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Abstract—Generalizing manipulation skills to new situations
requires extracting invariant patterns from demonstrations. For
example, the robot needs to understand the demonstrations at
a higher level while being invariant to the appearance of the
objects, geometric aspects of objects such as its position, size,
orientation, viewpoint of the observer in the demonstrations.
In this paper, we learn a joint probability density function
of the demonstrations with invariant formulations of hidden
semi-Markov model, and smoothly follow the generated se-
quence of states with a linear quadratic tracking controller.
We present parsimonious and Bayesian non-parametric online
learning formulations of the HSMM to exploit the invariant
segments (also termed as sub-goals, options or actions) in the
demonstrations and adapt the movement in accordance with
the external environmental situations such as size, position and
orientation of the objects in the environment using a task-
parameterized formulation. We show an application of robot
learning from demonstrations in picking and placing an object
while avoiding a moving obstacle.

I. INTRODUCTION

Generative models are widely used in imitation learning to

learn the distribution of the data for regenerating new samples

from the model [11, 1, 12]. Common examples include prob-

ability density function estimation, image regeneration and so

on. The focus of this paper is to learn the joint probability

density function of the human demonstrations with a Hidden

Semi-Markov Model (HSMM) in an unsupervised manner.

HSMMs replace the self-transition probabilities of staying in

a state with an explicit model of state duration [16]. This

helps to adequately bias the generated motion with longer state

dwell times for skill acquisition. We show how the model

can be systematically adopted to changing situations such

as position/size/orientation of the objects in the environment

with a task-parameterized formulation. We combine tools from

statistical machine learning and optimal control to segment the

demonstrations into different components or sub-goals that are

sequenced together to perform manipulation tasks.

In this paper, we unify two formulations of the HSMM

for encoding and decoding of real-world robot manipulation

tasks under varying environmental situations (see Fig. 2): 1)

segmentation and dimensionality reduction simultaneously to

impose a parsimonious structure on the covariance matrix and

reduce the number of parameters that can be robustly estimated

[13], and 2) Bayesian non-parametric formulation of HSMM

with Hierarchical Dirichlet process (HDP) for online learning

under small variance asymptotics [14]. Our objective is to

reduce the number of demonstrations required for learning

Fig. 1: (left) Baxter robot picks the glass plate with a suction

lever and places it on the cross after avoiding an obstacle

of varying height, (right) reproduction for previously unseen

object and obstacle position.

a new task, while ensuring effective generalization in new

environmental situations.

II. HIDDEN SEMI-MARKOV MODELS

Hidden Markov models (HMMs) encapsulate the spatio-

temporal information by augmenting a GMM with latent states

that sequentially evolve over time in the demonstrations. HMM

is thus defined as a doubly stochastic process, one with

sequence of hidden states and another with sequence of obser-

vations/emissions. Spatio-temporal encoding with HMMs can

handle movements with variable durations, recurring patterns,

options in the movement, or partial/unaligned demonstrations

[9, 6, 4, 7]. Semi-Markov models relax the Markovian struc-

ture of state transitions by relying not only upon the current

state but also on the duration/elapsed time in the current state,

i.e., the underlying process is defined by a semi-Markov chain

with a variable duration time for each state. The state duration

stay is a random integer variable that assumes values in the

set {1, 2, . . . , smax}. The value corresponds to the number of

observations produced in a given state, before transitioning

to the next state. Hidden Semi-Markov Models (HSMMs)

associate an observable output distribution with each state in

a semi-Markov chain, similar to how we associated a sequence

of observations with a Markov chain in a HMM.

To make it concrete, let {ξt}
T
t=1 denote the sequence of

observations with ξt ∈ R
D collected while demonstrating a

manipulation task. The state may represent the visual obser-

vation, kinesthetic data such as the pose and the velocities

of the end-effector of the human arm, haptic information,



Fig. 2: HSMM formulations for learning on synthetic Z-shaped data: (top-left) demonstrations encoded with a hidden semi-

Markov model and decoded with a linear quadratic tracking controller, (top-right) latent space encoding for parsimonious

representation, (bottom) Bayesian non-parametric online sequence clustering.

or any arbitrary features defining the task variables of the

environment. The observation sequence is associated with a

hidden state sequence {zt}Tt=1 with zt ∈ {1 . . .K} belonging

to the discrete set of K cluster indices. The cluster indices

correspond to different segments of the task such as reach,

grasp, move etc. The transition between one segment i to an-

other segment j is denoted by the transition matrix a ∈ R
K×K

with ai,j , P (zt = j|zt−1 = i). The parameters {µS
j ,Σ

S
j }

represent the mean and the standard deviation of staying s

consecutive time steps in state j estimated by a Gaussian

N (s|µS
j ,Σ

S
j ). The hidden state follows a multinomial distri-

bution with zt ∼ Mult(πzt−1
) where πzt−1

∈ R
K is the next

state transition distribution over state zt−1 with Πi as the initial

probability, and the observation ξt is drawn from the output

distribution of state j, described by a multivariate Gaussian

with parameters {µj ,Σj}. The overall parameter set for an

HSMM is defined by
{

Πi, {ai,m}Km=1,µi,Σi, µ
S
i ,Σ

S
i

}K

i=1
.

