
Reinforcement Learning in
Partially Observable Decision Processes

Roy Fox

dhlgd ikildza miwefig z
inlziwlg mitvp

qwet irex

Reinforcement Learning in
Partially Observable Decision Processes

Research Thesis

In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

Roy Fox

Submitted to the Senate of the Technion – Israel Institute ofTechnology
Adar II 5768 Haifa April 2008

dhlgd ikildza miwefig z
inlziwlg mitvp
xwgn lr xeaig

x`ezd zlawl zeyix
d ly iwlg ielin mylaygnd ir
na xhqibn
qwet irex

l`xyil ibelepkh oekn - oeipkhd hpql ybed2008 lixt` dtig g"qyz'd 'a x
`

The research thesis was done under the supervision of Prof. Moshe Tennenholtz
of the Faculty of Industrial Engineering and Management

I sincerely thank Prof. Moshe Tennenholtz for all his support and help, and all that he taught me

The generous financial help of the Technion is gratefully acknowledged

ledipe diiyrz zq
pdl dhlewtdn uledpph dyn 'text ziigpda dyrp xwgnd

ip
nily lk lre ,ezxfr lre ezkinz lr uledpph dyn 'textl dpezp iz
ez

izenlzyda dai
pd zitqkd dkinzd lr oeipkhl d
en ip`

xivwz,ezaiaq mr okeq ly oilnebd-iqgi ly miihnzn mil
en md miiaewxn dhlgd ikildzdpzynd ,avn i
i lr zx`ezn daiaqd .ef divw`xhpi`n zlrez biydl ezti`y lyedtvp `l e` ,(fully observable)okeqd i"r ixnbl dtvp df avny okzi .divw`xhpi`d jldna,daiaqd avna ziwlg zetvl leki okeqd ,xzei miakxend mixwna .(unobservable)llkavn lr rityn okeqd eizelerta .(partially observable)ziwlg dtvpziwlg dtvpziwlg dtvp jildzdy xn`p f`e.ef drtyda zelzk lenbz lawne ,daiaqd,oilnebd-iqgia mihleyd miwegd z` dligzkln r
ei epi` okeqd minieqn mixwna-xin zlrez zbyd ,okeql y`xn re
i l
end m` .eizehlgd ze`vez zeidl zeieyr dnejezn l
end z`
enll okeqd lr ,zxg` .(planning) oepkz zira `id jildzdn ziad
inl beq .ziaxinl daexw zlrez biydl el xyt`zy d
ina zegtl ,divw`xhpi`d.(reinforcement learning)miwefig z
inlmiwefig z
inlmiwefig z
inl iexw df-iaewxn dhlgd ikildza miwefig z
inl ly mihaid xtqna mip
 ep` ef d
eara
(interaction divw`xhpi`d zeikeaiqdivw`xhpi`d zeikeaiqdivw`xhpi`d zeikeaiq byen z` mibivn ep` .ziwlg mda zetvpdy mi-ren r
in daiaqdn witn miwefig z
inl mzixebl` ea avwl d
in `edy ,complexity),ezlertl zyx
pd onfd zenk z` z

en mzixebl`d ly dvixd onf zeikeaiq
era .lizeikeaiq .d
inll zyx
pd oilnebd zelert zenk z` z

en divw`xhpi`d zeikeaiqlr mdl wewf d
inl mzixebl`y ixrfnd divw`xhpi`d i
rv xtqn `id divw`xhpi`dly divw`xhpi`d zeikeaiq z` migzpn ep` .ziaxinl daexw didz okeql zlrezdy zpn.ziwlg mitvp dhlgd ikildz ly zewlgn xtqn
(Partially Observable Markov Decision Pro-ziwlg mitvp miiaewxn dhlgd ikildz.ax xwgn
wena z`vnpd ,dhlgd ikildz ly daeyg dwlgn mieedn cesses, POMDPs)miwefig z
inle ,daiaqd avna zetvl zleki (llk oi` e`) i
 oi` minieqn POMDPs-a,miwefig zervn`a
enll ozipy POMDPsly dwlgn-zz mi`xn ep` .zixyt` dpi` llk.zikixrn divw`xhpi` zeikeaiq illk ote`a zyxe
dzeira od xara exwgp da ,OPOMDPsz`xwpd ,POMDPsly dwlgn-zza mip
 ep``id j` ,zixyt` izla dpi` daiaqd avna ditv ,OPOMDPs-a .d
inl ode oepkz

zphwda el dler j` ,avnd z` oihelgl el dlbnd dlert okeql .dxwi zeidl dieyr-iqa
inz zixyt` OPOMDPs-a miwefig z
inl ik mi`xn ep` .jildzdn zlrezd-lgd ikildza d
inll dzedna dne
 ef d
inl zira .zil`inepilet divw`xhpi` zeikeadpexzte ,(Fully Observable Markov Decision Processes, MDPs)ixnbl mitvp miiaewxn dh.hrna j` xzei akxenmipkn ep` dze` ,OPOMDPs-l dne
d POMDPsly dwlgn-zz mibivn ep` okn xg`lxzei ziwlg mitvp mikildza d
inl ly zeakxend z` zqtez ef dwlgn-zz .OCOMDPs-a enk ,OCOMDPs-a .geziple revial xzei dyw da dliri d
inle ,OPOMDPsxy`nzeidl dieyrd ,z
gein ditv zlert zervn`a zixyt` daiaqd avna ditv ,OPOMDPswitdl
vik x`zle ,ef ditv zlert rval izn ahid lewyl yx
p d
inld mzixebl` .dxwi.l
end lr divnxetpi` i
 dpnnx`y ,d`lnd ditvd zlert
aln ,OCOMDPs -ay `ed mil
end oia
g` l
adavn OCOMDPs-ay `ed sqep l
ad .daiaqd avn lr ditv lk zewtqn opi` zelertddbx
nd zilrl i`xg` df sqep l
ad ik xxazn .dlertd zeawra zepzydl ieyr daiaqdoky ,d
inl zlert rval ep`eaa daiaqd avn z` xxal ozip `l zrk .dirad zeakxena-
fd `evnl miyx
p ep` .
enll epivxy dnl ihpalx izla zeidl ieyr xexiad xg`l avndzakxen d
inl zlert lk ok lre ,ze`
eea re
i epi` daiaqd avn xy`k mb d
inl zeiepnavw gezip mb enk ,
nlp xaky l
endn wlgd ly iedifd zira xzei zakxen ok enk .xzei.d
inld-a miwefig z
inll UR-MAX mzixebl` zbvd `id ef dfz ly zixwird d`vezdmzixebl`d z` mibivn ep` .zil`inepilet divw`xhpi` zeikeaiq lra `edy ,OCOMDPs.ezeliri z`e ezepekp z` migiken oke ,eixeg`ny divi`ehpi`ae ea mip
e

Contents

1 Introduction . 1
2 Models . 3

2.1 Markov Decision Processes . 3
2.2 Scoring Policies . 4
2.3 Partially Observable and Unobservable Markov DecisionProcesses . . . 5
2.4 POMDPs as MDPs over Belief-States6

3 Reinforcement Learning (RL) .. . 7
3.1 Planning and Learning . 7
3.2 Tradeoffs in Planning and Learning 8
3.3 Learning and Complexity . 9
3.4 Learning in Infinite Horizon .10

4 Related Work . 13
5 Hardness of RL in POMDPs . 14
6 Efficient RL in OPOMDPs . 15
7 Efficient RL in OCOMDPs . 18

7.1 Learning with respect to the Underlying UMDP 19
7.1.1 Outline . 19
7.1.2 Hypothetical Model . 21
7.1.3 Updating the Model . 23
7.1.4 Analysis of the Update Procedure 25
7.1.5 The Main Procedure . 30
7.1.6 Analysis of UR-MAX . 31

7.2 Learning States and Rewards . 38
7.3 Learning a UMDP Policy . 40
7.4 Learning with respect to the OCOMDP41

8 Summary . 43
A Appendix: Equivalence of Observation Models 45

i

ii

List of Figures

1 Scheme of interaction between agent and environment 2
2 A POMDP with no optimal infinite horizon policy 8
3 Password Guessing Problem .. 14
4 Scheme of a model-based RL algorithm 16
5 First case of the Update procedure 27
6 Second case of the Update procedure 27
7 Classes of decision processes 44
8 Efficient representation of a function from action to following state 46

iii

iv

mipiipr okez1 . `ean 13 . mil
en 23 . (MDPs)miiaewxn dhlgd ikildz 2.14 . zeiepi
nl oeiv ozn 2.25 (UMDPs)mitvp-`le (POMDPs)ziwlg mitvp dhlgd ikildz 2.36 . dpen`-iavn lrn MDPs -k POMDPs 2.47 . miwefig z
inl 37 . d
inle oepkz 3.18 . d
inlae oepkza mipefi` 3.29 . zeikeaiqe d
inl 3.310 . iteqpi` wte`a d
inl 3.413 . min
ew mixwgn 414 . POMDPs-a miwefig z
inl ly iyew 515 . OPOMDPs-a dliri miwefig z
inl 618 . OCOMDPs-a dliri miwefig z
inl 719 . izizyzd UMDP -l qgia d
inl 7.119 . illk 7.1.121 . ihzetid l
en 7.1.223 . l
end oek
r 7.1.325 . oek
rd zxby gezip 7.1.430 . ziy`xd dxbyd 7.1.531 . UR-MAX gezip 7.1.638 . milenbzde miavnd z
inl 7.240 . UMDP zeipi
n z
inl 7.341 . OCOMDP-l qgia d
inl 7.443 . mekiq 845 . ditv il
en ly zeliwy :gtqp '`

i

ii

mixei` zniyx2 . daiaql okeq oia oilnebd iqgi znikq 18 iteqpi` wte`l zilnihte` zeipi
n `ll POMDP 214 . `nqiq yegip zira 316 l
en qqean miwefig z
inl mzixebl` ly dnikq 427 . oek
rd zxby ly oey`xd dxwnd 527 . oek
rd zxby ly ipyd dxwnd 644 . dhlgd ikildz ly zewlgn 746 . awerd avnl dlertn divwpet ly liri bevi 8

iii

iv

Abstract
Markov decision processes are mathematical models of an agent’s interaction with its

environment, and its attempt to obtain some benefit from thisinteraction. In the more com-
plicated cases, the agent can only partially observe the state of the environment, and the
process is calledpartially observable.

It may also be the case that the agent doesn’t initially know the rules that govern the
interaction, and what the results of its decisions may be. Then the agent has to learn the
model from the interaction, a type of learning calledreinforcement learning.

In this work we discuss several aspects of reinforcement learning in Markov decision pro-
cesses in which observability is partial. We introduce the concept ofinteraction complexity,
which is a measure of the rate in which reinforcement learning algorithms extract from
the environment useful information. We then explore the interaction complexity of several
classes of partially observable decision processes.

Partially Observable Markov Decision Processes (POMDPs) are a central and exten-
sively studied class of decision processes. In some POMDPs,observability is too scarce,
and reinforcement learning is not possible. We show a subclass of POMDPs which can be
learned by reinforcement, but requires exponential interaction complexity.

We discuss a subclass of POMDPs, called OPOMDPs, in which both planning and learn-
ing have been previously studied. We show that reinforcement learning in OPOMDPs is
always possible with polynomial interaction complexity.

We then introduce a closely related subclass of POMDPs whichwe call OCOMDPs.
OCOMDPs capture more of the complexities of learning in POMDPs than OPOMDPs do,
and efficiently learning them is considerably more difficultto perform and analyze than
learning OPOMDPs.

The main result of this thesis is the UR-MAX algorithm for reinforcement learning in
OCOMDPs with polynomial interaction complexity. We introduce and discuss the algorithm
and some of the intuition behind it, and prove its correctness and efficiency.

1 Introduction

The widely applicable subject of decision making has attracted attention in many fields of re-
search for many decades. Its normative aspect is the desire to make "good" choices. We identify
an agent, which is the deciding entity, and anenvironment, which consists of everything else
relevant to the decision problem. We may think of the environment as having somestate, which
is a complete description of these relevant features. The agent has some perception of that state,
formed by anobservationthe agent makes of the state.

In its decisions, oractions, the agent may affect the state of the environment, as well asthe
nature of the observation. Some of these influences may be more desirable to the agent than
others, and this serves as an incentive to the agent to prefersome decisions to others. This
benefit, orreward, which the agent obtains, together with the observation, thus closes a loop of
action and reaction between the agent and the environment (Figure 1).

If we wish to apply analytic tools to measure the quality of decisions and, hopefully, to
automate the process of making good decisions, we can define the concepts above quantitatively,
and look for algorithms which interact with the environmentto obtain provably high rewards.

1

environment
(state)

agent

action
observation +
reward

Figure 1: Scheme of interaction between agent and environment

Mathematical models of decision making are usually classified by the amount of information
which the observation holds of the state. Infully observablemodels the entire state is observed.
In unobservablemodels no useful information about the state is revealed by the observation.
Generalizing both arepartially observablemodels, in which the amount of information about
the state provided by the observation can be anything between none and all.

