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ABSTRACT

Maximum Entropy Reinforcement Learning (MaxEnt RL) algorithms such as Soft
Q-Learning (SQL) and Soft Actor–Critic trade off reward and policy entropy,
which has the potential to improve training stability and robustness. Most MaxEnt
RL methods, however, use a constant tradeoff coefficient (temperature), contrary
to the intuition that the temperature should be high early in training to avoid over-
fitting to noisy value estimates and decrease later in training as we increasingly
trust high value estimates to truly lead to good rewards. Moreover, our confidence
in value estimates is state-dependent, increasing every time we use more evidence
to update an estimate. In this paper, we present a simple state-based temperature
scheduling approach, and instantiate it for SQL as Count-Based Soft Q-Learning
(CBSQL). We evaluate our approach on a toy domain as well as in several Atari
2600 domains and show promising results.

1 INTRODUCTION

Deep Reinforcement Learning (RL) methods that use neural-network function approximators to
learn control policies have shown great performance in domains including games (Mnih et al., 2015;
Silver et al., 2017), robotic control (Haarnoja et al., 2017), and autonomous driving (Sallab et al.,
2017). The training of such a function approximator, however, is often very sensitive to hyperparam-
eter tuning in different environments (Henderson et al., 2018). Recent work in Maximum Entropy
Reinforcement Learning (MaxEnt RL) (Fox et al., 2016; Haarnoja et al., 2018) trades off maximiz-
ing the policy values with its entropy, producing policies that are more robust to disturbances in the
environment dynamics and reward function (Haarnoja et al., 2017; Eysenbach & Levine, 2021).

MaxEnt RL follows from the maximum entropy principle (Jaynes, 2003), which states that one
should prefer maximally uninformed solutions, subject to the available evidence. MaxEnt RL there-
fore maximizes average policy entropy, subject to an attainable level of policy value. The Lagrangian
of this constrained optimization problem trades off the traditional RL objective of maximum policy
value with the expected policy entropy. The Lagrange multiplier is an inverse-temperature param-
eter β that determines the relative importance of the value and entropy terms, and corresponds to
a level of value that we believe we can attain. Intuitively, in early stages of training, β should be
lower to introduce higher stochasticity as we have low confidence that the current value estimates are
attainable. During training, we become increasingly more confident in our value estimates, and we
increase β such that the policy stochasticity decreases and eventually approaches zero. As β →∞,
the conventional RL learning objective is recovered.

Most MaxEnt RL algorithms, such as Soft Q-Learning (SQL) (Haarnoja et al., 2017), use a constant
temperature throughout training. The log-partition function in SQL’s soft Bellman backup operator
allows it to put higher weight on the policy entropy when the temperature is high, or approximate
reward maximization arbitrarily well as the temperature decreases to 0. Selecting a constant inverse-
temperature β may not reflect the changing confidence of the value estimates throughout learning.
Even when there exists a constant β that works well, it is domain-dependent, which makes it hard to
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tune as a hyperparameter. Soft Actor–Critic (SAC) (Haarnoja et al., 2018) adjusts the temperature
β−1 automatically with stochastic gradient descent, but often has poor performance in discrete action
spaces (Christodoulou, 2019). Fox et al. (2016) proposes a linear inverse-temperature schedule, in
which βi = κi in training step i. This corresponds to the intuition that β should increase throughout
learning, but the coefficient κ remains a domain-dependent hyperparameter to be tuned.

Importantly, our confidence in SQL’s value estimates is very much state-dependent. Value estimates
that have been updated more times, from more data, are more reliable. States that are more often
experienced by early exploration will have their value estimates improve in accuracy, and their β
should increase. Later in learning, some of these states may not be encountered as often, becoming
less important to train, and their β should not increase as fast. When exploration reaches novel states,
whose value estimates are less reliable, their β should start very low again, even late in training.

In this paper, we describe a simple state-dependent temperature scheduling method for MaxEnt
RL based on a pseudo-count of state value updates derived from a CTS density model (Ostrovski
et al., 2017). As a concrete instance of this method, adapted to the SQL algorithm, we present
the Count-Based Soft Q-Learning (CBSQL) algorithm. Evaluating CBSQL on 6 popular games on
the Atari 2600 platform suggests that our scheduling method improves over DQN and SQL with
a fixed temperature, and display the potential to reach state-of-the-art performance with Rainbow
integration (Hessel et al., 2018).

