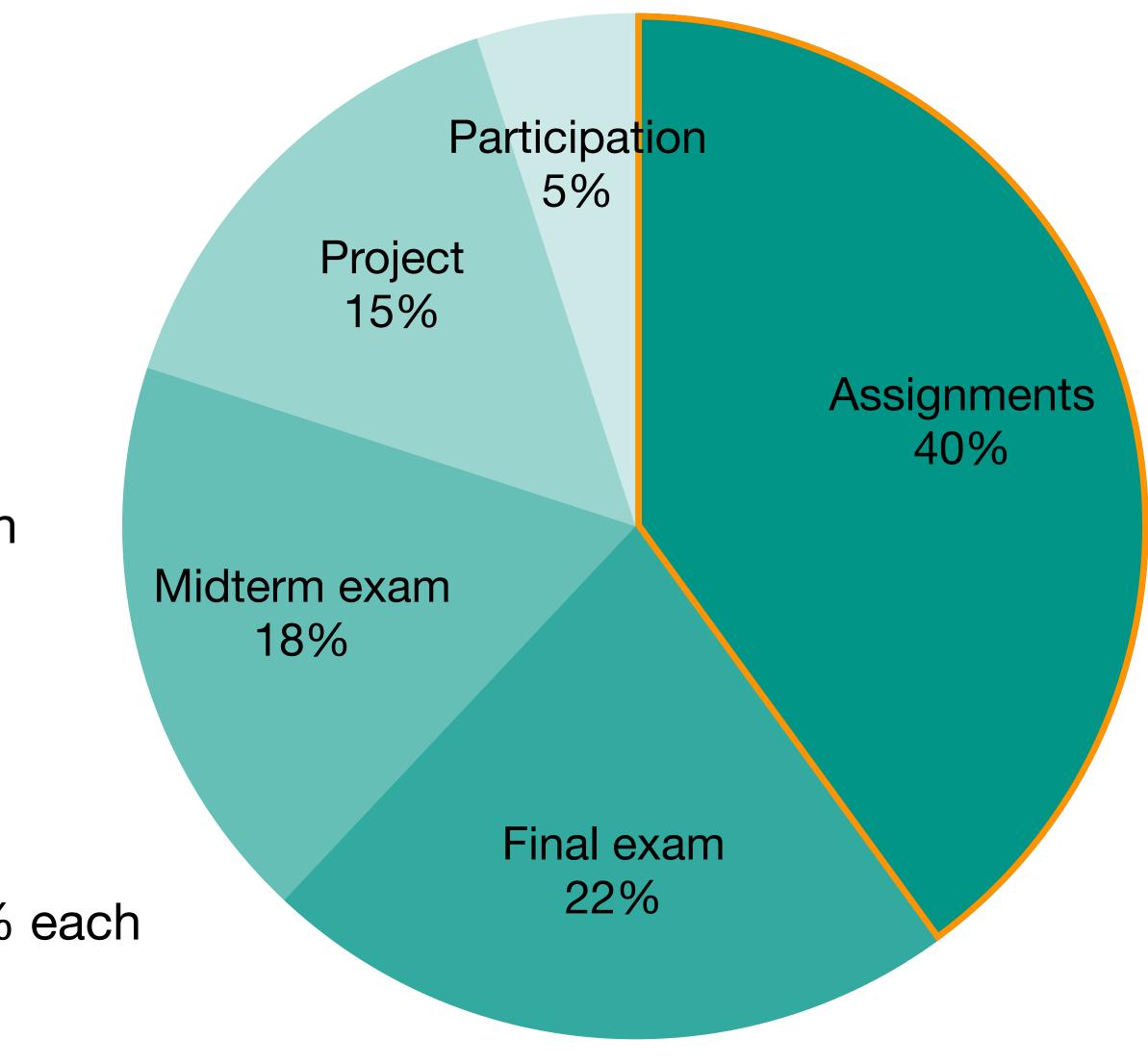
Instructor: Prof. Roy Fox

• Teaching assistant: Hao Tang

- Contact us on piazza (publicly or privately)
 - We may be unreachable by email
- Office hours: <u>https://calendly.com/royfox/office-hours</u>
 - Welcome to schedule 15-min slots and invite friends; give 4 hour notice