The problem of making good decisions has another important aspect. Prior to the interac-
tion, the agent may or may not know the model which will governs the environment – the way
the actions affect the state, the way observations are made and so on. If the model is known
beforehand, the question of making good choices becomes a calculation problem, and is named
planning. If, however, the model is initially unknown, the agent has to interact with the envi-
ronment, in order to learn enough of the model to eventually decide well. Thisreinforcement
learningproblem sets the challenge of extracting information from the interaction, in addition to
the calculation problem of planning. Our focus in this work is addressing this challenge when
observability is partial.

In chapter 2 below we provide formal definitions of the modelswhich were briefly described
here. In chapter 3 we define the problems of planning and learning and discuss some of their
features. We also define the concept ofinteraction complexity, an important and useful mea-
sure for the efficiency of reinforcement learning algorithms, which has been implicit in other
publications. In chapter 4 we briefly discuss previous research which relates to this work.

The last three chapters analyze the interaction complexityof reinforcement learning in par-
tially observable decision processes. Chapter 5 includes ahardness result for POMDPs, the most
general class of models we discuss. In chapter 6 we show how R-MAX , a previously published
algorithm for efficient reinforcement learning in fully observable models, can be extended effi-
ciently to some class of partially observable processes called OPOMDPs.

In chapter 7 we introduce another class of partially observable decision processes called
OCOMDPs. Despite the similarity in definition to OPOMDPs, learning in this class is con-
siderably more complicated, and demonstrates some of the difficulties of learning under partial
observability. Our main result in this work is UR-MAX , an efficient algorithm for reinforcement
learning in OCOMDPs.

2

2 Models

We present some well studied mathematical models of an environment with which a decision
making agent is interacting. Time in these models advances discretely, and in each time step
the agent performs an action of its choice. The state of the environment following this action
depends stochastically only on the action and the previous state, which is known as theMarkov
property.

In Markov Decision Processes (MDPs), the agent fully observes the state in each step before
taking an action. This greatly simplifies the model, its solvability and learnability.

In Partially Observable MDPs (POMDPs), the agent doesn’t have direct access to the state.
Rather, in each step it makes an observation which may revealinformation about the state. This
is a much more general and complex model.

Unobservable MDPs (UMDPs)take this handicap to the extreme, where no useful informa-
tion about the state is available to the agent.

Following are definitions of these models.

2.1 Markov Decision Processes

Definition 1 (MDP). A Markov Decision Process (MDP) is a tupleM � 〈S, A, t, r〉 where

• S is a finite non-empty set of possible environment states,

• A is a finite non-empty set of possible agent actions,

• t : S � A Ñ ∆pSq is a distribution-valued state transition function, and

• r : S Ñ r0, 1s is an agent’s reward function.

Theinteractionof an agent with an MDP is a stochastic processpsi, aiqi¥0, where the random
variablessi andai are distributed over the domainsS andA, respectively.

Three elements induce this process. First, the initial states0 is distributed according to some
initial state distributionb0 P ∆pSq. This distribution is known to the agent, and arbitrary unless
otherwise defined.

Second, the process is affected by the agent’s choice of action in each step. We define
H � �

i¥0 pS � Aqi � S to be the set ofobservable histories. Each time the agent is required
to choose an action, there’s a historyh P H which describes the sequence of past events the
agent has witnessed – the previous states and actions. The agent’s policy is then a function
π : H Ñ ∆pAq, which determines, for everyi ¥ 0, the distribution ofai � πphiq, where
hi � �psj , ajqi�1

j�0, si

�
is the observable history afteri steps.

Third, the state transitions are determined by the model, with si�1 � tpsi, aiq, for i ¥ 0.
r is of no consequence for the process itself. It only becomes important when we use it to

score policies in the following section. Its definition as a function fromS to r0, 1s may seem
overly restrictive, but is in fact equivalent to any other common definition, as explained in the
following section.

3

2.2 Scoring Policies

We are interested in making "good" decisions. The quality ofa policy, for a given model and
a given initial distribution, is determined by some quantity of the stochastic process, or more
specifically, of the sequence of rewardsprpsiqqi¡0. Some commonly used expressions for this
measure are:

• For a given finitehorizonT :

1. The expected average of the firstT rewards,E 1
T

°T

i�1 rpsiq.
2. The expected discounted sum,E

°T
i�1 γirpsiq, for some discountγ P p0, 1q.

• For infinite horizon:

1. The infimum limit of the expected average,lim infTÑ8 E 1
T

°T

i�1 rpsiq.
2. The expected discounted sum,E

°
i¡0 γirpsiq, for someγ P p0, 1q.

In the infinite horizon case, the second expression may make more sense than the first, in
which the contribution of each reward tends to0. In this work we are primarily concerned
with the finite horizon case, and therefore use the simpler undiscounted expected average. This
measure we call thereturn of the policy, and define it to be

UMpb0, π, T q � E
1

T

Ţ

i�1

rpsiq
for an initial state distributionb0, a policyπ and a finite horizonT , and

UMpb0, πq � lim inf
TÑ8 UM pb0, π, T q

for infinite horizon.
We conveniently use a rather specific definition of the rewardfunction, r : S Ñ r0, 1s.

However, other functions can be represented in this formulation, in a way which preserves the
meaning of the return as a quality measure. To be exact, letM 1 � 〈S, A, t, r1〉 be a model
where the reward functionr1 that is not fromS to r0, 1s, andU 1 a return which will be defined
appropriately below. We reduceM 1 to a modelM̃ with rewardsr̃ : S Ñ r0, 1s such that the
returnUM̃ is monotonic inU 1

M 1.
• Suppose thatr1 : S Ñ R is a reward function which is not restricted tor0, 1s, andU 1 is the

standard return formula.

SinceS is finite, r1 is bounded,r1 : S Ñ rRmin, Rmaxs, with Rmin Rmax. Then we use
r̃ � pr1�Rminq{pRmax�Rminq, which is restricted tor0, 1s while affectingU monotonically.

• Suppose that rewards are stochastic,r1 : S Ñ ∆pRq, andU 1 replaces eachrpsiq in the
standard formula with a random variableri � r1psiq.
Since the return only depends on the expected reward, we taker̃ � E r1, normalized as in
the previous item.

4

• Suppose that rewards depend on the actions,r1 : S �A Ñ r0, 1s. U 1 usesr1psi, aiq instead
of rpsiq, so that rewards are obtained for acting well, not for merelyreaching good states.
Also, the summation inU 1 should start fromi � 0, instead of1.

The trick in this reduction is to define a new set of states, which remember not only the

current state, but also the previous state and action. Formally, let M̃ � 〈

S̃, A, t̃, r̃
〉

with

S̃ � S2 � A. The transition functioñt remembers one previous state and action,

t̃ppscurr, sprev, aprevq, acurrq � ptpscurr, acurrq, scurr, acurrq,
and the reward for the reached state is actually the reward for the previous state and action

r̃ppscurr, sprev, aprevqq � r1psprev, aprevq.
If we let the initial distribution bẽb0pps0, ŝ, âqq � b0ps0q for some fixed̂s P S andâ P A,
andπ̃ be the policy inM̃ which corresponds to a policyπ in M 1, then

UM̃pb̃0, π, T q � E
1

T

Ţ

i�1

r̃ps̃iq �� E
1

T

Ţ

i�1

r1psi�1, ai�1q �� E
1

T

T�1̧

i�0

r1psi, aiq � U 1
M 1pb0, π, T q.

2.3 Partially Observable and Unobservable Markov DecisionProcesses

Definition 2 (POMDP). A Partially Observable Markov Decision Process (POMDP) is atuple
M � 〈S, A, O, t, r, θ〉 where

• S, A, t andr are as in an MDP,

• O is a finite non-empty set of possible agent observations, and

• θ : S � A Ñ O is an agent’s observation function.

In POMDPs the agent doesn’t observe the state at each step, and therefore can’t base its
actions on it. Instead, the agent’s action includes some sensory power, which provides the
agent with an observation of some features of the state. The set of observable histories here
is H � �i¥0 pA�Oqi, and the agent’s policy isπ : H Ñ ∆pAq, such thatai � πphiq, where

hi � �paj , θpsj, ajqqi�1
j�0

�
is the sequence of past actions and observations. The returnfunctionUM is defined here exactly
as in MDPs.

5

In most publications, the observation depends on the state and the action stochastically. This
has the interpretation that the value of the observed feature is generated "on demand" rather than
being intrinsic to the state. But these classes of models areequivalent, in the sense that each can
be reduced to the other. We can even restrict the model not to allow the observation to depend on
the action, or otherwise extend it to allow the observation to depend on (or have joint distribution
with) the following state, and equivalence is still preserved, as discussed in Appendix A.

An Unobservable Markov Decision Process (UMDP)is a POMDP in which there are no
observations, or more precisely, observations provide no useful information. Formally, the eas-
iest way to define a UMDP is as a POMDP in whichO � tKu, so the constant observationK
provides no information of the state. Note that in both POMDPs and UMDPs, the rewards are
generally not considered to be observable, and the agent can’t use them in its decisions, unless
they are explicitly revealed byθ.

2.4 POMDPs as MDPs over Belief-States

When observability is partial, the agent may not know the true state of the environment. In each
step, the agent can calculate the probability distributionof the state, given the observable history,
a distribution referred to as the agent’sbelief of what the state may be.

It’s sometimes useful to view POMDPs as "MDPs" in which beliefs play the role of states.
For a POMDPM � 〈S, A, O, t, r, θ〉, consider the modelM 1 � 〈S 1, A, t1, r1〉. M 1 is like an
MDP in every aspect, except thatS 1 � ∆pSq is not finite. To define the transition function
t1 : S 1 � A Ñ ∆pS 1q, consider the beliefb P S 1 which is the distribution of the state given some
observable historyh. Now suppose thata is taken, and that the observation iso, i.e. the next
history isph, a, oq. Then the next belief is

b1 � °
s:θps,aq�o bpsqtps, aq°

s:θps,aq�o bpsq .

t1pb, aq is the distribution ofb1 (a distribution over distributions of states), and it receives the value
above with probability

Pr po|h, aq � ¸
s:θps,aq�o

bpsq.
Note that when the observation is constant, as in UMDPs, the belief-state transition is determin-
istic. This fact will prove very useful in chapter 7.

Using t1, and given the initial state distribution (which is the initial belief-state inM 1), we
can translate observable histories into beliefs. Then policies inM translate into policies inM 1.
Since the return of a policy only involves the expected rewards, takingr1pbq � °

s bpsqrpsq will
give identical returns for a translated policy inM 1 as for the original policy inM .

6

3 Reinforcement Learning (RL)

3.1 Planning and Learning

Two objectives naturally arise when considering models of decision making. The first,planning,
is the automated solution of the model.

Definition 3 (Finite Horizon Planning). The finite horizon POMDP planning problem is to find
an algorithmA which, given a modelM , an initial state distributionb0, and a horizonT , finds a
policy πA � ApM, b0, T q which, when used forT steps, maximizes theT -step return,

UMpb0, πA, T q � max
π

UMpb0, π, T q.
Definition 4 (Infinite Horizon Planning). The infinite horizon POMDP planning problem is to
find an algorithmA which, given a modelM , an initial state distributionb0 and a marginǫ ¡ 0,
finds a policyπA � ApM, b0, ǫq which, when used indefinitely, approaches the supremum
return,

UMpb0, πAq ¥ sup
π

UMpb0, πq � ǫ.

The margin is required because generally a maximizing policy may not exist. As an example
where no optimal policy exists, suppose thatS � ts0, s1, sgood, sbadu, A � ta0, a1, a?u, and
O � to0, o1u (Figure 2). We start in eithers0 or s1 with equal probability. In these states, the
actionsa0 anda1 are an attempt to guess the state, and take us deterministically to sgood or sbad,
respectively if the guess is right (i.e.ai is taken fromsi) or wrong (i.e.a1�i is taken fromsi).
The actiona? stays in the same states0 or s1, but provides an observation which helps determine
the state – in statesi the observation isoi with probability2{3 ando1�i with probability1{3. Once
we take a guess, though, and reachsgood or sbad, we always stay in the same state. The rewards
arerps0q � rps1q � 0, rpsbadq � 1{2 andrpsgoodq � 1. Since the process continues indefinitely,
making the right guess makes the difference between approaching an average reward of1 or
1{2, so any finite effort to improve the chances is justified. However, these chances improve
indefinitely whenevera? is taken. Since there’s no largest finite number of times to take a?

before guessing, there’s no optimal policy. Some related results can be found in [13].
It should also be noted that it’s enough to focus ondeterministicpolicies, i.e. ones in which

the action is determined by the history,π : H Ñ A. Since the return in POMDPs is multilinear
in the agent’s policy, there always exists an optimal deterministic policy.

Matters become more complicated when the real model of the environment’s dynamics is
unknown, as is often the case in actual real-life problems. The second objective,learning, is
the automated discovery of the model, to an extent which enables approaching the maximal
return. Here the model isn’t given as input to the algorithm.Instead, the agent must interact
with the environment which implements the model, and extract from this interaction information
which will allow it to devise a near-optimal policy. This type of learning is calledreinforcement
learning, and will be defined formally later. Note that it’s possible for the model never to become
fully known to the agent, but enough of it must be revealed in order to plan near-optimally.

7

s0

r � 0

s1

r � 0

sgood

r � 1

sbad

r � 1{2
a0

a1

a?

o0

o1

2{3
1{3

a1

a0

a?

o0

o1

1{3
2{3

a0, a1, a?

a0, a1, a?