2 PRELIMINARIES

We address MaxEnt RL in discrete action spaces. In this section, we will introduce the notation and
framework of MaxEnt RL.

2.1 REINFORCEMENT LEARNING

We consider environments modeled as a Markov Decision Process (MDP). We describe this process
by a tuple ⟨S,A, p, r⟩, where S represents a state space and A represents a discrete action space.
p(st+1|st, at) : S × A → ∆(S) represents the probability distribution of the next state st+1 given
the current state st and action at. rt = r(st, at) : S × A → R describes the reward for each
transition t. The discounted return R, for a discount factor 0 ≤ γ < 1, is defined as R =

∑
t γ

trt.

A reinforcement learning agent learns a policy π(at|st) for interacting with its environment. The
agent and the environment jointly induce a distribution pπ(ξ) over trajectories ξ = s0, a0, s1, a1, . . ..
It is also convenient to define a state distribution pγπ(s) = (1 − γ)

∑
t γ

tpπ(st = s), describing
the distribution of st at a time t distributed geometrically with parameter 1 − γ. This satisfies
Eξ∼pπ

[R(ξ)] = 1
1−γEs∼pγ

π
[E(a|s)∼π[r(s, a)]].

2.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

The MaxEnt RL objective augments the standard reinforcement learning objective of maximizing
expected discounted rewards by adding an entropy term

π∗ = argmax
π

Es∼pγ
π

[
E(a|s)∼π[r(s, a)] +

1
βH[π(·|s)]

]
, (1)

where β is an inverse-temperature parameter that controls the stochasticity of the optimal policy by
determining the relative importance between the reward and policy entropy H[π]. In early stages of
training, β should intuitively be assigned a small value to induce stochasticity, and in later stages of
training β → ∞ to approach the deterministic behavior that optimizes the standard reinforcement
learning objective.

2.3 SOFT Q-LEARNING (SQL) AND THE MELLOWMAX OPERATOR

RL methods often involve the state–action value function Q(s, a) = E[R|s0 = s, a0 = a] and the
Bellman operator B[Q](s, a) = r(s, a) + γE(s′|s,a)∼p[maxa′ Q(s′, a′)]. The MaxEnt RL objective
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suggests a soft Bellman operator (Rubin et al., 2012)

B[Q](s, a) = r(s, a) + γE(s′|s,a)∼p

[
max
π

(
E(a′|s′)∼π[Q(s′, a′)] + 1

βH[π(·|s′)]
)]

(2)

= r(s, a) + γE(s′|s,a)∼p

[
1
β log

∑
a′∈A

exp(βQ(s′, a′))

]
∀s ∈ S, a ∈ A, (3)

where the optimizer in (2) is the softmax policy π(a|s) ∝ exp(βQ(s, a)), and the log-sum-exp
expression in (3) is the log-partition function, also called the mellowmax operator (Asadi & Littman,
2017). Mellowmax is non-decreasing in β (Kim et al., 2019) and a non-expansion for a fixed β under
the supremum norm (Fox et al., 2016), and as β →∞ it converges to pure maximization.

Soft Q-Learning (Fox et al., 2016; Haarnoja et al., 2017) uses a model-free empirical estimate of
the soft Bellman operator as the target for learning a Q function. When the Q function has a tabular
representation, the contraction property of the soft Bellman operator guarantees convergence to the
operator’s fixed point, the softmax of which is the optimal policy in (1) (Fox et al., 2016).

3 COUNT-BASED TEMPERATURE SCHEDULING

3.1 MOTIVATION

Empirical evidence from SQL suggests that a state-independent linear temperature scheduling, i.e.
using βi = κi in iteration i, can achieve good performance (Fox et al., 2016; Grau-Moya et al.,
2018). Fox (2019) proposes a closed-form state-dependent expression for the temperature that com-
pletely eliminates bias in entropy-regularized value updates in two-action environments. If the gap
between the action values Q(s, a = 0) − Q(s, a = 1) has Gaussian uncertainty with mean µA and
variance σ2

A, the prescribed inverse-temperature is β(s) = 2µA

σ2
A

. The Gaussian assumption is moti-
vated by the central limit theorem, which also suggests that the asymptotic behavior of β is to grow
linearly in the number of data points used to estimate the value gap at each state.

We propose Count-Based Soft Q-Learning (CBSQL), an algorithm based on SQL that uses a state-
dependent temperature schedule in which β(s) grows linearly with the number of times that the
algorithm updates Q(s, a), for any action a. Formally, let n(s, a) be the count of sampled data points
of the form (s, a, r, s′) used thus far in value updates. Then the inverse-temperature in CBSQL is
β(s) = κ

∑
a n(s, a), with κ > 0 a constant hyperparameter.