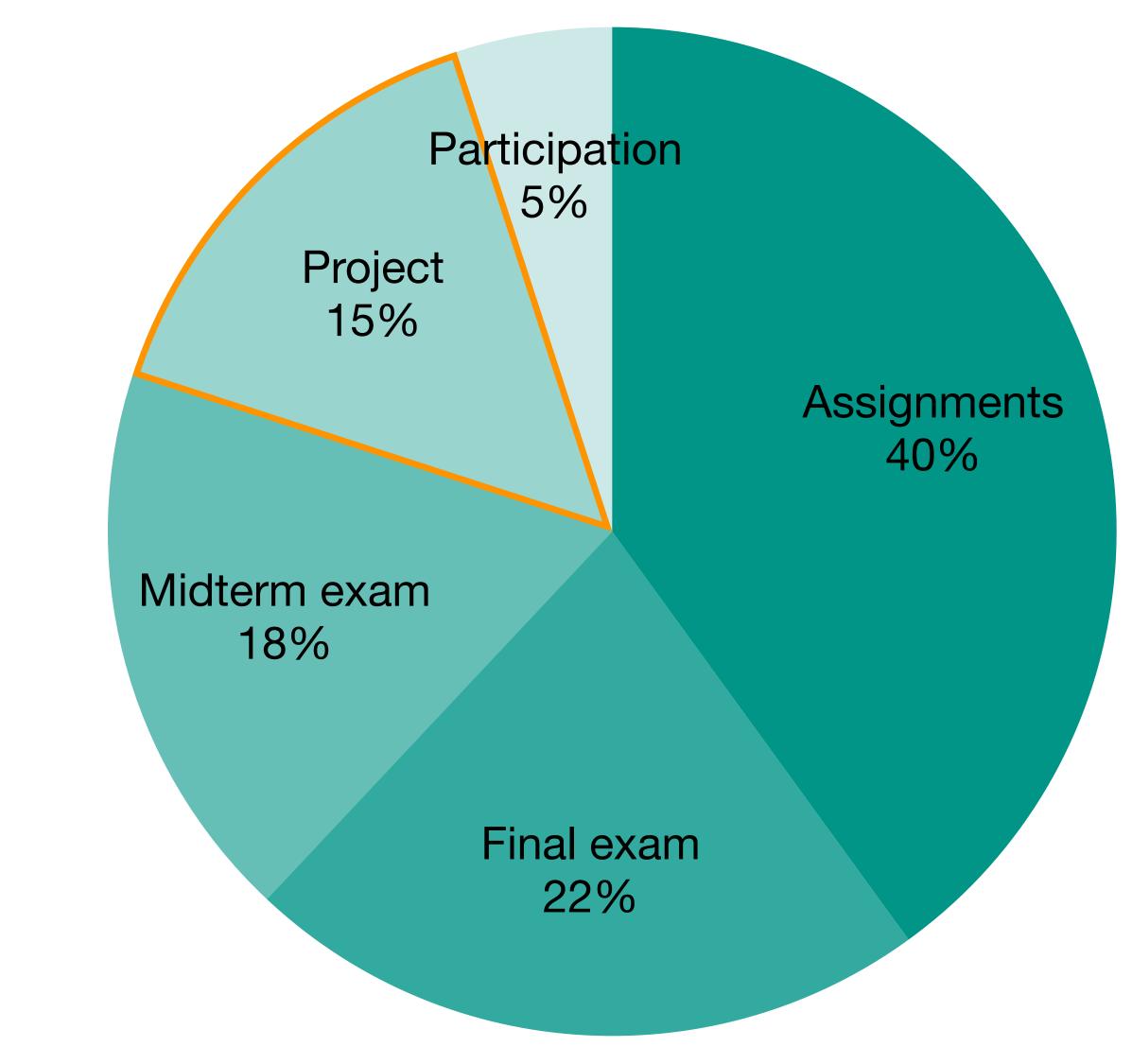
Grading policy: assignments

- 5 programming assignments
 - Apply ML techniques in Python
 - Show your code and results
 - We will read it, not run it
 - Must include statement of collaboration
- Grading:
 - 40% of final grade
 - Your 4 best assignments count for 10% each
 - But no late submission



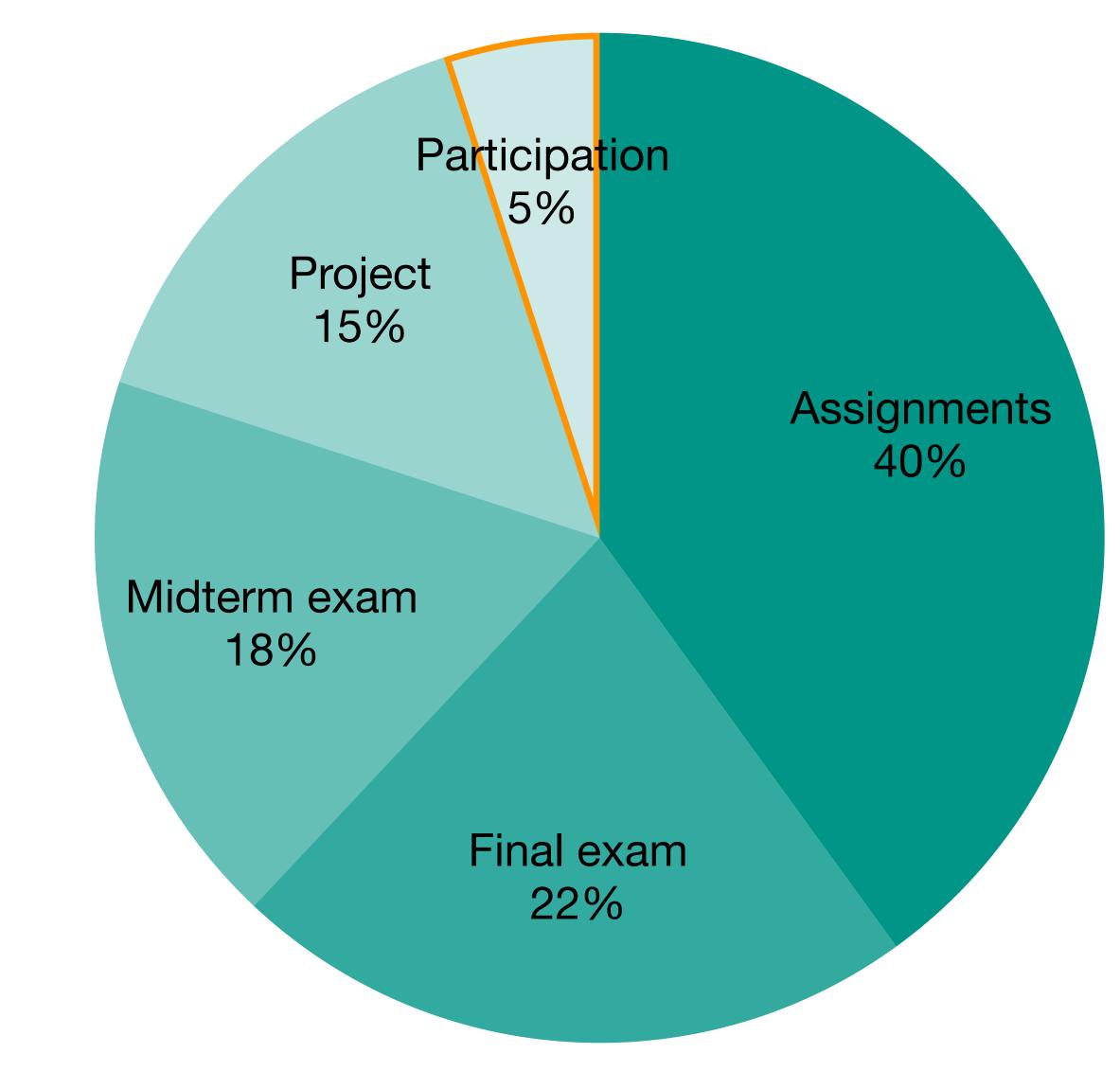
Grading policy: project

- Teams of 3
 - Start forming teams now
- Deadlines:
 - Team roster week 4 (1% credit)
 - Abstract week 7 (2% credit)
 - Report week 10 (12% credit)



Grading policy: participation

- Forum participation
 - Ask questions if you have any
 - Answer questions if you can
 - Post relevant useful links
 - Upvote useful posts
 - Give private feedback to staff
- Quizzes, surveys, and evaluations
 - Answer polls published on the forum
 - Submit course evaluations



What will it take to do well?