Figure 2: A POMDP with no optimal infinite horizon policy

3.2 Tradeoffs in Planning and Learning

In planning, a balance must be struck between short-term andlong-term considerations of return
maximization. This stems from the fact that the identity of the state affects simultaneously the
reward, the observation and the following state. In the short term, rewards count directly towards
the return. Obviously, a high return cannot be achieved without high rewards. In the long term,
future rewards depend on future states, as some states may lead to better rewards than others.
Therefore in choosing an action it’s essential to consider not only the expected reward of the
immediately next state, but also the possibility and probability of reaching future states with
high expected rewards.

When observability is partial, the agent may not know the true state of the environment. We
are still considering planning, and the model is completelyknown, but not the state at each step.
The agent can calculate its belief, the probability distribution of the state given the observable
history. This distribution is the best one for the agent to use in its future planning, and gener-
ally speaking, the less uncertainty this belief contains – the better expected reward the agent can
achieve, as the example of Figure 2 shows. Hence long term planning also involves the obser-
vations and the certainty they give of the identity of states. The agent must therefore balance
all three aspects of the effects its actions have: the magnitude of rewards obtained, the potential
created to reach better future states, and the amount of certainty gained, in a three-way tradeoff.

In learning, these considerations are valid as well. Initially, however, the model in unknown,
and a balancing policy cannot be calculated. As informationregarding the model is collected,
another kind of balance must be reached, that betweenexplorationandexploitation. On the one
hand, in order to improve the return, the agent must choose actions which it has tried before
and found to effectively balance the short-term and the long-term rewards. On the other hand,
poorly tested actions may turn out to be even more effective,and must be checked. The tradeoff
between exploiting known parts of the model and exploring unknown parts is an important aspect
of reinforcement learning.

8

3.3 Learning and Complexity

In all but trivial cases, at least some exploration must precede exploitation. The unavoidable de-
lay in implementing a near-optimal policy has significant consequences on the kind of solutions
to the learning problem we may expect to exist.

First, by the time knowledged planning can take place, the agent’s belief may irrecoverably
become arbitrarily worse than the initial distribution. Inorder to reveal the effects of actions,
the agent must try every action. In fact, it has to try them many times, in order to estimate the
transition distribution in possibly many states. This exploration process may put the environment
through a variety of states, and the agent through a variety of beliefs. Therefore, a learning agent
cannot be expected to maximize a return which depends on the initial belief. Many publications
assume some conditions of connectedness under which the initial belief may always be returned
to (for example, see [5]), but we shall not restrict our models as much. The agent’s objective in
learning will therefore be to maximize a version of the return function which is independent of
the initial belief. The optimalT -step return will be

U�
MpT q � min

b̃0

max
π̃

UMpb̃0, π̃, T q,
i.e. the return of the best policy from the worse initial belief, when the policy is aware of the
belief. Similarly, the optimal infinite horizon return willbe

U�
M p8q � min

b̃0

sup
π̃

UMpb̃0, π̃q.
Second, the unavoidable delay in producing a good plan may prevent learning in the same

time frame as planning. The learning agent must be given moretime to interact with the envi-
ronment.

Definition 5 (Finite Horizon Learning). The finite horizon POMDP learning problem is to find
an algorithmA which, given a horizonT and a marginǫ ¡ 0, interacts with the environment for
someTA steps or more using a policyπA � ApT, ǫq, to gain a return which approaches the
optimalT -step return, i.e.�T 1 ¥ TA UMpb0, πA, T 1q ¥ U�

MpT q � ǫ,

whereM is the actual model of the environment andb0 is the actual initial distribution.

Definition 6 (Interaction Complexity). For a reinforcement learning algorithmA, the minimal
numberTA of interaction steps after which near-optimal return is achieved for anyM andb0 is
called theinteraction complexityof A.

TA may be well overT , and keeping it small is an important aspect of the learning problem.
For example, it’s interesting to ask whether obtaining near-optimal return is possible in

TA � poly
�
T, 1

ǫ
, |M |�

9

steps, i.e. polynomial interaction complexity. Here|M | is the size ofM ’s representation, which
is polynomial in|S|, |A| and|O|. This notion of complexity doesn’t replace, but adds to the clas-
sic notion of computation complexity, expressed byA’s running time and space requirements.

It’s clear that for POMDPs such a reinforcement learning algorithm doesn’t always exist,
even if complexity is not bounded. For example, if the environment is a UMDP, the "learning"
algorithm is equivalent to a predetermined sequence of actions, since no useful information is
gained during interaction. Clearly, for each such sequencethere exists a UMDP in which the
optimal return is1, but the return obtained by that particular sequence is arbitrarily close to0.

3.4 Learning in Infinite Horizon

Definition 7 (Infinite Horizon Learning). The infinite horizon POMDP learning problem is to
find a policyπA which, when used indefinitely, yields a return which converges at least to the
optimal overall return, i.e. to have

UMpb0, πAq ¥ U�
Mp8q,

whereM is the actual model of the environment andb0 the actual initial distribution.

The achieved return can be better than "optimal", becauseU�
Mp8q refers to the worst initial

distribution.
The convergence rate ofπA’s return toU�

M p8q is usually described in terms of a measure
calledreturn mixing time.

Definition 8 (Return Mixing Time). Theǫ-return mixing timeof a policyπ, for an initial
distributionb0, denotedTmixpb0, π, ǫq, is the minimal horizon such that�T 1 ¥ Tmixpb0, π, ǫq UMpb0, π, T 1q ¥ UMpb0, πq � ǫ,

i.e. the time it takes the policy to approach its asymptotic return.

It’s possible for a near-optimal policy to have much lower return mixing times than any
strictly optimal policy. When the convergence rate ofπA matters, it may be beneficial to compare
it not to an optimal policy, but to the best policy with a givenmixing time. So we define

U�mix
M pǫ, T q � min

b̃0

sup
π̃:Tmixpb̃0,π̃,ǫq¤T

UM pb̃0, π̃q
to be the optimal infinite horizon return, from the worst initial distribution, among policies whose
ǫ-return mixing time for that distribution is at mostT .

It’s interesting to ask whether it’s possible forπA to approachU�mix
M pǫ, T q, for everyǫ ¡ 0

andT , within a number of steps which is polynomial inT . Formally, we would like, for every
ǫ, ǫ1 ¡ 0 andT , to have

TA � poly
�
T, 1

ǫ1 , |M |�,
such that �T 1 ¥ TA UM pb0, πA, T 1q ¥ U�mix

M pǫ, T q � ǫ� ǫ1, (�)
10

whereb0 is the actual initial distribution. Then we can say that the optimal policyπA converges
efficiently.

Almost all relevant publications aim to solve the infinite horizon learning problem, rather than
the finite one. This is mostly due to historical reasons, as earlier research was primarily concerned
with whether convergence to optimal return was at all possible. More recent works (see [11]
and [4]) define the return mixing time in order to analyze the convergence rate. However, these
papers actually reduce the problem to its finite horizon formand solve it in that form. As it turns
out, the finite horizon learning problem is both easier to work with and at least as general as its
infinite counterpart.

Suppose thatA1 is an algorithm which efficiently solves the finite horizon learning problem.
Recall thatA1 receives two arguments, a horizon and an error margin. We show that the policyπA

which sequentially runsA1p1, 1q,A1p2, 1{2q,A1p3, 1{3q, . . . ,A1px, 1{xq, . . . indefinitely, efficiently
solves the infinite horizon learning problem.

Fix someǫ, ǫ1 ¡ 0 andT . We need to findTA such that the requirement (�) is satisfied. Let
bx�1 be the actual belief whenA1px, 1{xq starts, and letπx andTx ¥ x be the policy and the
number of steps, respectively, used byA1px, 1{xq. Takex0 � max pT, r2{ǫ1sq.

Now suppose thatπA is used forT 1 steps, which include exactlyx whole runs ofA1, i.e.°x

y�1 Ty ¤ T 1 °x�1

y�1 Ty. Then

UMpb0, πA, T 1q ¥ Eb1,...,bx�1

1

T 1 x̧

y�1

TyUMpby�1, πy, Tyq ¥
(byA1’s near-optimality)¥ 1

T 1 x̧

y�1

Ty max p0, U�
Mpyq � 1{yq ¥¥ 1

T 1 x̧

y�x0

Ty max

�
0, min

b̃0

max
π̃

UMpb̃0, π̃, yq � 1{y
 ¥¥ 1

T 1 x̧

y�x0

Ty max

�
0, min

b̃0

max
π̃:Tmixpπ̃,b̃0,ǫq¤T

UMpb̃0, π̃, yq � 1{y
 ¥
(y ¥ x0 ¥ T ¥ Tmixpπ̃, b̃0, ǫq)¥ 1

T 1 x̧

y�x0

Ty max

�
0, min

b̃0

sup
π̃:Tmixpπ̃,b̃0,ǫq¤T

UM pb̃0, π̃q � ǫ� 1{y� ¥
(1{y ¤ 1{x0 ¤ ǫ1{2)¥ 1

T 1 x̧

y�x0

Ty max
�
0, U�mix

M pǫ, T q � ǫ� ǫ1{2�.
11

We assume thatA1 has polynomial interaction complexity, so without loss of generality°x
y�1 Ty � c1x

c2 for c1 � poly |M | and constantc2 ¥ 1. Forx ¥ 2
ǫ1 pc2 � x0q we have

1

T 1 x̧

y�x0

Ty ¥ c1xc2�c1x0
c2

c1px�1qc2 �� �1� 1
x�1

�c2 � � x0

x�1

�c2 ¥¥ 1� c2
x
� x0

x
¥ 1� ǫ1{2,

and

UMpb0, πA, T 1q ¥¥ 1

T 1 x̧

y�x0

Ty max
�
0, U�mix

M pǫ, T q � ǫ� ǫ1{2� ¥¥ p1� ǫ1{2qmax
�
0, U�mix

M pǫ, T q � ǫ� ǫ1{2� ¡
(U�mix

M pǫ, T q ¤ 1)¡ U�mix
M pǫ, T q � ǫ� ǫ1,

as required. To have such value ofx it’s enough to have

TA � c1

P
2
ǫ1 pc2 � x0qTc2 �� c1

P
2
ǫ1 pc2 �max pT,

P
2
ǫ1 TqqTc2 �� poly

�
T, 1

ǫ1 , |M |�.
To show thatπA’s return also converges eventually to an infinite horizon return of at least

U�
Mp8q, it’s sufficient to show thatU�mix

M pǫ, T q tends toU�
Mp8q asǫ tends to0 andT to infinity,

since then

UMpb0, πq ¥ lim
ǫÑ0
ǫ1Ñ0
TÑ8U�mix

M pǫ, T q � ǫ� ǫ1 � U�
M p8q.

Showing this is not straightforward, because although the return mixing time is always finite, it
may not be uniformly bounded. This difficulty can be overcomeby discretizing the distribution
space∆pSq.

12

4 Related Work

Markov Decision Processes and the problem of planning optimally in them was introduced in
1957 by Bellman [3], and was further studied by Howard [9]. They were able to formulate a
polynomial-time algorithm for planning in MDPs, using Bellman’s novel method ofDynamic
Programming.

Partially Observable Markov Decision Processes were laterintroduced as a natural extension
of MDPs, with more realistic and much stronger expressiveness, but one in which optimal plan-
ning is a much harder problem. It’s of course at least as hard as the problem of deciding if a
policy exists which surpasses a given return, which is NP-Complete for UMDPs and PSPACE-
Complete for general POMDPs ([14] and [7]). Focus has therefore shifted to finding algorithms,
mainly heuristic ones, which calculate near-optimal solutions. A survey of these methods can be
found in [1].

Reinforcement Learning was conceived as a tool for "implicitly programming" an agent to
perform a task, by specifying what the agent should desire toachieve, rather than how it should
achieve it. Although it dates back to the early days of Artificial Intelligence and the intimately
related Optimal Control Theory, it started receiving increasing attention only in the 1980’s and
the 1990’s ([15] and [12]).

Several near-optimal reinforcement learning methods weredeveloped in those years, but it
wasn’t until 1998 that an efficient algorithm, E3, for learning in MDPs was introduced [11]. In
2002 another algorithm, R-MAX , was introduced [4], which was both simpler and more general,
extending to multi-agent decision processes (calledStochastic Games).

Learning in POMDPs is not always possible. In UMDPs, for example, even if we assume that
the reward functionr is known, no information about the transition functiont is obtained from
interaction, and there’s no way to improve, in the worst case, on a random walk which chooses
actions uniformly at random.

Even in a subclass of POMDPs in which learning is possible, a simple Karp reduction shows
that it’s computationally at least as hard as planning. Despite that, or perhaps because of that,
Reinforcement Learning in POMDPs has been the focus of much research, and many algorithms
have been published which achieve it under different conditions (for a survey see [10], and more
recently [5]).

The concept of interaction complexity gives the problem a new dimension. These aforemen-
tioned algorithms for learning in POMDPs all have at least exponential interaction complexity,
in addition to exponential computation complexity. The following chapter will show that this is
unavoidable in general POMDPs.

However, later chapters will explore subclasses of the POMDP class in which learning with
polynomial interaction complexity is possible, along withalgorithms which do so. To the best of
our knowledge, this is the first published result of this kind. Some of it we previously published
in [6].