In addition to the aforementioned empirical and theoretical evidence supporting linear count-based
scheduling, more insight can be gained by comparing two families of successful RL algorithms.
The first family, consisting of such algorithms as G-Learning (Fox et al., 2016), SQL (Haarnoja
et al., 2017), Path Consistency Learning (PCL) (Nachum et al., 2017a), and Soft Actor–Critic
(SAC) (Haarnoja et al., 2018), aims to learn a policy that is the softmax of a value function Q(s, a)
with a low temperature. In iteration i, the policy target is

πi(a|s) ∝ π0(a|s) expβi(s)Qi(s, a) ∀s ∈ S, a ∈ A, (4)

with π0 the uniform policy, and the policy is either updated toward the target (4), or set equal to it.
Note that in their original formulations, most of these algorithms use a constant state-independent β.
The second family of algorithms, consisting of Relative Entropy Policy Search (REPS) (Peters et al.,
2010), Ψ-learning (Rawlik et al., 2010), Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015), and Trust-PCL (Nachum et al., 2017b), aims to use value estimates to gradually update the
softmax policy. Instead of the policy entropy, which is the Kullback–Leibler (KL) divergence from
a uniform prior policy, these algorithms consider a KL term with the current policy as the prior for
the update. Moreover, instead of a low temperature β−1, these algorithms place a large coefficient
κ−1 on the KL term, to induce small updates in a “trust region”. In iteration i, the policy update is
therefore

πi(a|s) ∝ πi−1(a|s) expκi(s)Qi(s, a) ∝ π0(a|s) exp

∑
j≤i

κj(s)Qj(s, a)

 . (5)

The two types of learning processes (4) and (5) can have different properties, because Qi can change
significantly between iterations. For the sake of our intuitive argument here, imagine that Q could be
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approximated by a constant, and that the inverse-temperatures κi(s) used in trust-region algorithms
were also a constant κ. Then combining the above two equations, we have

βi(s) ≈
∑
j≤i

κj(s) ≈ κi, (6)

where κ is a small constant, and i is the number of times that the update equation (5) is applied in
state s. In practice, updates are not applied to all actions in state s at the same time, leading to the
heuristic definition i =

∑
a n(s, a).

3.2 PSEUDO-COUNTS

Directly recording the number of times that the value update has been applied to state s is not useful
in practical settings, where the state space is large, and most states will rarely be visited more than
once. Moreover, a tabular mapping from s to i would fail to capture the similarity between different
states that a Q function approximator does leverage, and would vastly underestimate the effective
number of times that Q(s, a) has been updated in states similar to s.

Instead, we use a pseudo-count method derived by Bellemare et al. (2016) from a simplified pixel-
level CTS density model (Bellemare et al., 2014). Define ρ to be the CTS density model on the state
space S. Let ρk(s) be the probability assigned by the model to s ∈ S after k updates of the model.
Let ρ′k(s) be the probability that the model would assign to s if it were updated on s one more time.
The pseudo-count can then be defined as

nk(s) =
ρk(s)(1− ρ′k(s))

ρ′k(s)− ρk(s)
. (7)

Note that k is different from i in the last section and represents the total number of updates in
all states. The effective number of times that state s has been updated is its pseudo-count nk(s),
suggesting the state-dependent inverse-temperature

β(s) = κ · nk(s), (8)

where κ is a small constant. Throughout our experiments, we set κ = 0.01.

In summary, we propose a model-free reinforcement learning algorithm that, on experience
(s, a, r, s′), uses the SQL update rule

Q(s, a)← r + γmellowmax
a′;β(s′)

Q(s′, a′) = r + γ
β(s′) log

1
|A|

∑
a′∈A

exp(β(s′)Q(s′, a′)). (9)

In tabular experiments, we also update

n(s)← n(s) + 1, (10)

whereas in deep-learning experiments, we update the density model with state s, and consider the
pseudo-count (7). The inverse-temperature is then scheduled as β(s) = κ · n(s). We present the
pseudocode in Alg 1.

4 EXPERIMENTS

In this section, we evaluate our approach in tabular representation on a toy domain, and in deep
learning on six popular Atari 2600 environments.

4.1 TABULAR REPRESENTATION

We compare our approach to DQN and SQL on a toy domain of noisy transitions in a chain-linked
graph. This environment is small enough to directly find the optimal policy.