- We'll rely heavily on math: probability theory, linear algebra, calculus
 - We're here to help, but solid background expected
- You'll need to code well in Python
- Help your friends and get help from us too! but never cheat

Some ideas are challenging — ask early what you don't fully understand

Today's lecture

What is machine learning?

Course logistics

Data management and visualization

Roy Fox | CS 273A | Winter 2021 | Lecture 1: Introduction

Know thy data

- ML is a data science
 - Look at your data, know what it is, get a "feel" for it
- How many data points?
- What are the features of every data point? What are their data types?
 - Booleans (spam, inbound/outbound, control group)
 - Discrete categories (country/state, protocol, user ID)
 - Integers (1–5 stars, # of bedrooms, year of birth)
 - Reals up to digital representation (pixel intensity, price, timestamp)

Is there missing data? Unreasonable values? Surprisingly missing / repeated values?

Data wrangling

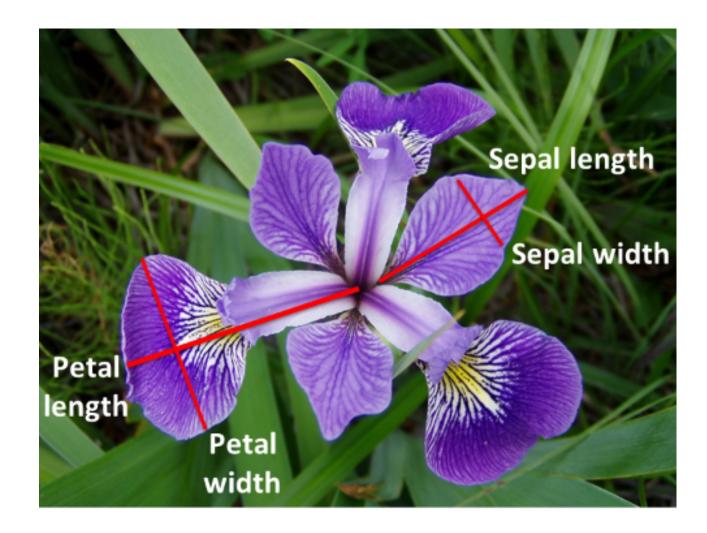
- Data wrangling: tools and practices for preparing data for usage
 - Discovering: explore the data to understand what it is
 - ► Structuring: organize into useful features; e.g. Jan 5, 2021 \rightarrow (2021, 1, 5) or 18632
 - Cleaning: standardize values, remove errors, flag missing data; e.g. Calif. \rightarrow CA
 - Validating: flag inconsistencies, surprising value distributions
 - Publishing: verify that the data format is readable in the intended way

Programming with data

- Python
 - numpy, matplotlib, scipy, pandas, scikit-learn, tensorflow / pytorch...
- Matlab / Octave: still popular in some engineering fields
- R: popular among statisticians
- C/C++: used for performance in production, not for research / prototyping
- Other niche languages and tools for visualization and modeling

Example: Iris flower dataset

- Dataset of 3 species of Iris, $y \in \{0,1,2\}$
- 150 data points, 50 of each class, $|\mathcal{D}| = 150$



• 4 features per data point: length & width of sepals and petals, x_1, x_2, x_3, x_4

Representing the data

- m = 150 data points, $\mathcal{D} = \{(x^{(1)}, y)\}$
- Each instance is a vector of n = 4 f

We can represent this as a data ma

>>> from sklearn import datasets # import scikit-learn
>>> iris = datasets.load_iris() # load dataset
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> y.shape
(150,)

$$y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
features, $x^{(j)} = \begin{bmatrix} x_1^{(j)} & \cdots & x_n^{(j)} \end{bmatrix} \in \mathbb{R}^n$
trix $x = \begin{bmatrix} x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & & \vdots \\ x_1^{(m)} & \cdots & x_n^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times n}$
asets # import scikit-learn

Basic statistics

- Let's look at the basic statistics of the data
 - Location (mean value)
 - Scale (standard deviation)
 - Order statistics (minimum, maximum, median)

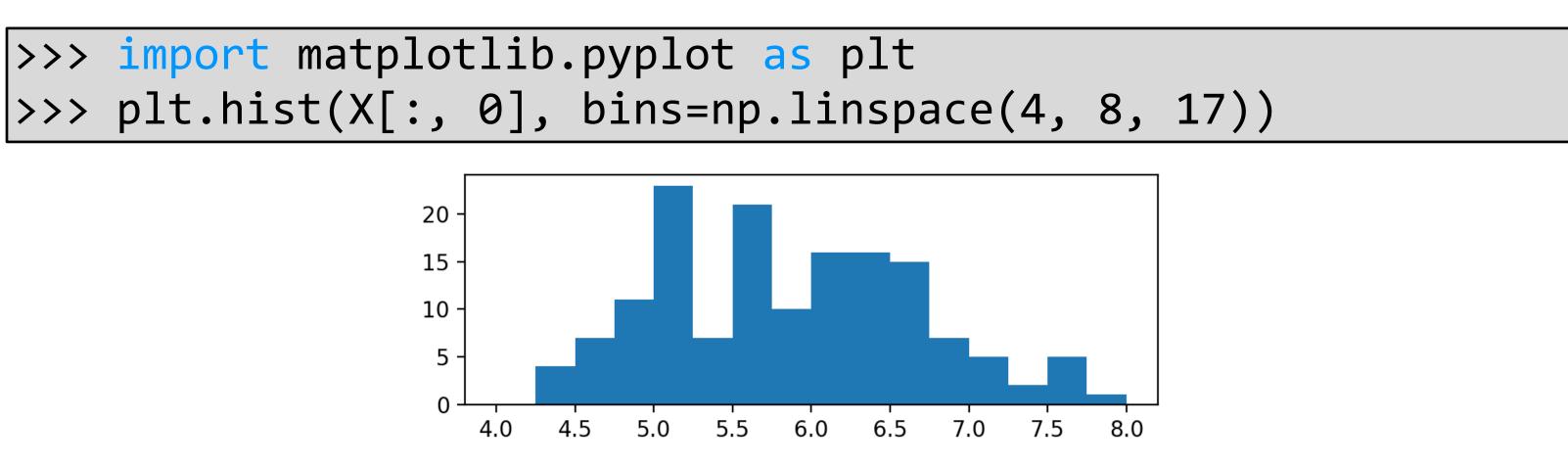
1.199])