13

s0

s1,✓

s1,✗

s2,✓

s2,✗

� � �� � � sn,✓

sn,✗

rewardx1sx1

x2sx2

x3sx3

xn�xn

Figure 3: Password Guessing Problem

5 Hardness of RL in POMDPs

For a given reinforcement learning algorithm and a given model (unknown to the agent), for
the algorithm to work, there must be a finite number of steps after which a near-optimal return
is guaranteed. The interaction complexity of the algorithmis a worst case measure, taking the
maximum of those guarantee-times over all models in a given class, if the maximum exists. The
interaction complexity of a class of models can then be defined as the complexity of the best
algorithm for learning it.

As explained in the previous chapter, there are POMDPs whichno algorithm can learn, so
the interaction complexity of POMDPs is undefined. But we cantake a subclass of POMDPs in
which learning is possible, such that its interaction complexity is at least exponential in the size
of the model.

To see this, consider a Password Guessing Problem, which is the class of POMDPs of the
form illustrated in Figure 3. The password is a fixed stringx1x2 . . . xn of n bits. The agent
repeatedly tries to guess the password. If it succeeds, it receives a positive reward. All other
rewards are0, and the rewards are the only observations.

Planning in this model is easy, because knowing the model means knowing the password.
The agent can then repeatedly guess the right password. Learning is possible, by guessing all
passwords and observing which one yields a reward.

But this learning method takes more thann2n interaction steps in the worst case, while the
number of states is2n � 1 and the number of actions and observations is constant. In fact, any
learning algorithm will require exponential interaction complexity for this class, a result relied
upon by nearly every security system in existence today.

To see this, consider the steps before a reward is first obtained. The observation is fixed in
these steps, so the policy is equivalent to a predetermined sequence of actions, which is executed
until the first reward. Clearly, for any such sequence there exists a model in which the password
is not among the first2n � 1 guesses.

14

6 Efficient RL in OPOMDPs

For our first positive result of reinforcement learning under partial observability, we consider
a class of models in which full observability is available, but comes with a cost. This class
is originally due to Hansen et al. [8]. It was studied recently in the context of approximate
planning [2] under the name Oracular Partially Observable MDPs (OPOMDPs), which we adopt.

First, some useful notation. We definebs to be the pure distribution with supports, i.e.
bspsq � 1. We defineIP to be the indicator of predicateP , i.e. IP � 1 if P is true and0 if false.

In OPOMDPs there exists a special actionα which allows the agent to observe the state of
the environment. Although, technically, the agent spends astep takingα, this action is regarded
as instantaneous, and the environment’s state doesn’t change while being observed.

Definition 9 (OPOMDP). An Oracular Partially Observable Markov Decision Process
(OPOMDP) is a tupleM � 〈S, A, O, t, r, θ, C〉 where

• 〈S, A, O, t, r, θ〉 is a POMDP,

• S � O,

• there exists someα P A, such thatθps, αq � s andtps, αq � bs for everys P S, i.e.
α observes the state without changing it, and

• actionα incurs a special costC ¥ 0.

The agent’s return is now given by

UMpb0, π, T q � E
1

T

Ţ

i�1

�
rpsiq � C � Irai�1�αs�,

so that a costC is deducted wheneverα is taken.

This full-observability feature is invaluable for learning, but may be useless for planning,
as can be seen in the following reduction from the learning problem of POMDPs to that of
OPOMDPs. We simply add to the model an actionα with the required properties but an in-
hibitive cost. If the original model isM � 〈S, A, O, t, r, θ〉 and the horizon isT , we define
M 1 � 〈S, A1, O1, t1, r, θ1, 2T 〉 with A1 � A Y tαu, O1 � O Y S, wheret1 andθ1 extendt andθ,
respectively, as required. Takingα in M 1, even only once, reduces theT -step return byC{T � 2,
to a negative value. Since the return inM is never negative, clearly an optimal policy inM 1
doesn’t useα. This policy is then optimal inM as well.

Learning in OPOMDPs, on the other hand, is only slightly morecomplicated than learning
in MDPs, if computation is not limited and interaction complexity is the only concern. We wish
to focus on the differences, so instead of presenting an R-MAX -like algorithm for learning in
OPOMDPs, we describe the important aspects of R-MAX , and explain how to manipulate it to
handle OPOMDPs. The reader is referred to [4] for a more formal and complete presentation of
R-MAX and a proof of its correctness and efficiency.

15

agent

environment

planning module
P

learning module
L

pM, T q ps, a, s1q
action

observation +
reward

Figure 4: Scheme of a model-based RL algorithm

We assume that the reward functionr is known to the agent. See section 7.2 for a discussion
on how rewards can be learned.

R-MAX is amodel-basedreinforcement learning algorithm, which means we can identify in
it a planning module and a learning module (Figure 4). The learning moduleL keeps track of
a hypothetical modelM of the environment.M � 〈S, A, τ, ρ〉 is a standard MDP, except that
for some of the pairsps, aq, the transitionτps, aq is not guaranteed to resemble the real transition
functiont. These pairs are markedunknownin M.

L sends to the planning moduleP planning commands of the formpM, T q, meaning thatP
should calculate an optimalT -step policy inM and execute it. Occasionally, however, this is
interrupted whenP wishes to take an actiona from a states, where the transition forps, aq is
unknown inM. In that case,P will take a, and upon reaching the next states1 will return to
L the tripletps, a, s1q. From time to time,L will use these triplets to improve the model, all the
while issuing more planning commands.

P ’s responsibility is to make policies which either yield near-optimal return or stumble upon
an unknown pairps, aq. This is theimplicit explore or exploitproperty of policies. The optimal
policy in M has this property ifM meets the following requirement:

• M correctly estimates the return of policies which have negligible probability to go through
an unknown pairps, aq, and

• whenM fails to estimate the return of a policy, it can only overestimate it.

This requirement is inspired by the principle ofoptimism under uncertainty.

16

Now if we can only guarantee that polynomial interaction is enough to ridM of all unknown
pairs, the algorithm will reach near-optimality efficiently. This is whatL does. For every un-
known pairps, aq whichP encounters, it reports toL a sampleps, a, s1q with s1 � tps, aq. Then
L is required to updateM in such a way that

• the optimism requirement mentioned above is kept, and

• there can never be more than polynomially many commandspM, T q and resultsps, a, s1q
such thatps, aq is unknown inM.

If all these requirements are satisfied, the agent will learnefficiently. A proof of this claim can
be found in [4], together with a proof that R-MAX meets these requirements.

How can we apply such a scheme when observability is partial?Even if we think of a POMDP
as an MDP over belief-states, there’s still a basic difference between the two. In a POMDP, the
environment doesn’t tell the agent what the belief-state is, only what the observation is. We
can’t learn the model from samples of the formpb, a, b1q, because we can’t calculateb1 before the
relevant part of the model is learned.

In our solution,L won’t learn belief transitions, but will learn state transitions just as it does
in R-MAX . In fact, we’ll makeL completely oblivious to the fact that the model is no longer an
MDP. We’ll modify P slightly, to interact withL as if it’s learning the state transition functiont

of an MDP.
It’s interesting to observe that, if we "trick"L in this manner, almost everything else remains

the same as it is in R-MAX . Partial observability limits the variety of policies available toP, to
those whose information of the state is that included in the observations, but the return of any
fixed policy has nothing to do withθ, and is only defined in terms oft andr. This means that
an optimistic hypothetical model still entails the implicit explore or exploit property. Note that
partial observability does, however, makeP computationally more complex.

One difference in learning that does exist, is that in R-MAX P can easily identify whenps, aq
is unknown for the current states. With POMDPs, we say thatpb, aq is known if the probability
is negligible thatps, aq is unknown, whens is distributed according to the beliefb. P keeps track
of an approximation of the current belief, and when it wishesto take an actiona from a belief
b such thatpb, aq is unknown, it does the following. It takesα to reveal the current states � b,
then if ps, aq is unknown it takesa and thenα again, to reveal the next states1 � tps, aq. It
passes toL the tripletps, a, s1q. Such a triplet is generated with non-negligible probability for
every encounter of an unknown pairpb, aq, so there will be at most a polynomial number of such
encounters.

P ’s approximation of the current belief can degrade for two reasons. One is that the transition
from the previous belief may be unknown. When it is known, there’s the inaccuracy of the learned
transition function, causing accumulated error in the approximation. In both cases,P will take
α to reveal the state and make the belief pure and known again. The first type occurs at most a
polynomial number of times, and the second is far enough between to have the cost of theseα

actions marginal.

17

7 Efficient RL in OCOMDPs

We now consider the case whereα is not considered an oracle invocation, but an action inside
the environment. Whereas in OPOMDPsα is guaranteed not to affect the state, now we won’t
expect the environment to stand still while being fully observed. Instead,α is allowed to affect
the state, just like any action is. We call this class Costly Observable MDPs (COMDPs).

Definition 10 (COMDP). A Costly Observable Markov Decision Process (COMDP) is a tuple
M � 〈S, A, O, t, r, θ, C〉 where

• 〈S, A, O, t, r, θ〉 is a POMDP,

• S � O,

• there exists someα P A, such thatθps, αq � s for everys P S, i.e. α observes the state,
and

• actionα incurs a special costC ¥ 0.

The return is defined as in OPOMDPs.

In this work we only discuss a subclass of COMDPs called Only Costly Observable MDPs
(OCOMDPs). In OCOMDPs,α is the only observing action, and other actions provide no useful
observability. That is, OCOMDPs extend UMDPs by addingα to the set of actions.

Definition 11 (OCOMDP). An Only Costly Observable Markov Decision Process (OCOMDP)
extending a UMDPM � 〈S, A, tKu, t, r, θ〉 is a tupleM 1 � 〈S, A1, O, t1, r, θ1, C〉 where

• A1 � AY tαu,
• O � S Y tKu,
• t1 : S � A1 Ñ ∆pSq extendst,

• θ1 : S � A1 Ñ O extendsθ with θ1ps, αq � s, for everys P S, and

• actionα incurs a special costC ¥ 0.

The return is defined as in OPOMDPs.

COMDPs generalize OPOMDPs by removing the restriction thatα doesn’t change the state.
OCOMDPs then specialize OCOMDPs by restricting the observability of other actions. It may
be surprising that the apparently small generalization is enough to make learning in OCOMDPs
considerably more complicated than in OPOMDPs. The additional difficulties will be discussed
as we introduce UR-MAX , an efficient reinforcement learning algorithm for OCOMDPs.

It should be noted that, strictly speaking, the rewards in anOCOMDP are not bounded byr0, 1s, becauseα inflicts a negative reward ofC. Rewards could be translated and scaled to follow
our standard notation, but the analysis is cleaner if we keepthis anomaly. Scaling would shrinkǫ
by a factor ofC � 1 too, so it’s reasonable to allow the interaction complexityto be polynomial
in C as well.

18

7.1 Learning with respect to the Underlying UMDP

7.1.1 Outline

For ease of exposition, we first learn with respect to the underlying UMDP. That is, the return
actually achieved in an OCOMDPM 1 extending a UMDPM , given a horizonT and a margin
ǫ ¡ 0, is required to be at leastU�

M pT q � ǫ. For the moment we also assume thatS, A, r andC

are given as input, and that onlyt is initially missing.
In R-MAX [4] the transitiont for unknown pairsps, aq is learned when there are enough

times in whichs is reached anda taken from it. When we extended R-MAX to OPOMDPs in the
previous chapter, we were able to do the same by takingα beforea, reaching some pure belief
bs, and learning the effects ofa on thiss. However in OCOMDPs, sinceα changes the state,
taking it beforea may result in a belief irrelevant to anything we wish to learn.

But pure beliefs are not required for learning. If some mixedbelief is reached enough times,
we could learn the effects of some action on that belief. Suppose that the beliefb is reached again
and again indefinitely. Suppose that in enough of these caseswe decide to take the actiona � α.
If we takeα aftera, we observe the following state, which is distributed according to

b1 � tpb, aq def�
ş

bpsqtps, aq.
The point here is that, since there are no observations, the belief b1 which follows b whena is
taken is determined only byb anda. Having repeated this strategy a large number of times, we
have enough independent samples ofb1 to estimate it well.

But how can a beliefb be reached many times? We have already established in section 2.4
that when the observation is constant the belief transitionis deterministic. If we manage to reach
some belief many times, and then take a fixed sequence of actions with constant observations,
the belief at the end of that sequence is also the same every time. In addition, note that the belief
afterα is alwaystpbs, αq for some observeds P S, where in our notationbspsq � 1. So takingα
enough times results in some (possibly unknown) belief appearing many times. We now combine
these two facts into a systematic way to repeatedly reach thesame beliefs.

UR-MAX , the algorithm we present here, operates inphases, which for convenience are of a
fixed lengthT1. Consider aT1-step deterministic policyπ, in whichα is used as the first action
but never again later. The initial stateσ of a phase may be unknown when the phase begins, but
sinceα is always the first action taken,σ is then observed. Given this initial stateσ, the whole
phase then advances deterministically:

• All the observations are determined byσ, since all areK except the first, which isσ.

• It follows that all the actions are determined byσ, sinceπ is deterministic.

• It then follows that all the beliefs in the phase are determined byσ.

Using the estimation scheme described above, each of these beliefs can eventually be estimated
well if σ is the initial state of enough phases.