Parameters
{

Πi, {ai,m}Km=1,µi,Σi

}K

i=1
are estimated using

the EM algorithm for HMMs, and the duration parameters

{µS
i ,Σ

S
i }

K
i=1 are estimated empirically from the data after

training using the most likely hidden state sequence zt =
{z1 . . . zT }.

Given the learned model parameters {µi,Σi}Ki=1 and a

sequence of observations {ξ1, . . . , ξT }, the probability of the

hidden state sequence over the next time horizon Tp, i.e.,

p(zt, zt+1, . . . , zTp
| ξ1, . . . , ξt) is decoded using the Viterbi

algorithm with the forward variable of the algorithm. The

decoded sequence is combined with a finite-horizon linear

quadratic tracking controller for smooth retrieval of robot

motion.

A. Scalable HSMMs in Latent Spaces

HSMMs tend to suffer from the well-known curse of

dimensionality when few datapoints are available as in the case

of learning from human demonstrations. Statistical subspace

clustering methods address this challenge by using a parsimo-

nious model to reduce the number of parameters that can be

robustly estimated. Contrary to existing methods that impose

a parsimonious structure on each covariance matrix separately

(diagonal/isotropic matrix, low-rank decomposition), we ex-

ploit a technique to share the parameters across the mixture

components along the important synergistic directions [5]. The

technique associates or ties the covariance matrices of the

mixture model with a common latent space, and only uses a

diagonal matrix for appropriate scaling of the basis vectors in

the latent space. When the covariance matrices of the mixture

model share the same set of parameters for the latent feature

space, we call the model a semi-tied mixture model. The main

idea behind semi-tied mixture models is to decompose the

covariance matrix Σi into two terms: a common latent feature

matrix H ∈ R
D×D and a component-specific diagonal matrix

Σ
(diag)
i ∈ R

D×D, i.e.,

Σi = HΣ
(diag)
i H⊤. (1)

The latent feature matrix encodes the locally important

synergistic directions represented by D non-orthogonal basis

vectors that are shared across all the mixture components,

while the diagonal matrix selects the appropriate subspace of



Fig. 3: Task-parameterized formulation of HSMM. The demonstration on left are observed from the coordinate systems that

move with the object (starting in purple position and ending in green position in each demonstration) and the generative model

is learned in the respective coordinate systems. The model parameters in respective coordinate systems are adapted to the

new unseen object positions by computing the products of linearly transformed Gaussian mixture components. The resulting

HSMM is combined with LQT for smooth retrieval of manipulation tasks.

each mixture component as convex combination of a subset

of the basis vectors of H . Note that the eigen decomposition

of Σi = U iΣ
(diag)
i U⊤

i contains D basis vectors of Σi in

U i. In comparison, semi-tied mixture model gives D globally

representative basis vectors that are shared across all the

mixture components. The decomposition allows update of the

parameters H and Σ
(diag)
i in closed form with EM updates

of HSMM.

B. Bayesian Non-Parametric Online HSMMs

Adapting the HSMM online with large scale streaming data

and specifying the number of latent states is a challenging

problem. Bayesian non-parametric methods provide flexibility

in model selection, however, their widespread use is limited

by the computational overhead of existing sampling-based and

variational techniques for inference.

We make use of Small Variance Asymptotic (SVA) anal-

ysis of Bayesian non-parametric HSMM under Hierarchical

Dirichlet Process (HDP) [10]. Small variance asymptotic

(SVA) analysis implies that the covariance matrix Σt,i of all

the Gaussians is set to the isotropic noise σ2, i.e., Σt,i ≈
limσ2

→0 σ
2I in the likelihood function and the prior distribu-

tion [8, 2]. The analysis yields simple deterministic models,

while retaining the non-parametric nature. For example, SVA

analysis of the Bayesian non-parametric GMM leads to the

DP-means algorithm [8]. Restricting the covariance matrix

to an isotropic/spherical noise, however, fails to encode the

coordination patterns in the demonstrations. Consequently, we

model the covariance matrix in its intrinsic affine subspace

of dimension di with projection matrix Λ
di

i ∈ R
D×di , such

that di < D and Σi = limσ2
→0 Λ

di

i Λ
di

⊤

i + σ2I . Under

this assumption, we apply the small variance asymptotic limit

on the remaining (D − di) dimensions to encode the most

important coordination patterns while being parsimonious in

the number of parameters.