0.76])

3])

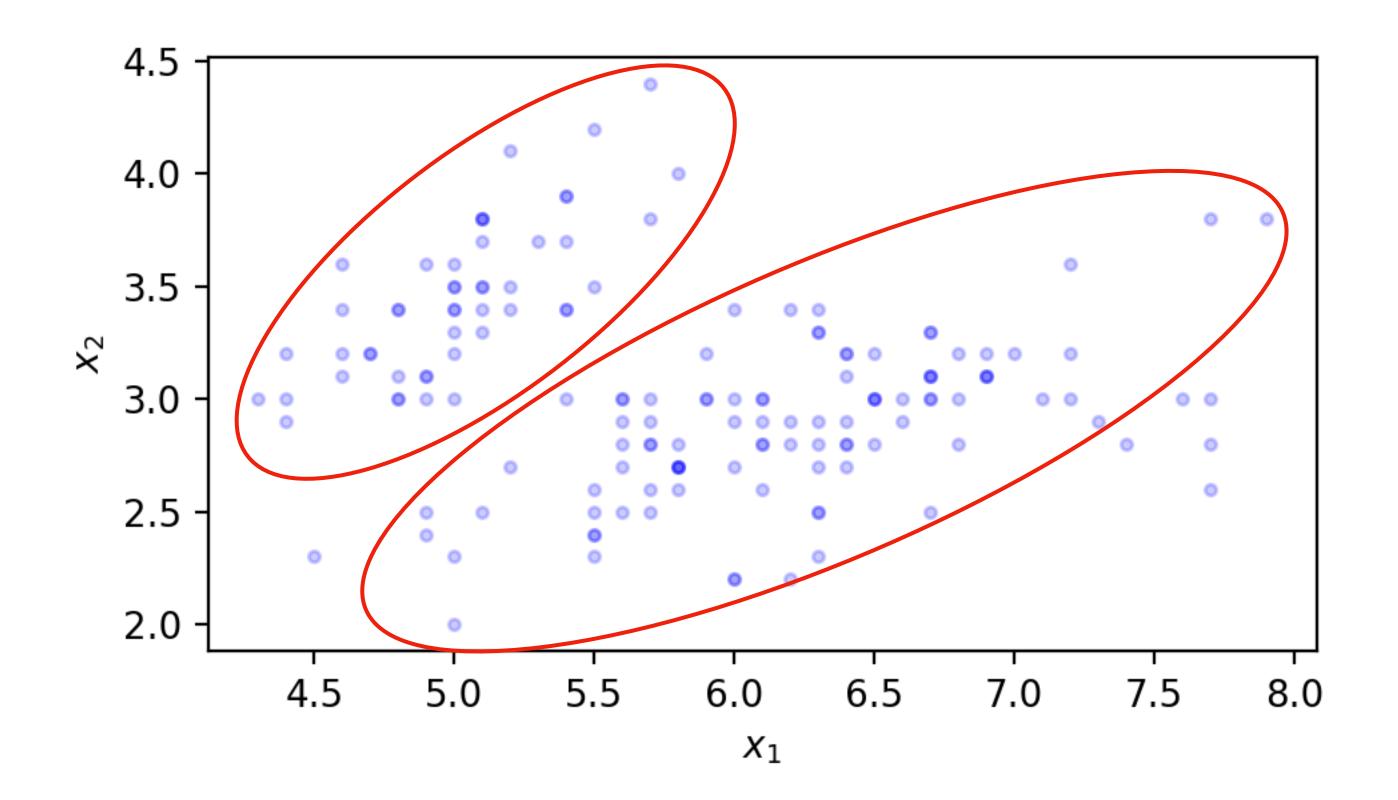
Data visualization: histograms

- Count the data points falling in each of k equal bins
 - Summarize data as a length-k vector of counts
 - ► Bins too small → too little aggregation, lose "topology" of data point clusters
 - Bins too large \rightarrow too much aggregation, lose information about cluster sizes
 - Bins should become smaller the denser the data