19

The policyπ employed is decided on using ahypothetical modelM, which represents the
part of the real model currently known. Since learning now involves beliefs instead of states,
merely representing this model is considerably more complicated than in MDPs or in OPOMDPs,
and an exact definition is kept for later. For now, we only givea general description.

The hypothetical modelM is not a standard POMDP, but it is an MDP over belief-states.M
keeps track of setsBa � ∆pSq, for everya P A1. Ba is the set of beliefsb for which the transition
τpb, aq is considered known, whereτ is the transition function ofM. As part of the correctness
of the algorithm, we’ll show that, whenM considers a transition known, it indeed approximates
well the real transitiont1.

As in R-MAX , M follows the principle ofoptimism under uncertainty, in that whenever the
transition is unknown, it’s assumed to result in an optimistic fictitious states� P S, whereS is
M’s set of states (pure belief-states). When an actiona is taken from a beliefbRBa, M predicts
that the state will becomes�. Reachings� in M actually means thatM doesn’t know the real
belief reached in the real modelM 1. Onces� is reached,M predicts a maximal reward for all
future steps. This induces a bias towards exploring unknownparts of the model.

Some more explanation and definitions are in order before presenting the algorithm formally,
but we are now ready to present a sketch, using the parametersT1, the number of steps in a phase,
andK, the number of samples of a distribution sufficient to estimate it well.

UR-MAX (sketch)

1. Initialize a completely unknown modelM, i.e.Ba � H for everya P A

2. Letπ be a deterministicT1-step policy, which is optimal inM among those which
useα in the first step and only then

3. Repeat for eachT1-step phase:

3.1. "Forget" the history, set it to the initial historyΛ

3.2. ForT1 steps, but only while the current belief is known, useπ

3.3. If an unknown beliefb is reached, i.e.s� is reached inM

• Takeα, and observe a state distributed according tob

3.4. If there are nowK samples ofb

• UpdateM (more on this below)

• Find an optimal policyπ in the new modelM

Note that the planning problem in line 3.4 may require exponential time to solve, but here we
focus on the interaction complexity.

This sketch is missing some important details, such as how records are kept, when exactly a
belief b is unknown, and howM is updated. Before we discuss these issues more formally and
prove that UR-MAX works, here’s some more intuition for why it works.

20

We can think of the initialα action of each phase as a reset action, which retroactively sets
the initial belief to be the pure distributionbσ, whereσ is the initial state of the phase. As
explained earlier, beliefs in the phase only depend onσ and on the actions taken, which means
there’s a finite (although possibly exponential) number of beliefs the agent can reach inT1-step
phases which start withα. Reaching a belief enough times allows the algorithm to sample and
approximate it. Eventually, there will be phases in which all the beliefs are approximately known.

In this exposition, we assume thatr is known. In phases where the beliefs calculated byM
approximate the real beliefs inM 1, the returns promised byM also approximate the real returns.
So if ever the return of some policy inM fails to approximate the real return of that policy, it’s
because some belief is not approximated well, i.e. some transition is not approximated well. As
mentioned above, this only happens when an unknown real belief is reached, which is to says�
is reached inM. But thenM promises maximal rewards, which are surely at least as high as
the real rewards. This means thatM can either estimate a return correctly or overestimate it, but
never underestimate a policy’s return by more than some margin.

Compare the policyπ used by the algorithm with the optimal policyπ�. The returnπ� pro-
vides inM can’t be significantly lower than its real return, the optimal return. π maximizes
the return inM, so its return inM is also approximately at least as high as the optimal return.
Finally, recall that, since we’re discussing phases without unknown beliefs, the real return ob-
tained from usingπ in the real model is approximated byM, and can’t be significantly lower
than optimal.

real return of π � return of π in M ¥ return of π� in M Á optimal return.

This means the algorithm eventually achieves near-optimalreturn.
But UR-MAX promises more than that. It promises a near-optimal return after polynomially

many steps. Naïvely, near-optimal phases will only be reached after sampling exponentially
many beliefs. This is where we start filling in the blanks in the sketch above, and show how to use
and update a hypothetical model in a way that requires only polynomial interaction complexity.
We start with a formal definition of the hypothetical modelM.

7.1.2 Hypothetical Model

Definition 12 (PK-OCOMDP). For an OCOMDPM 1 � 〈S, A1, O, t1, r, θ1, C〉, a Partially
Known OCOMDP (PK-OCOMDP) is a tupleM � 〈S, A1, O, τ, ρ, θ1, C,W, ǫ1〉 where

• S � S Y ts�u contains a special learning states�RS,

• ρ : S Ñ r0, 1s extendsr with ρps�q � 1,

• τ : S � A1 Ñ ∆pSq partially approximatest1 (τ , W andǫ1 are explained later),

• W � tWauaPA1 is a collection of sets of beliefs,Wa � ∆pSq for everya P A1,
which serve a base to calculateBa, the part of the model considered known, and

• ǫ1 ¥ 0 is the tolerance of what is considered known.

21

We need a few more definitions in order to explain howM is used. This will also explain
whatτ , W andǫ1 mean in PK-OCOMDPs.

For every actiona P A1, the elements ofWa are beliefsb for which the effects ofa, namely
t1pb, aq, have been sampled by the algorithm. Recall that the belief which deterministically fol-
lowsb whena � α is taken is defined ast1pb, aq � °s bpsqt1ps, aq, and similarly fora � α if b is
pure. This linearity of transition allows the agent to deduce the effects ofa on beliefs which are
linear combinations of elements ofWa.

For everya P A1, we defineSppWaq to be the minimal affine subspace ofR
S which includes

Wa

SppWaq � #
w̧PWa

cww

�����
w̧PWa

cw � 1

+
.

In particular,SppHq � H. So fora P A1 andb � °w cww P SppWaq, wherea � α or b is pure,
we have

t1pb, aq �
ş

bpsqt1ps, aq �
ş,w

cwwpsqt1ps, aq �
w̧

cwt1pw, aq.
If t1pw, aq are estimated by sampling them, an estimate fort1pb, aq can be extrapolated from them.

However,t1pw, aq can’t be exactly revealed by the algorithm, except in degenerate cases. In
order to bound the error int1pb, aq, we must also bound the coefficients in these combinations.
For everya P A1 andc ¡ 0, SppWa, cq � SppWaq is the set of linear combinations ofWa with
bounded coefficients

SppWa, cq � #
w̧

cww P SppWaq����w P Wa cw ¤ c

+
.

Now we allow some tolerance as, for everya P A1, we defineBW ,δ
a to be the set of beliefs

which areδ-close toSppWa, eq, in theL1 metric, wheree is the base of the natural logarithm.

BW ,δ
a � !b P ∆pSq���Db1 P SppWa, eq }b1 � b}1 ¤ δ

)
,

where }b1 � b}1 �
şPS |b1psq � bpsq|.

e is not special here, and any constant larger than1 would do, bute will be convenient later when
the logarithm of this number will be used. We always use a single hypothetical model, so we will
sometimes omitW from this notation.

In M, belief-state transitions are defined similar to the belief-state transitions in OCOMDPs,
except that an action which is unknown for the belief-state from which it is taken always leads
deterministically to the special learning states� P S. We can finally define exactly what we
mean by anunknown transition, and that’s taking an actiona from a beliefbRBǫ1

a . Then the belief

22

which follows b̄ P ∆pSq whena P A1 is taken ando is observed is1

τpb̄, aq � $&% °
sPS b̄psqτps, aq, if a � α andb̄ P Bǫ1

a ;
τpo, αq, if a � α andbo P Bǫ1

α ;
bs� , otherwise.

Note thatτpb̄, aq � bs� whenever̄bps�q ¡ 0, i.e. onces� is reached it’s never left.
Defining the stochastic processpsi, aiqi¥0 in M is a bit tricky, because it’s just a hypothetical

model, and it doesn’t actually govern the real distributions of events. WhenM is used for
planning, the process is defined by having, for everyi ¥ 0, si � b̄i, andb̄i�1 � τpb̄i, aiq, where
the observation isoi � θ1psi, aiq.

However whenM is used to simulate the actual interaction with an OCOMDPM 1, si is not
really distributed according to the belief inM, but rather the belief inM 1. This is a different
stochastic process, which may be unknown to the agent, but isstill well-defined.

If there’s going to be any correlation between usingM for planning and for simulating, we
must define a way in whichM must resemble the real model. The following definition asserts
when a PK-OCOMDP is usable as an approximation of an OCOMDP.

Definition 13 (OCOMDP Approximation). Let M 1 � 〈S, A1, O, t1, r, θ1, C〉 be an OCOMDP
andM � 〈S, A1, O, τ, ρ, θ1, C,W, ǫ1〉 a PK-OCOMDP, such thatS � S Y ts�u andρ extendsr.
M is called aµ-approximation ofM 1 if, for every0 ¤ δ1 ¤ ǫ1, a P A1 andb P BW ,δ1

a � BW ,ǫ1
a�����

şPS bpsqpτps, aq � t1ps, aqq�����
1

¤ µ� 2δ1.
Note the involvement of the parameterδ1, which demonstrates the linear degradation of the

transition functions’ proximity, as the belief becomes more distant from the span of learned
beliefs.

7.1.3 Updating the Model

As new knowledge of the real model is gained, it is incorporated into the hypothetical model.
Updating the model basically means adding a beliefb into someWa. It’s convenient for many
parts of the algorithm and its analysis to haveWa linearly independent, i.e. not to have any
of its members expressible, or even nearly expressible, by alinear combination of the other
members. Therefore, when the newly addedb is δ-close to a member ofSppWaq, for some
learning toleranceδ ¡ 0, some member ofWa is dropped from it, to maintain this strong form
of independence. In any case, updating the model changesBa, andτ is also updated so thatM
remains an approximation of the real model.

Before presenting the Update procedure, we must address another important technical issue.
MaintainingM as an approximation of the real model relies on havingτpw, aq approximate

1We slightly abuse the notation for the sake of clarity. The beliefs b P ∆pSq and b1 P ∆pSq, where�s P S bpsq � b1psq, are interchangeable in our notation.

23

t1pw, aq. There are two sources for error in this approximation. One is the error in sampling the
distribution after takinga, which can be made small by taking large enough samples. The other
source is error in the estimation ofw, which may be caused by the actual belief being different
than the one calculated inM. This error is the accumulation of approximation errors in previous
steps of the phase. When the next belief is calculated, it incorporates both the error inτ and the
error in the previous belief, so the latter may actually be counted twice. For this reason, if error
is allowed to propagate, it could increase exponentially and prevent approximation. The solution
is to have the beliefw sampled again before using it inWa. In this way, its error is not affected
by previous steps, and doesn’t increase from step to step.

An invocation of the Update procedure with parameterssamplebefore, sampleafter P ∆pSq
anda P A1 is supposed to mean thatsamplebefore andsampleafter approximate some beliefsb
andb1, respectively (presumably because they are large samples of these distributions), such that
b1 � t1pb, aq. In the following procedure,δ is a parameter of learning tolerance andµ1 a parameter
of allowed approximation error. Update is only invoked forsamplebeforeRB?

nδ
a , wheren � |S|.

In addition, we use the notationfw,a, for everyw P Wa, to refer to previously used samples, and
so in each run we setfsamplebefore,a

� sampleafter.

Update(samplebefore, a, sampleafter)

1. Setfsamplebefore,a
� sampleafter.

2. If Wa � H, let b1 � °wPWa
cww besamplebefore’s projection onSppWaq.

3. If Wa � H, or if }b1 � samplebefore}2 ¡ δ, then letW 1
a � Wa Y tsamplebeforeu.

4. Otherwise, there exists somew1 P Wa such thatcw1 ¡ e (we prove this in Lemma 1), and
letW 1

a � Waztw1u Y tsamplebeforeu.
5. Find functionsτ 1s : S Ñ R, for everys P S, which satisfy all of the following linear

constraints:

• For everys P S, τ 1s P ∆pSq is a probability distribution function.

• For everyw P W 1
a, }°s wpsqτ 1s � fw,a}1 ¤ 2µ1.

6. If a solution exists:

• SetWa toW 1
a.

• For everys P S, setτps, aq to τ 1s.
24

7.1.4 Analysis of the Update Procedure

In this section we prove the correctness and efficiency of theUpdate procedure, under some
conditions. This analysis has 3 parts:

• Lemma 1 relates the number of invocations of the Update procedure to a measure of how
muchM knows of the real model.

• Corollary 2 bounds this measure, and therefore also shows that the Update procedure can
only be invoked polynomially many times.

• Lemma 3 then proves that these updates produce good approximations of the real model.

We need to make several assumptions at this point, one is thatthe samples are good repre-
sentations of the beliefs they sample.

Definition 14 (Sample Compatibility). A triplet psamplebefore, a, sampleafterq is said to be
compatibleif �����sampleafter �

ş

samplebeforepsqt1ps, aq�����
1

¤ 2µ1.
If a � α, it’s also required thatsamplebefore is a pure distribution.

Compatibility means thatsamplebefore andsampleafter could reasonably be samples of some
beliefsb andb1, respectively, before and after taking actiona. When we assumecompatibility,
we mean that all invocations of the Update procedure have compatible arguments.