The analysis gives a scalable online sequence clustering

algorithm that is non-parametric in the number of clusters

and the subspace dimension of each cluster. The resulting

algorithm groups the new datapoint in its low dimensional

subspace by online inference in a non-parametric mixture of

probabilistic principal component analyzers based on Dirichlet

process, and captures the state transition and state duration

information online in a HDP-HSMM. The cluster assignment

and the parameter updates at each iteration minimize the loss

function, thereby, increasing the model fitness while penalizing

for new transitions, new dimensions and/or new clusters. An

interested reader can find more details of the algorithm in [14].

III. TASK-PARAMETERIZED HSMMS

Task-parameterized models provide a probabilistic formu-

lation to deal with different real world situations by adapting

the model parameters in accordance with the external task pa-

rameters that describe the environment/configuration/situation,

instead of hard coding the solution for each new situation or

handling it in an ad hoc manner [15, 3, 13]. When a different

situation occurs (position/orientation of the object changes),

changes in the task parameters/reference frames are used to

modulate the model parameters in order to adapt the robot

movement to the new situation.

We represent the task parameters with P coordinate sys-

tems, defined by {Aj , bj}Pj=1, where Aj denotes the orienta-

tion of the frame as a rotation matrix and bj represents the

origin of the frame. We assume that the coordinate frames

are specified by the user, based on prior knowledge about the

carried out task. Typically, coordinate frames will be attached

to objects, tools or locations that could be relevant in the exe-

cution of a task. Each datapoint ξt is observed from the view-

point of P different experts/frames, with ξ
(j)
t = A−1

j (ξt−bj)
denoting the datapoint observed with respect to frame j. The

parameters of the task-parameterized HSMM are defined by

θ =
{

{µ
(j)
i ,Σ

(j)
i }Pj=1, {ai,m}Km=1, µ

S
i ,Σ

S
i

}K

i=1
, where µ

(j)
i

and Σ
(j)
i define the mean and the covariance matrix of i-th

mixture component in frame j. Parameter updates of the task-

parameterized HSMM algorithm remain the same as HSMM,

except the computation of the mean and the covariance matrix



Fig. 4: Task-Parameterized Semi-Tied HSMM performance on pick-and-place with obstacle avoidance task: (top) training set

reproductions, (bottom) testing set reproductions.

is repeated for each coordinate system separately.

In order to combine the output of the experts for an unseen

situation represented by the frames {Ãj , b̃j}Pj=1, we linearly

transform the Gaussians back to the global coordinates with

{Ãj , b̃j}Pj=1, and retrieve the new model parameters {µ̃i, Σ̃i}
for the i-th mixture component by computing the products of

the linearly transformed Gaussians (see Fig. 3)

N (µ̃i, Σ̃i) ∝
P
∏

j=1

N
(

Ãjµ
(j)
i + b̃j , ÃjΣ

(j)
i Ã

⊤

j

)

. (2)

IV. EXPERIMENTS, RESULTS AND DISCUSSION

We now show an application of our work to learn a task

from a few human demonstrations. The objective of the task

is to place the object in a desired target position by picking it

from different initial positions and orientations of the object,

while adapting the movement to avoid the obstacle. The setup

of pick-and-place task with obstacle avoidance is shown in Fig.

1. The Baxter robot is required to grasp the glass plate with a

suction lever placed in an initial configuration as marked on

the setup. The obstacle can be vertically displaced to one of the

8 target configurations. We describe the task with two frames,

one for the object initial configuration with {A1, b1} and other

for the obstacle {A2, b2} with A2 = I and b2 to specify the

centre of the obstacle. We collect 8 kinesthetic demonstrations

with different initial configurations of the object and the

obstacle successively displaced upwards as marked with the

visual tags in the figure. Alternate demonstrations {1, 3, 5, 7}
are used for the training set, while the rest are used for the test

set. Each observation comprises of the end-effector Cartesian

position, quaternion orientation, linear velocity, and quaternion

derivative with D = 14, P = 2, and a total of 200 datapoints

per demonstration.

During evaluation of the learned task-parameterized HSMM

in latent space and the Bayesian non-parametric online learn-

ing case, we observe a similar performance of the algorithms

compared to the batch case with much less parameters and

streaming demonstrations. The robot arm is able to generalize

effectively by following a similar pattern to the recorded

demonstrations in picking and placing the object (see Fig.

4 for reproductions on training and testing set). The model

exploits variability in the observed demonstrations to statisti-

cally encode different phases of the task such as reach, grasp,

move, place, return. Here, reaching the object and avoiding the

obstacle have higher variability in the demonstrations, whereas

aligning with the frames for grasping and placing the object

have little observed variations in their respective coordinate

systems. The imposed structure with task-parameters and

HSMM allows us to acquire a new task in a few human

demonstrations.
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