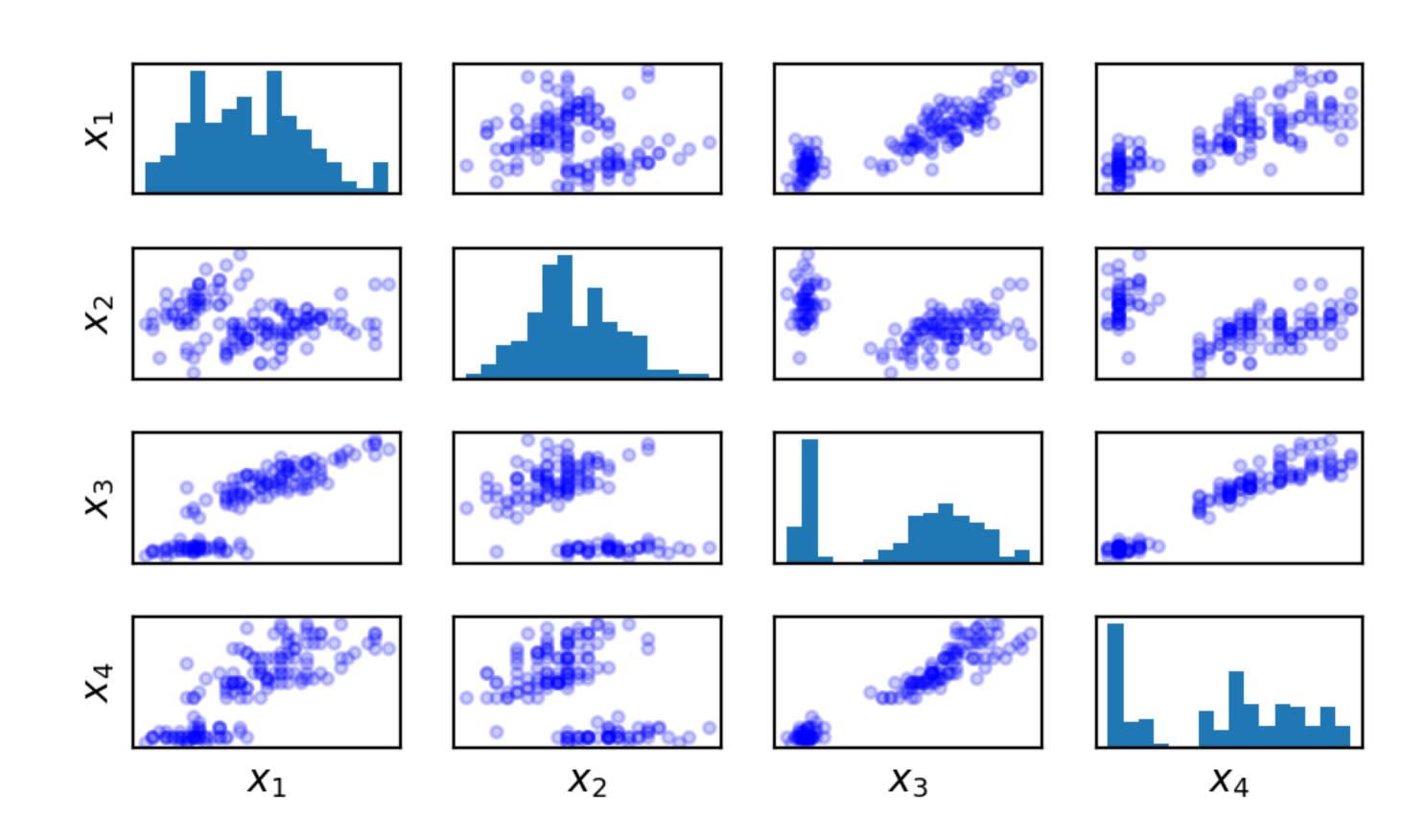
Data visualization: scatterplots

• Place data points on a 2D plane



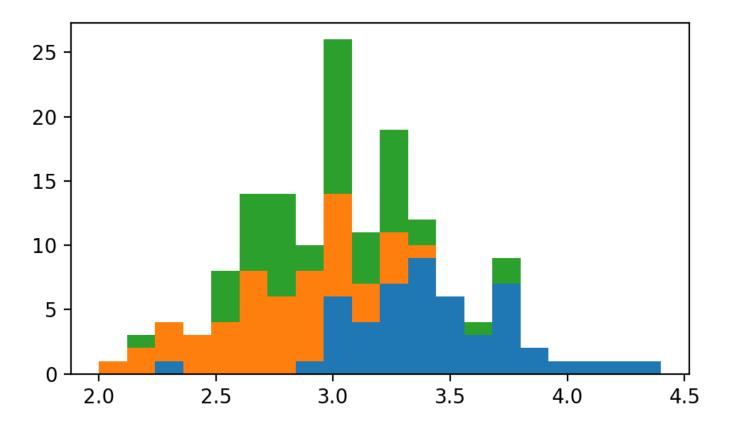
Data visualization: pair plot

- With more than two features, plot all pairs
 - Histograms on the diagonal

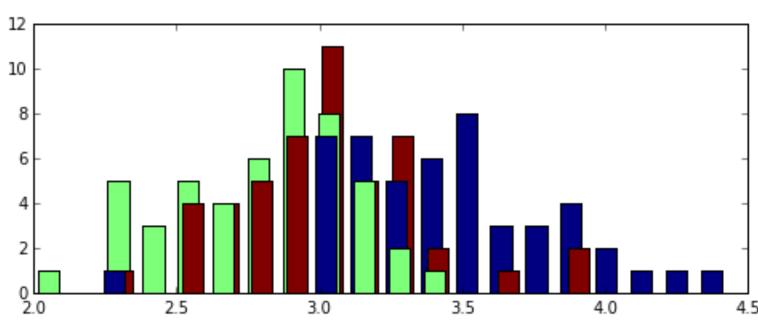


Visualizing labels

- How are different classes distributed?
 - Histograms can be stacked:



or side-by-side:







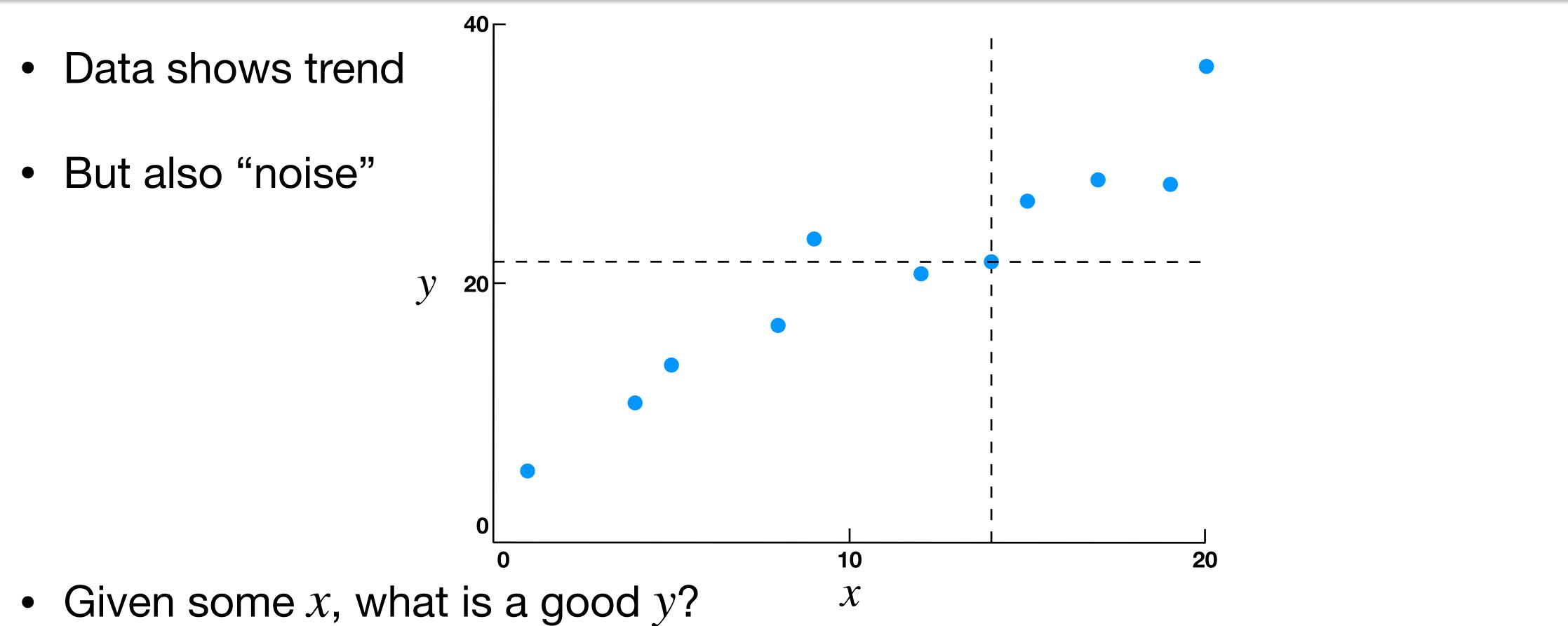
Today's lecture

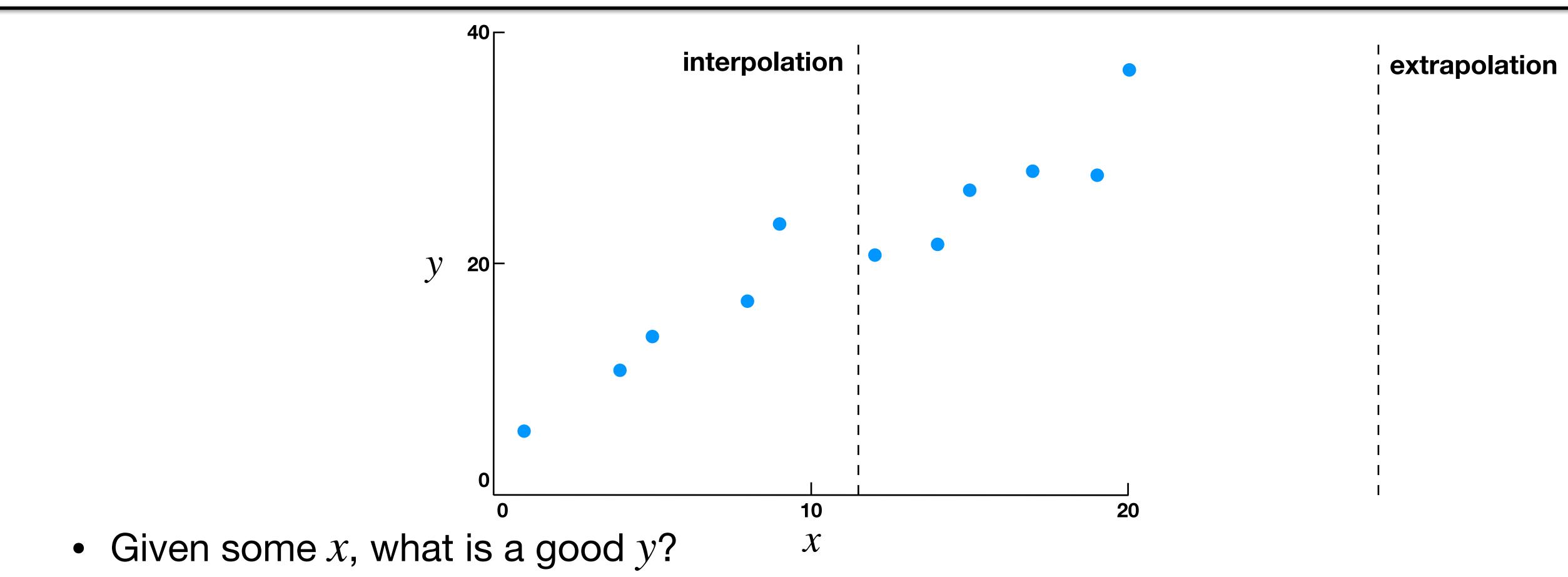
What is machine learning?