In addition, since we didn’t yet provide the precise contextof the Update procedure, we
assume for now thatM is initialized empty (i.e.Wa � H for everya P A1), thatM is only
changed by the Update procedure, and that, as mentioned before, the Update procedure is only
invoked whensamplebeforeRBW ,

?
nδ

a , wheren � |S|.
For an actiona P A1 such thatWa � H, let dpWaq � dim SppWaq be the dimension of

SppWaq. LetHpWaq � SppWaq be the convex hull ofWa, that is, the set of linear combinations
of Wa with non-negative coefficients which add up to1. Let vpWaq be thedpWaq-dimensional
volume ofHpWaq, that is, the measure ofHpWaq in SppWaq. Forδ ¡ 0, we define

FδpWaq � dpWaq � ln
dpWaq!vpWaq

δdpWaq � 1.

For convenience, we definedpHq � �1 andFδpHq � 0.
FδpWaq is a measure of how much is known fora, which combines the dimension ofWa and

the volume of its convex hull. Following the two cases in lines 3 and 4 of the Update procedure,
if samplebefore is not withinδ of being spanned byWa, then including it inWa will increase the
dimension of its convex hull. Otherwise, replacing somew1 for samplebefore will increase the
volume significantly, which is whereδ becomes important. In either case,FδpWaq will increase
by at least1, as shown in the following lemma.

25

Lemma 1 (Update Effectiveness). Assuming compatibility, afterD invocations of the Update
proceduredpWaq � |Wa| � 1 (i.e.Wa is linearly independent) for everya P A1, and°

aPA1 FδpWaq ¥ D.

Proof. The proof is by induction onD. ForD � 0, dpHq � |H| � 1, and
°

a FδpHq � 0.
Now we assume that the lemma holds for someD � 1, and prove it forD. Let theDth in-

vocation be with parameterssamplebefore, a andsampleafter. During the invocation,Wa1 remains
the same for everya1 � a. We shall show that, assuming compatibility,W 1

a is well-defined and
satisfiesdpW 1

aq � |W 1
a| � 1 andFδpW 1

aq ¥ FδpWaq � 1. We shall further show that, assuming
compatibility, the linear constraint satisfaction problem of the Update procedure has a solution,
so that the update actually takes place.

b1 is the projection ofsamplebefore on SppWaq, if one exists. Suppose first thatWa � H, or
otherwise that}b1 � samplebefore}2 ¡ δ ¡ 0 (Figure 5). ThensamplebeforeRSppWaq, and so

dpW 1
aq � dpWa Y tsamplebeforeuq � dpWaq � 1 � |Wa| � |W 1

a| � 1.

If Wa � H, thenW 1
a � tsamplebeforeu, and

FδpW 1
aq � 0� ln 1� 1 � FδpWaq � 1.

If Wa � H, thenHpW 1
aq is adpW 1

aq-dimensional hyper-pyramid, whose head issamplebefore,
whose base isHpWaq, and whose height is}b1 � samplebefore}2 ¡ δ. The formula for the volume
of the pyramid is

vpW 1
aq � }b1 � samplebefore}2 vpWaq

dpW 1
aq ,

and

FδpW 1
aq � dpW 1

aq � ln
dpW 1

aq!vpW 1
aq

δdpW 1
aq � 1 ¡¡ dpW 1

aq � ln
dpW 1

aq! � δvpWaq
δdpW 1

aq � dpW 1
aq � 1 �� dpWaq � 1� ln

dpWaq!vpWaq
δdpWaq � 1 � FδpWaq � 1.

The remaining case (Figure 6) is whenWa � H and?
nδ ¥ ?

n }b1 � samplebefore}2 ¥ }b1 � samplebefore}1 .

Recall that we assume thatsamplebeforeRBW ,
?

nδ
a , so that

b1 �
w̧

cww P SppWaqzSppWa, eq,
and there must be somew1 P Wa such thatcw1 ¡ e. In this case,W 1

a �Waztw1uYtsamplebeforeu.
Under the assumptions,W 1

a is well-defined in the Update procedure.

26

s0 s1

s2

¡ δ

Figure 5: First case of the Update procedure (line 3).
The topmost belief is not spanned by the other two,

and adding it toWa increasesdpWaq.

s0 s1

s2

Figure 6: Second case of the Update procedure (line 4).
The rightmost belief is spanned by the other three,

but one coefficient is too large (for illustration, we use¡ 1.5 instead of¡ e);
adding the rightmost belief toWa instead of the one with large coefficient

multipliesvpWaq by the ratio of heights.

27

Let b2 andw2 be the projections ofb1 andw1, respectively, onSppWaztw1uq. b2 andw2 exist,
since

°
w cw � 1 andcw1 ¡ e imply |Wa| ¡ 1. Observe that

b2 � b1 � cw1pw2 � w1q,
and thatb2 is also the projection ofsamplebefore onSppWaztw1uq. Then}b2 � samplebefore}2 �b}b2 � b1}22 � }b1 � samplebefore}22 ¥¥ }b2 � b1}2 � cw1 }w2 � w1}2 ¡ e }w2 � w1}2 ¡ 0.

By the induction assumption,Wa is linearly independent, and therefore

dpW 1
aq � dpWaztw1uq � 1 � dpWaq � |Wa| � 1 � |W 1

a| � 1,

and

vpW 1
aq � }b2 � samplebefore}2 vpWaztw1uq

dpW 1
aq ¡¡ e }w2 � w1}2 vpWaztw1uq

dpWaq � evpWaq,
which gives

FδpW 1
aq � dpW 1

aq � ln
dpW 1

aq!vpW 1
aq

δdpW 1
aq � 1 ¡¡ dpWaq � ln

dpWaq! � evpWaq
δdpWaq � 1 � FδpWaq � 1.

We now turn to handle the constraint satisfaction problem. Consider the "correct" solution in
which, for everys P S, τ 1s � t1ps, aq. Then of courseτ 1s is indeed a probability distribution over
S. As for the second group of constraints, for everyw P W 1

a there had to be some invocation of
the Update procedure in whichsamplebefore was thatw andsampleafter wasfw,a. The constraints
are then exactly equivalent to the compatibility condition, which we assume to hold.

In the following,|S| � n and|A1| � k.

Corollary 2 (Update Invocations). Assuming compatibility, less than2nk ln 1
δ

invocations of
the Update procedure are ever made.

Proof. SinceWa � ∆pSq for everya P A1, we havedpWaq n. The convex hullHpWaq
is bounded by the belief space. The largest convex hull of|Wa| linearly independent points
bounded by a simplex is adpWaq-face of the simplex.

In order to see that consider, among the setsWa with maximalvpWaq, one which contains
the most pure beliefs, i.e. vertices of the belief space. Assume in contradiction that some belief
is not pure. If we fix the others, then the volume, as a functionof the position of that last point,
is the absolute value of a linear function, and is therefore maximal in a vertex of the simplex, i.e.
in a pure belief, in contradiction.

28

A dpWaq-face of the belief space is itself a simplex with
?

2-length edges. So

vpWaq ¤ a
dpWaq � 1

dpWaq! ,

which is the volume of that polytope. Therefore, for0 δ ¤ e�2,

FδpWaq ¤ n� ln

?
n

δn�1
,

and assuming compatibility, by Lemma 1 the number of invocations is at most

a̧

FδpWaq ¤ k

�
n� ln

?
n

δn�1

 �� k
�
n � 1

2
ln n � pn� 1q ln 1

δ

� nk
�
ln 1

δ
� 2

� ¤ 2nk ln 1
δ
.

Lemma 3 (Update Correctness). Assuming compatibility,M is always aµ-approximation of
M 1, whereµ � 8enµ1.
Proof. The empty initialization ofM is aµ-approximation of any real model.

Consider the values ofτ andWa � H after they are updated. Let0 ¤ δ1 ¤ ǫ1, b P BW ,δ1
a

and b1 � °
w cww P SppWa, eq such that

°
w cw � 1 and }b1 � b}1 ¤ δ1. Sincecw ¤ e for

everyw P Wa,
°

w |cw| is maximal when one of thecws is1� ep|Wa| � 1q and the others aree.|Wa| � dpWaq � 1 ¤ n, so
°

w |cw| ¤ max p2ep|Wa| � 1q � 1, 1q 2en. Compatibility and the
second group of constraints in the Update procedure then give�����

ş

bpsqpτps, aq � t1ps, aqq�����
1

¤¤ �����
ş

pbpsq � b1psqqτps, aq�����
1

� �����
ş

b1psqpτps, aq � t1ps, aqq�����
1

� �����
ş

pb1psq � bpsqqt1ps, aq�����
1

¤¤
w̧

|cw| �����
ş

wpsqpτps, aq � t1ps, aqq�����
1

� 2 }b1 � b}1 ¤¤
w̧

|cw|������
ş

wpsqτps, aq � fw,a

�����
1

� �����fw,a �
ş

wpsqt1ps, aq�����
1

�� 2δ1 ¤
(constraints and compatibility)¤

w̧

|cw|4µ1 � 2δ1 8enµ1 � 2δ1 � µ� 2δ1.
29

7.1.5 The Main Procedure

Bearing in mind that the Update procedure requires independent samples of the beliefsbeforeas
well asafter the action, we revise the main procedure to produce both these samples. Recall that
for a fixed initial state and a fixed deterministic policy which takesα only initially, the belief in
every step is also fixed. The algorithm will sample these beliefs, starting with the first step and
iterating for later and later steps. The variablestepsσ is the number of steps, in phases starting
in stateσ, for which the beliefs were already sampled. If at any step anUpdate is required, that
is, samplebeforeRB?

nδ
a , then the Update procedure is invoked, a new policy is calculated, and the

samples, which are no longer meaningful, are discarded, setting stepsσ to 0.
A recordrecx is a collection, possibly with repetitions, of elements ofS. Let freqx P ∆pSq

be the relative frequencies of elements inrecx, i.e. freqxpsq � #sprecxq|recx| , where#sprecxq is the
number of occurrences ofs in recx.

UR-MAX (S, A, r, C, T , ǫ)

1. Initialize a completely unknown modelM, i.e. letWa � H for eacha P A1
2. Letπ be a deterministicT1-step policy, which is optimal inM among those which

useα in the first step and only then

3. Letrecs,before � tK copies of su, let recs,after � H, andstepss � 0, for eachs P S

4. Repeat for eachT1-step phase:

4.1. Empty the history used for planning, set it to the initial historyΛ

4.2. Takeα and observe the initial stateσ

4.3. Takestepsσ more steps according toπ

4.4. If stepsσ T1 � 1

4.4.1. Leta be the last action taken
4.4.2. Takeα and add the observed state torecσ,after

4.4.3. If |recσ,after| � K

• If freqσ,before RB?
nδ

a

– Update(freqσ,before, a, freqσ,after)
– Do lines 2 and 3

• Otherwise
– Let recσ,before � recσ,after andrecσ,after � H
– Increasestepsσ by 1

4.4.4. TakeT1 � stepsσ � 2 arbitrary non-α actions
(fixed-length phases for easier analysis)

30

First note that the assumptions made in the last subsection about the context of the Update
procedure are indeed correct:M is initialized empty, only updated by the Update procedure,
and only whensamplebeforeRB?

nδ
a . That doesn’t include compatibility, which only occurs with

high probability, as discussed below. Also note again that an optimal policy inM may require
exponential time to calculate, but the interaction complexity will be polynomial nonetheless.

Bounding the interaction complexity means bounding the number ofT1-step phases the algo-
rithm requires to reach near-optimality. LetT2 be that minimal number of phases. The interaction
complexity of the algorithm will then beT1T2, and both these parameters will have to be polyno-
mial. The parameters use by the algorithm areT1 andK of the main procedure,δ andµ1 of the
Update procedure,ǫ1 of the hypothetical model, and the minimal numberT2 of phases needed
for near-optimality. Sufficient values for these parameters will be determined as we analyze the
algorithm.

7.1.6 Analysis of UR-MAX

We shall now prove the correctness and efficiency of the UR-MAX algorithm. We argue that,
with high probability, in almost every phase, the algorithmimplements a near-optimal policy.
This involves three propositions:

• With probability at least1� ǫ
4

the records are accurate enough representations of the beliefs
according to which their entries are distributed. This includes compatibility of the samples,
and also another requirement which we describe below. This proposition is proved in
Corollary 6.

• Given these adequate records, at least a1� ǫ
4

fraction of the phases areexploiting, i.e. have
stepsσ � T1 � 1. This proposition follows directly from Corollary 4.

• These exploiting phases yield a return of at leastU�
MpT q � ǫ

4
. This proposition is proved

in Lemma 8.

We then combine these in Theorem 9 to show that running UR-MAX for T 1 ¥ T1T2 steps yields
a return of at leastU�

MpT q � ǫ, while T1 andT2 are polynomial inT , ǫ, |M | andC.
Here, again,|S| � n and|A1| � k.

Corollary 4 (Number of Entries). Assuming compatibility, at most2n2kKT1 ln 1
δ

entries are
ever added to the records.

Proof. Each timestepsσ is increased by1, a complete record is thrown away. We can think of
stepsσ as representing the number of such records "in sight".

When the Update procedure is invoked, we lose sight of these records, as well as the current
ones. There are at mostnpT1�1q records represented by then variablesstepss ¤ T1�1, and2n

records of the formsrecs,before andrecs,after. From this number we should deduct then records
which were initialized to sizeK in line 3 without their entries actually being added. This makes
a total of at mostnT1 records. Records are bounded in size byK, so at mostnKT1 entries are
added between consecutive Update invocations.