We define a noisy chain-walk problem with five states, each state with two possible actions (Figure
1a). The agent always starts at state 0 and each episode ends after 5 steps. The agent receives a
reward of +1 when it takes action 1 at state 4, and a reward of −0.1 when it takes any action at any
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Algorithm 1 Count-Based Soft Q Learning (SQL)

Initialize Q network parameters θ
Initialize target Q network θ ← θ
Initialize an empty replay buffer D ← ∅
Initialize a density model ρ
for each iteration do

for each step t in the rollout do
In state st, sample action at from the ϵ-greedy policy for Qθ(st, ·)
Execute action at and observe reward rt and new state st+1

Store the transition (st, at, rt, st+1) into the replay buffer D
end for
for each gradient step do

Sample random batch (s, a, r, s′) from D
β ← κ · ρ(s

′)(1−ρ′(s′))
ρ′(s′)−ρ(s′)

y = r + γmellowmaxa′;β Qθ̄(s
′, a′)

Perform gradient descent on (y −Qθ(s, a))
2

Update the density model with state s
Every target freq steps, update θ̄ ← θ

end for
end for

other states. The reward that agent receives is always corrupted with an additive Gaussian noise of
N (0, 1).

The optimal expected reward is 0.6. Figure 1b shows the rewards averaged over 1000 runs compar-
ing Q-learning, SQL with different constant inverse-temperature parameters β ∈ {10, 100, 1000},
and CBSQL with a tabular representation. These results suggest that CBSQL can converge sig-
nificantly faster and obtain higher rewards than both SQL and Q learning within 300 episodes of
training in this simple domain.

(a) Domain Demonstration (b) Rewards averaged over 10000 runs

Figure 1: Noisy Chain-Walk Problem

4.2 NEURAL NETWORK REPRESENTATION

We evaluate our method on six Atari 2600 game from the arcade learning environment (Bellemare
et al., 2013) and compare it with DQN and SQL under the same hyperparameter setting from Mnih
et al. (2015). We train the agents on 3M frames and record the rewards. CBSQL appears to outper-
form DQN and fixed-temperature SQL in 4 of the 6 games (Table 1, Figure 2).
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Game DQN SQL(β = 100) SQL(β = 1000) CBSQL
Breakout 5.9 (±5.9) 5.9 (±4.5) 5.1 (±4.7) 8.2 (±6.1)
Freeway 21.0 (±1.5) 14.6 (±8.5) 22.56 (±4.7) 25.82 (±4.9)
Pong 1.93 (±2.6) 17.83 (±2.2) 16.31 (±2.7) 17.56 (±2.0)
Q*bert 568.4 (±1101.9) 828 (±1411.7) 564.5 (±1097.5) 875.3 (±1254.6)
Seaquest 13.5 (±24.1) 4 (±60.2) 17.2 (±24.0) 84.6 (±60.2)
Space Invaders 132.7 (±113.2) 158.9 (±128.5) 132.25 (±118.4) 138.9 (±112.8)

Table 1: DQN, fixed-temperature SQL, and CBSQL average rewards (± standard deviation). Raw
scores are averaged over the last 100 testing episodes across 3 runs.

Figure 2: CBSQL results compared with DQN and fixed-temperature SQL, without Rainbow. Re-
wards are averaged over 3 runs.

DQN by itself is a powerful algorithm, but in recent years more extensions to it have been proposed
that greatly improve its performance. Interestingly, SQL and CBSQL can be combined with many
of these extensions, allowing us to compare these methods after integrating popular DQN exten-
sions. We integrate CBSQL with Rainbow DQN (Hessel et al., 2018), a state-of-the-art reinforce-
ment learning algorithm for memoryless agents, which includes multi-step targets (Sutton & Barto,
2018), double Q-learning (Hasselt, 2010), prioritized experience replay (Schaul et al., 2015), dueling
networks (Wang et al., 2016), distributional RL (Bellemare et al., 2017), and noisy networks (Fortu-
nato et al., 2017). All of these methods can be straightforwardly applied to soft Q-learning, with the
exception of multi-step targets and distributional RL, which we discuss next.