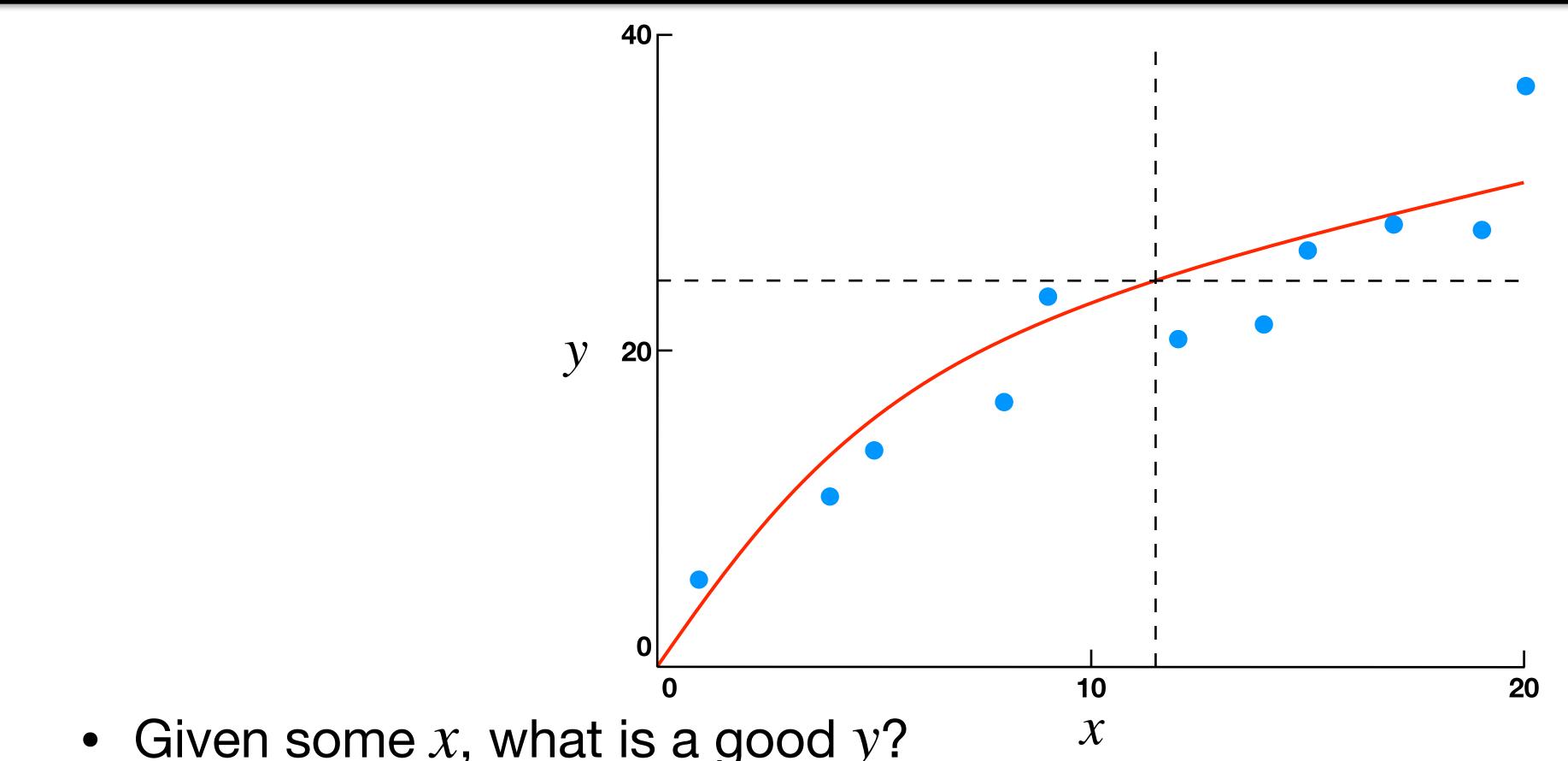
Course logistics

Data management and visualization

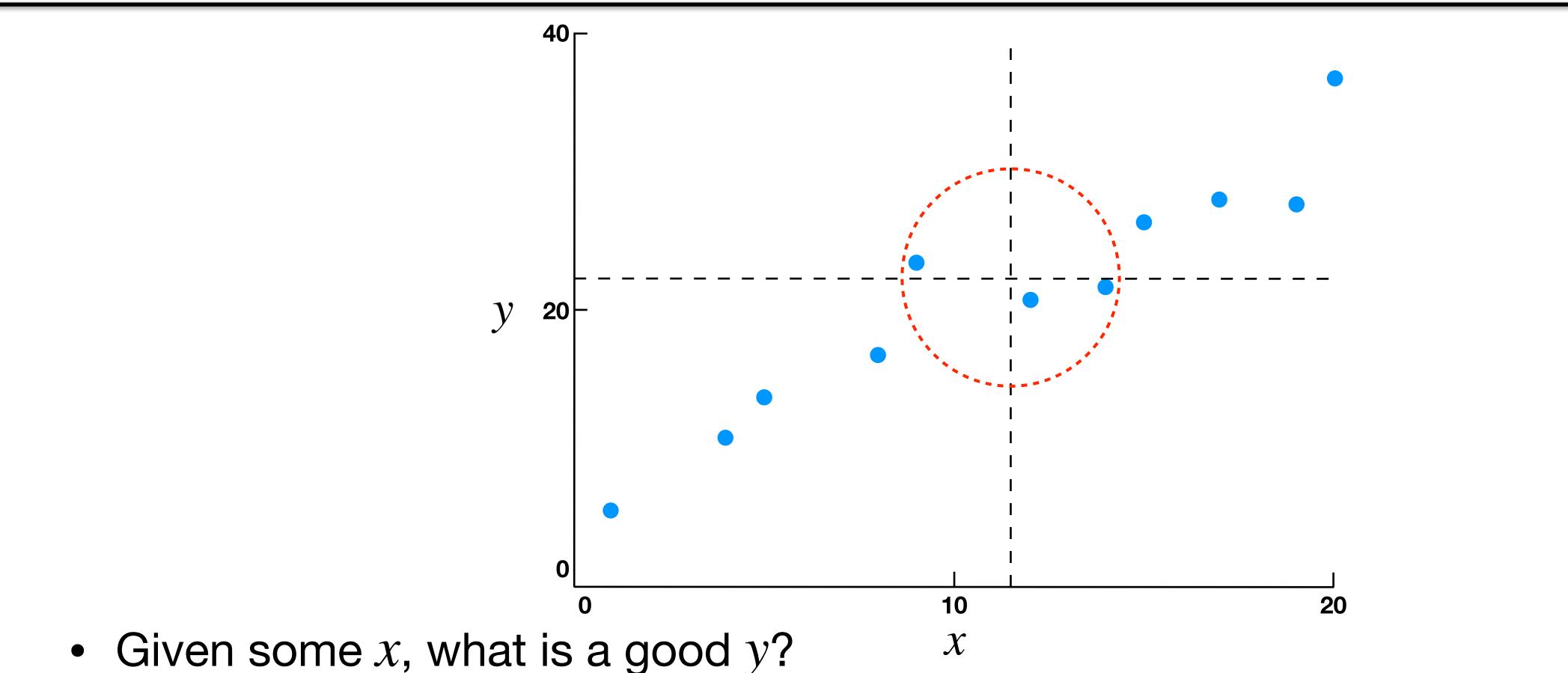
Supervised learning



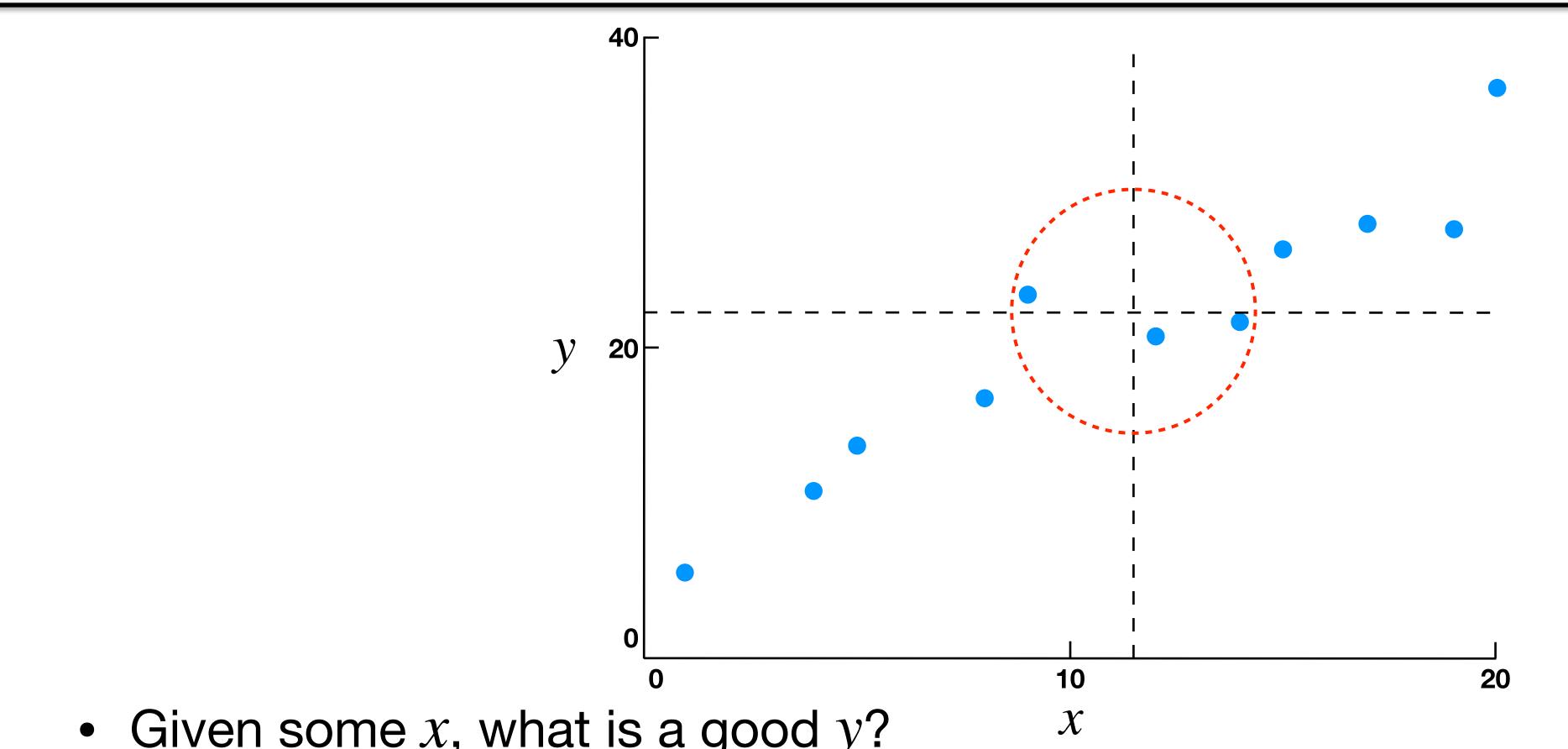




- Given some *x*, what is a good *y*?
 - Directly represent $f: x \mapsto y$



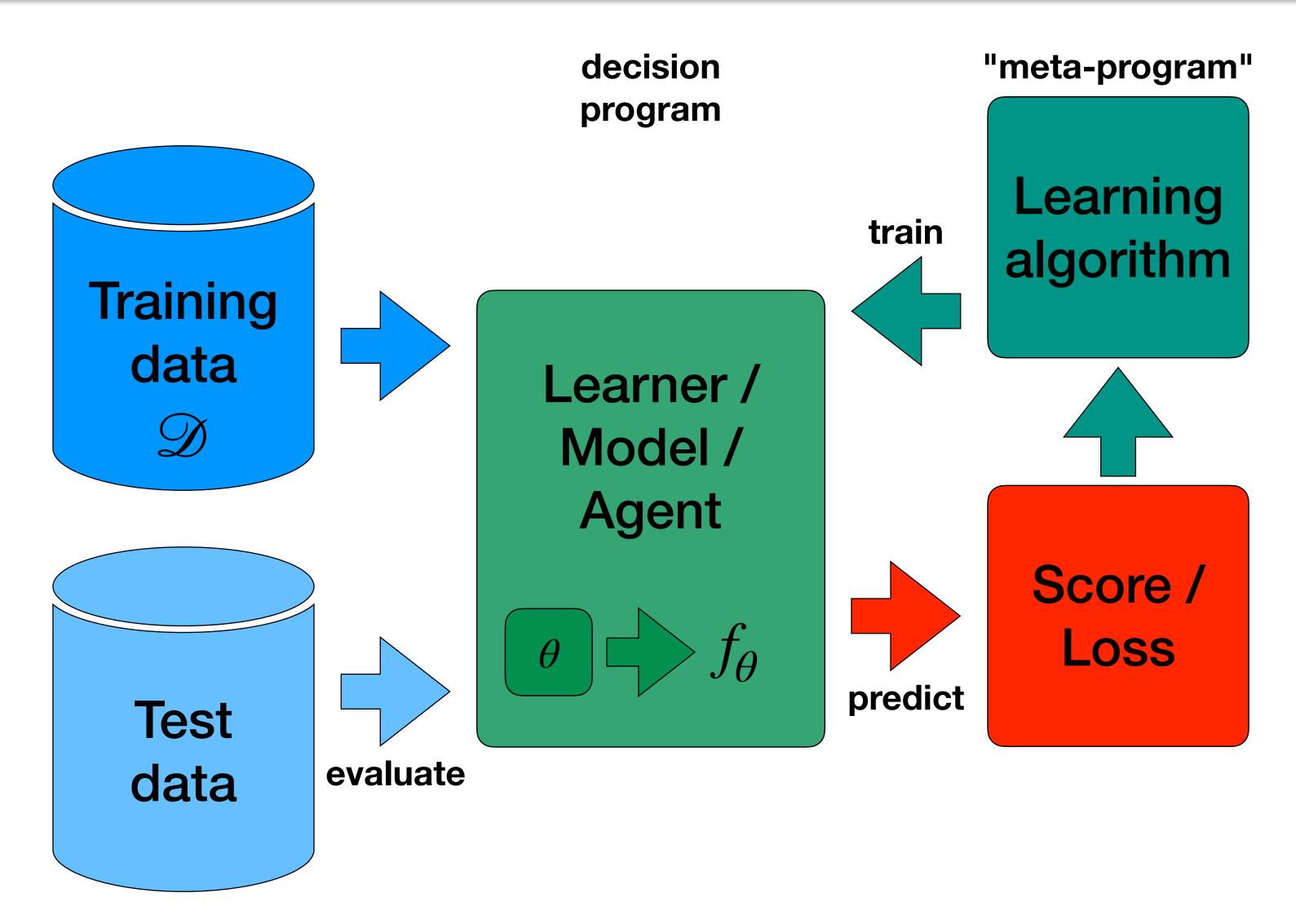
- Given some *x*, what is a good *y*?
 - Directly represent $f: x \mapsto y$
 - Average k nearest neighbors



- Given some *x*, what is a good *y*?
 - Directly represent $f: x \mapsto y$

• Average k nearest neighbors (k too large: missing trend; k too small: catching noise)

What is machine learning?



- Join piazza for announcements and forum
- See website for est. schedule

- Assignment 1 to be published soon
- Meanwhile, get familiar with Python + numpy