31

After D invocations of the Update procedure, before the entry whichwould cause another
invocation, at mostnKT1pD � 1q entries could have ever been added. Since by Corollary 2,
assuming compatibility,D � 1 ¤ 2nk ln 1

δ
, at most2n2kKT1 ln 1

δ
entries are ever added to the

records.

The compatibility of samples doesn’t tie them to any particular real belief. It merely states
that the beliefsampleafter approximates the one which follows the beliefsamplebefore whena is
taken. This is good enough for the Update procedure, but we require more when discussing the
source of these samples in the main procedure. In particular, we need to assert the relevance of
checking whether a sample is inB

?
nδ

a .
The recordrecσ,after, which is the one receiving new entries in phases starting with σ, is

emptied wheneverπ is recalculated orstepsσ is changed. This means that in any single record,
the initial state and the policy are the same for all entries,and so is the number of steps taken in
the phase before generating the entry. As explained earlier, this makes all the entries in a record
independently and identically distributed (i.i.d.) according to the belief in that step of the phase,
and the next action fixed. Note the special case in which the record recσ,before, when initialized,
containsK occurrences ofσ, which are of course i.i.d. according tobσ.

Definition 15 (Successful Record Completion). For a samplefreqσ,before, let b be the belief
according to which the entries ofrecσ,before are i.i.d., anda the action that follows. The
completion ofrecσ,after to sizeK is successfulif at that timepfreqσ,before, a, freqσ,afterq is
compatible, and also ��freqσ,before�b

��
1
¤ µ1.

Although recσ,after is the one being completed, it’s convenient to tiefreqσ,before to the real
belief b. freqσ,after is then tied too, since the samples are compatible.

Lemma 5 (Completion Success). A record completion is unsuccessful with probability at most
4ne�2Kµ12{n2

.

Proof. Consider the completion to sizeK of recσ,after, for someσ P S, and letb be the belief
according to which entries inrecσ,before are i.i.d., anda the following action. Thena � α or b is
pure, becauseα only occurs initially, whenb is chosen by the algorithm to be pure. So entries
in recσ,after are i.i.d. according tob1 � °

s bpsqt1ps, aq. Since|recσ,before| � |recσ,after| � K, we
expect that̃b � freqσ,before andb̃1 � freqσ,after should approximateb andb1, respectively.

So we have

Pr

������b̃1 �
ş

b̃psqt1ps, aq�����
1

¡ 2µ1 _ ���b̃� b
���
1
¡ µ1� ¤

(b1 � °s bpsqt1ps, aq)¤ Pr

����b̃1 � b1���
1
� �����

ş

�
bpsq � b̃psq	 t1ps, aq�����

1

¡ 2µ1 _ ���b̃� b
���
1
¡ µ1� ¤¤ Pr

����b̃1 � b1���
1
� ���b� b̃

���
1
¡ 2µ1 _ ���b̃� b

���
1
¡ µ1	 ¤

32

¤ Pr
����b̃1 � b1���

1
¡ µ1 _ ���b̃� b

���
1
¡ µ1	 ¤¤ Pr

�ª
s

����b̃1psq � b1psq��� ¡ µ1{n _ ���b̃psq � bpsq��� ¡ µ1{n	� ¤¤
ş

�
Pr
����b̃1psq � b1psq��� ¡ µ1{n	 � Pr

����b̃psq � bpsq��� ¡ µ1{n		 ¤
(Hoeffding’s inequality)¤ 4ne�2Kµ12{n2

.

Combining Corollary 4 and Lemma 5, we have

Corollary 6 (Total Success). With probability at least1� 8n3kT1e
�2Kµ12{n2

ln 1
δ
, all record

completions are successful.

Proof. A union bound guarantees that of at most2n2kT1 ln 1
δ

completions of a record to sizeK,

each unsuccessful with probability at most4ne�2Kµ12{n2

, the probability for any completion to be
unsuccessful is at most8n3kT1e

�2Kµ12{n2

ln 1
δ
.

If we set
K � Q n2

2µ12 ln
�
32n3kT1

1
ǫ
ln 1

δ

�U
,

we get that the probability of total success is at least1� ǫ
4
, as promised.

In UR-MAX , exploringphases are those in whichstepsσ T1 � 1, and therefore an entry is
added to the records. By Corollary 4, if we set

T2 � P8n2kKT1
1
ǫ
ln 1

δ

T
,

at most aǫ
4

fraction of the phases are exploring, and the others areexploitingphases, in which
stepsσ � T1 � 1.

Before our main theorem, it remains to be seen that these exploiting phases yield near-optimal
return. For that we need a lemma which bounds the divergence of the beliefs inM 1 and inM.

Lemma 7 (Belief Approximation). LetM � 〈S, A1, O, τ, ρ, θ1, C,W, ǫ1〉 be aµ-approximation
of an OCOMDPM 1 � 〈S, A1, O, t1, r, θ1, C〉, 0 ¤ δ1 ¤ ǫ1, a an action andb and b̄ the beliefs
reached inM 1 and inM, respectively. Assume thatb̄ P BW ,ǫ1

a , and that eitherb or b̄ (or both)
are inBW ,δ1

a � BW ,ǫ1
a . If a � α, assume further thatb and b̄ are pure. Then, the beliefsb1 and b̄1

reached after takinga in M 1 and inM, respectively, satisfy��b̄1 � b1��
1
¤ ��b̄� b

��
1
� µ� 2δ1.

33

Proof. If b P BW ,δ1
a , ��b̄1 � b1��

1
� �����

ş

�
b̄psqτps, aq � bpsqt1ps, aq������

1

¤¤ �����
ş

�
b̄psq � bpsq� τps, aq�����

1

� �����
ş

bpsq pτps, aq � t1ps, aqq�����
1

¤¤ ��b̄� b
��
1
� µ� 2δ1.

If b̄ P BW ,δ1
a , the proof is symmetrical.

In Lemma 8 we need to assert

• T
��� T1 � 1,

• ǫ
4
¥ C�2

T1
� 4ǫ1T1, and

• ǫ1 ¥ p9enµ1 � 2
?

nδqT1.

So we set
T1 � Q8pC�2q

ǫT

U
T � 1,

ǫ1 � ǫ

32T1

,

δ � ǫ1
4
?

nT1

,

and

µ1 � ǫ1
18enT1

.

Lemma 8 (Exploiting Phases). Assuming successful record completions, every exploitingphase
has a return of at leastU�

MpT q � ǫ
4
.

Proof. This is a version of the Implicit Explore or Exploit Lemma of R-MAX [4].
Consider the values ofM, σ andπ in a phase in whichstepsσ � T1 � 1, so that no entries

are added to the records, andπ is implemented forT1 steps. Letbi andb̄i, for 0 ¤ i ¤ T1 be the
beliefs which deterministically result in the real modelM 1 and inM, respectively, after usingπ
for i steps, starting from the beliefbσ.

Consider theT1 � 1 times in whichstepsσ had to be increased to reachT1 � 1. The fact that
these increases occurred indicates thatbi has been sampledK times whenstepsσ wasi � 1, for
1 ¤ i T1. The sample forb0 � bσ is explicitly initialized. Letsamplei, for 0 ¤ i T1, be
these samples.

In addition, the algorithm verifies thatsamplei P B
?

nδ
ai

, whereai is the action in stepi,
for 0 ¤ i T1 � 1. Note that this excludes the last step, becausebT1

is not sampled and
sampleT1�1 P B

?
nδ

aT1�1
is not verified and may be false.

34

We now prove by induction oni that
��b̄i � bi

��
1
¤ ǫ1i

T1
, for 0 ¤ i T1. As a base for the

induction,
��b̄0 � b0

��
1
� 0.

Now assume the proposition holds for some0 ¤ i T1 � 1, and prove it fori � 1. Let
b1 P SppWai

, eq be such that}b1 � samplei}1 ¤ ?
nδ. By the assumption of completion success}b1 � bi}1 ¤ }b1 � samplei}1 � }samplei � bi}1 ¤ ?

nδ � µ1,
and by the induction assumption��b1 � b̄i

��
1
¤ }b1 � bi}1 � ��bi � b̄i

��
1
¤¤ ?

nδ � µ1 � ǫ1i
T1
 ǫ1.

Therefore,bi P B
?

nδ�µ1
ai

, andb̄i P Bǫ1
ai

. By takingδ1 � ?
nδ � µ1 ǫ1 in Lemma 7, we have��b̄i�1 � bi�1

��
1
¤ ��b̄i � bi

��
1
� µ� 2

?
nδ � 2µ1 ǫ1i

T1
� 9enµ1 � 2

?
nδ � ǫ1pi�1q

T1
,

which completes the induction.
Note that̄bi P Bǫ1

ai
, for every0 ¤ i T1 � 1, means thats� is not reached inM, except

maybe in the last step. Now sinceα is used exactly once

UM 1pbσ, π, T1q � 1

T1

T1̧

i�1 şPS bipsqrpsq � C

T1

,

UMpbσ, π, T1q � 1

T1

T1̧

i�1 şPS b̄ipsqρpsq � C

T1

,

and |UMpbσ, πσ, T1q � UM 1pbσ, πσ, T1q| ¤¤ 1

T1

T1̧

i�1

�����
şPS �b̄ipsqρpsq � bipsqrpsq������ ¤

(s� is not reached fori T1)¤ 1

T1

T1�1̧

i�1

�����
şPS �b̄ipsq � bipsq� rpsq������ 1

T1

¤¤ 1

T1

T1�1̧

i�1

��b̄i � bi

��
1
� 1

T1

¤¤ 1

T1

T1�1̧

i�1

ǫ1i
T1

� 1

T1

¤ ǫ1
2
� 1

T1

.

35

In order to compare to the optimalT -step policy, we consider the following structure. We
start the phase withα, and continue with a sequence of deterministicT -step policies. Each policy
is optimal for the belief it starts with, among policies which don’t useα.

Let b�1 � b1 and b̄�1 � b̄1. We define the policies and the beliefs recursively, forl from 0 to
T1�1

T
� 1:

• π�l is a deterministic policy inM which maximizesUMpb�lT�1, π
�
l , T q,

• pa�i qpl�1qT
i�lT�1 P AT is the sequence of actions taken byπ�l , and

• b�i andb̄�i , for lT � 1 i ¤ pl � 1qT � 1, are the beliefs which deterministically result in
M and inM, respectively, after taking the actionspa�j qi�1

j�lT�1 from the beliefsb�lT�1 and
b̄�lT�1, respectively.

Let π� be the concatenation of theseπ�l s, i.e. the deterministicT1-step policy inM 1 which takes
the actionspa�i qT1�1

i�0 , with a�0 � α. Whereb�0 � b̄�0 � bσ, let i0 be the least0 ¤ i T1 such that
b̄�i RBǫ1

a�i , orT1 if no such index exists. By Lemma 7,
��b̄�i � b�i ��1 ¤ pµ�2ǫ1qi, for every0 ¤ i ¤ i0.

Then

UMpbσ, π�, T1q � 1

T1

T1̧

i�1 şPS b̄�i psqρpsq � C

T1

�� 1

T1

�
i0̧

i�1 şPS b̄�i psqrpsq � T1̧

i�i0�1

ρps�q�� C

T1

¥¥ 1

T1

�
i0̧

i�1 ş

b�i psqrpsq � T1̧

i�i0�1

ρps�q�� C

T1

� 1

T1

i0̧

i�1

�����
ş

�
b̄�i psq � b�i psq� rpsq����� ¥

(ρps�q ¥ rpsq)¥ 1

T1

T1̧

i�2 ş

b�i psqrpsq � C

T1

� 1

T1

i0̧

i�1

��b̄�i � b�i ��1 ¥¥ 1

T1

T1�1

T
�1

ļ�0

Ţ

i�1 ş

b�lT�1�ipsqrpsq � C

T1

� 1

T1

pµ� 2ǫ1qpi0 � 1q2
2

¥¥ 1

T1

T1�1

T
�1

ļ�0

TUMpb�lT�1, π
�
l , T q � C

T1

� p8enµ1 � 2ǫ1qpT1 � 1q2
2T1

¡
(T1 ¥ 2)¡ 1

T1

T1�1

T
�1

ļ�0

TU�
MpT q � C

T1

� p ǫ1
2T1

� 2ǫ1q9
8
T1 ¡¡ T1 � 1

T1

U�
MpT q � C

T1

� 3ǫ1T1.

36

Observe thatπ� satisfies the constraints under whichπ is optimal forM. Summing it all up,
we have

UM 1pbσ, π, T1q ¥¥ UMpbσ, π, T1q � ǫ1
2
� 1

T1

¥¥ UMpbσ, π�, T1q � ǫ1
2
� 1

T1

¥¥ T1 � 1

T1

U�
MpT q � C

T1

� 3ǫ1T1 � ǫ1
2
� 1

T1

¥
(U�

MpT q ¤ 1)¥ U�
MpT q � C � 2

T1

� 4ǫ1T1 ¥ U�
MpT q � ǫ

4
.

Finally we are ready for our main theorem, for which we summarize our choice of parameters.