Multi-step learning. Multi-step targets with a well-tuned number of steps n can lead to faster
learning in on-policy RL algorithms (Sutton & Barto, 2018) by trading off the bias and variance
of the return estimates (Kearns & Singh, 2000). The n-step truncated return at time t is r

(n)
t =∑n−1

k=0 γ
kr(st+k, at+k). Hessel et al. (2018) defined a multi-step variant of DQN by minimizing the

alternative loss (r(n)t +γn maxa∈A Qθ̄(st+n, a)−Qθ(st, at))
2 and demonstrated through empirical

experiments that n-step targets can outperform single-step targets in DQN, despite the off-policy
experience providing biased estimates of the n-step return. In SQL with inverse-temperature β, the
n-step truncated return is

r̃
(n)
t = r

(n)
t + 1

β

n−1∑
k=1

γkH[π(·|st+k)]. (11)
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Unfortunately, empirical policy entropy estimates are often very noisy. It is also unclear which β
should be used in off-policy estimates of (11). These considerations call for further study, and in
this work we simply use 1-step returns for SQL and CBSQL.

Distributional RL. Unlike conventional RL which estimates the expected return, distributional RL
estimates the distribution of the return at time t over the stochasticity of the environment and the
policy. The estimator uses a fixed N -dimensional vector z of values spaced evenly along the range
[vmin, vmax] of possible returns. The distribution of Q(st, at) is then represented by a categorical
distribution pθ(st, at) over the values of z. Distributional DQN updates pθ(s, a) by minimizing its
KL-divergence from a projected target distribution induced by the categorical distribution pθ̄(s

′, a∗)
over the values r + γz. Here the action a∗ is chosen greedily with a∗ = argmaxa′ z⊺pθ̄(s

′, a′).
We adapt distributional RL to soft Q-learning and CBSQL by defining a policy distribution of

π(a′|s′) = expβ(s′)z⊺pθ̄(s
′, a′)∑

ā′ expβ(s′)z⊺pθ̄(s
′, ā′)

over the values r + γ
(
z − 1

βD[π(·|s
′)∥π0]

)
.

We train the Rainbow-variations of SQL and CBSQL as described above over 500K frames each
for the atari game Breakout and Q*bert against Rainbow-DQN(See Fig 3). Rainbow-CBSQL out-
performs Rainbow DQN in both these environments.

Figure 3: CBSQL results compared with DQN and fixed-temperature SQL, with Rainbow. Rewards
are averaged over 5 runs.

Game DQN SQL(β = 100) SQL(β = 1000) CBSQL
Breakout 10.2 (± 4.9) 5.5 (± 3.6) 3.6 (± 2.1) 39.9 (± 15.4)
Q*bert 356.0 (± 202.8 ) 30.0 (± 60.0) 1.0 (± 4.9) 370.0 (± 43.0)

Table 2: CBSQL results compared with DQN and SQL with fixed temperatures, combined with
Rainbow. Raw scores averaged over last 50 testing episodes across 5 runs.

5 CONCLUSION

In this paper, we presented a simple method for temperature scheduling in soft Q learning which
could be potentially applied to other maximum entropy reinforcement learning algorithms. We
showed through empirical experiments that our method can outperform DQN and SQL with or
without the rainbow framework.
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A HYPERPARAMETERS

Hyper-parameter value
Discount factor γ 0.99
Exploration ϵ 0.01
Learning rate 1

Table 3: Hyper-parameters for tabular experiments.

Hyper-parameter value
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Reward clipping [-1, 1]
Discount factor γ 0.99
Initial exploration 1
Final exploration 0.1
Final exploration frame 1000000
Learning rate 0.00025
Replay buffer size 1000000
Minibatch size 32
Q network channels [32, 64, 64]
Q network filter size 8× 8, 4× 4, 3× 3
Q network stride 4, 2, 1
Q network hidden units 512

Table 4: Hyper-parameters for DQN, SQL and CBSQL on Atari 2600. The values of all the hyper-
parameters are based on the work from Mnih et al. (2015).

Hyper-parameter value
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Reward clipping [-1, 1]
Discount factor γ 0.99
Learning rate 0.0000625
Replay buffer size 1000000
Minibatch size 32
Q network channels [32, 32, 64]
Q network filter size 8× 8, 4× 4, 3× 3
Q network stride 4, 2, 1
Q network hidden units 512
Noisy net σ0 0.5
Multi-step returns n 4 for DQN, 1 for SQL and CBSQL
Distributional atoms 51
Distributional min/max values [-10, 10]

Table 5: Hyper-parameters for DQN, SQL and CBSQL with Rainbow Integration on Atari 2600.
The values of all the hyper-parameters are based on the work from Hessel et al. (2018).
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