T1 � Q8pC�2q
ǫT

U
T � 1 µ1 � ǫ1

18enT1

ǫ1 � ǫ
32T1

K � Q n2

2µ12 ln
�
32n3kT1

1
ǫ
ln 1

δ

�U
δ � ǫ1

4
?

nT1
T2 � P8n2kKT1

1
ǫ
ln 1

δ

T
Theorem 9(UR-MAX Correctness). LetM 1 � 〈S, A1, O, t1, r, θ1, C〉 be an OCOMDP which
extends a UMDPM � 〈S, A, tKu, r, t, θ〉. Letb0 be some initial state distribution,T a horizon,
andǫ ¡ 0 a margin. LetπA andTA be the policy and the number of steps, respectively, used by
UR-MAX (S, A, r, C, T , ǫ). Then

TA � poly
�
T, 1

ǫ
, |M |, C�,

and for everyT 1 ¥ TA

UM 1 pb0, πA, T 1q ¥ U�
M pT q � ǫ.

Proof. According to our choice of parameters,TA � T1T2 � poly
�
T, 1

ǫ
, |M |, C�.

Suppose that the interaction lastsT 1 ¥ TA steps. For convenience of the proof, append toT 1
one dummy step, and then some more to complete the lastT1-step phase. For these dummy steps

there’s of course no reward. Then the algorithm goes through
Q

T 1�1
T1

U ¥ T2 � 1 phases.

By Corollary 6, there’s a probability of at least1� ǫ
4

that all record completions are successful.
Assuming that, by Corollary 4 the fraction of non-exploiting phases (including the dummy phase)
is at most

2n2kKT1 ln 1
δP

8n2kKT1
1
ǫ
ln 1

δ

T� 1
 ǫ

4
.

37

So the probability that a phase chosen uniformly at random isexploiting is at leastp1 � ǫ
4
q2. If

it is exploiting, Lemma 8 guarantees a return of at leastU�
MpT q � ǫ

4
. Otherwise, it may utilizeα

twice, and yield as worse a return as�2C
T1

. We assumeǫ ¤ U�
MpT q ¤ 1 because otherwise the

learning problem is trivial. It follows thatU�
M pT q � ǫ

4
¡ 0 ¡ �2C

T1
.

So we have
UM 1pb0, πA, T 1q ¥¥ �1� ǫ

4

�2 �
U�

MpT q � ǫ
4

�� �1� �1� ǫ
4

�2	 2C
T1
¥¥ U�

MpT q � ǫ
2
U�

MpT q � ǫ
4
� ǫ2

8
� ǫ3

64
� ǫC

T1
¡

(T1 ¡ 8C
ǫ
¡ 4C)¡ U�

MpT q � ǫ
2
� ǫ

4
� ǫ

4
� U�

MpT q � ǫ.

7.2 Learning States and Rewards

Obviously the agent must be given the setA of possible actions, for otherwise it can’t even begin
to interact. As forS, r andC, those can sometimes be learned from the interaction, instead of
being given as input.

C can simply be learned if we assume that it can be observed whenfirst payed.
For learningr, we assume that whenα observes a state, its reward is visible as well. It

can be verified that the rewards of states which are never observed byα play absolutely no role
in UR-MAX . These states are missing from the records when learning, and therefore aren’t
reachable when planning inM. It’s enough then to take note of the value ofrpsq whens is first
observed.

The names of the states are similarly learned when observed.However,n � |S| is required
for the calculation of parameters. Asn grows, so doesTA, the number of steps required to ensure
learning. One could imagine a model in which larger and larger subsets of states can be reached
with lower and lower probability. Intuitively speaking, analgorithm guessing a boundN on the
number of states in such a model will have to use a number of steps which will take it through
much more thanN states, with high probability. If the algorithm iteratively updates the bound,
it may have to do so a large number of times. Compensating for interaction spent with the bound
too low may then be a problem.

There are two approaches for dealing with this problem.
The first approach makes additional assumptions which restrict the class of models we try to

learn. For example, suppose that non-zero transition probabilities can’t be arbitrarily small, but
rather are bounded from below by a known constantγ ¡ 0. Then if transition probabilities are
estimated, in all samples, with error less thanγ, the states which aren’t yet reached simply can’t
be reached. The following algorithm enables learning in such a scenario, using as a building
block UR-MAX , altered to estimate probabilities to within an error ofγ or lower.

38

Suppose that up to some point onlyn1 n states ofM are observed (initially,n1 � 0).
Imagine a modelM̄ with n1 � 1 states, in which the setSu of all unobserved states ofM is
replaced with a single state. This state has maximal reward and leads deterministically to itself,
for any action. The probability in̄M of reaching this fictitious state from an observed statesRSu

is the probability inM of reaching anys1 P Su from s. Other transitions remain the same.

The algorithm runs UR-MAX with M̄ ’s states as input. If new states are revealed, the process
is repeated, again and again, with increasing values ofn1. Eventually UR-MAX is run without
revealing new states. At that point the algorithm is unable to tell if the real model isM or M̄ .
Since UR-MAX competes with the optimal return in̄M , which is at least as high as the optimal
return ofM , it is indeed near-optimal. The algorithm can then continuefor some more steps to
compensate for the interaction spent with too few states. According to our assumptions, during
this period no new states can be reached.

The other approach sacrifices complexity for generality. Even if we don’t make any assump-
tions on the model, we can learn with interaction complexitywhich is not much worse than
polynomial. For example, suppose that we use the same algorithm as above, but this time we
start withn1 � 2, and squaren1 every time we reach a previously undiscovered state. That is, for
i � 0, 1, 2, . . . we run UR-MAX with 22i

states and marginǫ{2.
When this number of states eventually exceeds the real number of statesn, the return of the

last iteration is at mostǫ{2 less than optimal. The overall return may beǫ{2 lower than that, due
to the interaction spent with too few states. To guarantee this, we don’t simply run UR-MAX for
the number of steps it suggests, but rather for a larger number of steps. IfTi is the number of
steps required by UR-MAX in iterationi, we actually use it forT 1

i steps, where

T 1
i � max

�
Ti,
�

2
ǫ
� 1

� i�1̧

j�0

T 1
j

�
,

so we have °i�1

j�0 T 1
j°i

j�0 T 1
j

¤ °i�1

j�0 T 1
j°i�1

j�0 T 1
j

�
1� 2

ǫ
� 1

� � ǫ
2
,

and

T 1
i Ti � �2

ǫ
� 1

� i�1̧

j�0

T 1
j i̧

j�0

�
2
ǫ
� 1

�i�j
Tj .

The algorithm terminates in an iteration where no new statesare encountered, which happens
after at mostrlog2 log2 ns � 1 iterations (forn ¡ 1). In addition, never more thann2 states are
assumed by the algorithm, soTi is still polynomial. It follows that the interaction complexity of
this algorithm is �

2
ǫ
� 1

�log2 log2 n
poly

�
T, 1

ǫ
, |M |, C�.

39

7.3 Learning a UMDP Policy

OCOMDPs extend UMDPs by adding a fully-observing actionα. In a sense, this enables learn-
ing in UMDPs. As an example, consider the medical treatment of outpatients. In some medical
fields, the patients’ own feelings are not considered significant enough for diagnosis, and when
they are not under medical observation, a UMDP can be suggested to describe the process they
are going through. The states of the UMDP are possible prognoses, and the actions are possible
medical interventions. The reward can be a measure of the patient’s well-being, and can also
incorporate the cost of treatment. Transition probabilities represent the distribution in the popu-
lation of unpredictable factors, such as whether a given patient will react positively to some drug.
The initial state (or distribution) is the patient’s state when the condition is first diagnosed.

Observability in many cases of medical treatment is not impossible, but costly. It may re-
quire, for example, expensive hospital equipment. The model then becomes an OCOMDP, prob-
ably one in which an optimal policy still lacks observations. However, the approach taken by
UR-MAX makes little sense in this case. In the setting of section 7.1, UR-MAX treats one
particular patient repeatedly, applying various treatments again and again, while occasionally
monitoring the state, until it concludes that the patient’scondition can’t be further helped.

What a medical researcher would do, simplistically, is takea large number of patients, di-
vide them into groups, and subject each group to a different treatment. By monitoring each
patient’s reaction to treatment, the researcher would thenbe able to determine the evolution of
the condition under different interventions, and recommend a good policy for cases where such
monitoring is too costly.

To express this methodology in our notation, we make two adjustments. First, the UMDP will
include aresetaction, which always leads back to the initial state distribution. In the medical
domain example, this action means switching to the next patient. Second, it’s not enough for the
algorithm to compete with the optimal policy of the underlying UMDP, just as it’s not enough to
cure patients during research. It must provide a near-optimal T -step policy that doesn’t useα, so
that after the learning periodα can eventually be dropped.

This can be easily achieved. Note that in UR-MAX , α is used in exploiting phases only as a
reset action, to provide a known belief which the agent has visited repeatedly and learned to act
in. We simply change the way an optimal policyπ is calculated in the hypothetical modelM.
Instead of a deterministicT1-step policy which is optimal among those which useα in the first
step and only then, we calculate a deterministicT -step policyπ1 which is optimal among those
which start with the reset action and never useα. Then we expand it to a deterministicT1-step
policy which is optimal among those which start withπ1 and never useα.

The proof that the algorithm is still near-optimal, compared with the optimalT -step policy
in the underlying UMDP, is essentially identical to the proof of Theorem 9. A similar analysis
shows that in exploiting phases (which eventually occur)π1 is a near-optimalT -step policy in the
UMDP.

When the UMDP is lacking a reset action, but satisfies some condition of connectedness, an
approximate reset strategy[5] can be used to simulate such reset, and still learn a near-optimal
UMDP policy. The interaction complexity, however, is generally not polynomial.

40

7.4 Learning with respect to the OCOMDP

The title of this chapter promises learning in OCOMDPs. Approaching the optimal return of the
underlying UMDP, as interesting in itself as it is, was just an introduction. We still have to com-
pete with the optimal return of the OCOMDPM 1, which is the actual model of the environment.
If the costC of taking α is small enough, there may be a policy which usesα to improve its
return, beyond the optimal return of the UMDP.

The reason we had to compare the policy of UR-MAX to the optimal policy of the UMDP is
that its planning module wasn’t allowed to useα anywhere inside the policy. We did that in order
to have deterministic phases, given the initial state. Let’s see what is changed when we remove
this restriction.

First, the computation complexity of planning may be largernow, but is not our concern here.
Note that nothing is changed in the Update procedure or in itsanalysis, as long as the as-

sumptions it makes on its input are kept by the main procedure.
Phases now don’t follow deterministically from the initialstate, because of the observations

of the in-phaseα actions. But determinism is still preserved betweenα actions, in the following
manner.

A sequence of steps starting with anα action and ending before the next will be called a
sub-phase. Every phase can be broken into a sequence of consecutive sub-phases. Suppose that
in two different sub-phases theα action gives the same observation, and then the same sequence
of actions is taken. The beliefs will deterministically be the same in both sub-phases, and they
can therefore contribute entries to the same records.

Formerly, the observable history after a given number of steps of a phase could take at most|S| different values, one for each initial state. Now that taking α is allowed, and observation can
be made in any step, the number of observable histories can become exponential. Since actions
depend on histories, this may result in exponentially many different sub-phases, and require
exponentially many records.

To address this difficulty, we restrict our attention tostationarypolicies, without loss of
generality. Consider a policyπ which maximizesUM 1pb0, π, T1q. After taking T1 � i steps,
and reaching some beliefb, the restriction ofπ to the remaining steps,πb,i, has to maximize
UM 1pb, πb,i, iq. There may be more than one maximizing sub-policyπb,i, and it’s possible forπ
to choose different ones in different histories (if different histories lead to the same beliefb). But
it wouldn’t harm optimality to choose the same sub-policy regardless of the history. A stationary
policy uses actions based only on the current belief and the remaining horizon. Note that there
always exists an optimal stationary policy.

Now, consider what happens when a stationary deterministicpolicy is used in an OCOMDP.
Suppose that at some pointα is taken. The next belief is determined by the observationσ, and
the next action is determined byσ and the remaining horizonι. Suppose that that action is not
α, then the belief and action following it are also determinedby σ andι. This continues for the
entire sub-phase, up until the nextα action. The records we keep will reflect this new version of
determinism.

The revised algorithm may seem a little more complicated, but it operates in essentially the
same way.

41

UR-MAX (S, A, r, C, T , ǫ) (revised)

1. Initialize a completely unknown modelM, i.e. letWa � H for eacha P A1
2. Let π be a stationary deterministicT1-step policy, which is optimal inM among those

which useα in the first step

3. Letrecs,i,before � tK copies of su, let recs,i,after � H, andstepss,i � 0,
for eachs P S and0 i T1

4. Repeat for eachT1-step phase:

4.1. Takeα and observe the initial stateσ

4.2. Letι � T1 � 1 be the remaining horizon in the phase

4.3. Whileι ¡ 0, do another sub-phase:

4.3.1. Takestepsσ,ι steps according toπ

4.3.2. Decreaseι by stepsσ,ι

4.3.3. Leta be the last action taken

4.3.4. If (a � α or stepsσ,ι � 0) andι ¡ 0

4.3.4.1. Takeα and add the observed state torecσ,ι,after

4.3.4.2. If|recσ,ι,after| � K

• If freqσ,ι,before RB?
nδ

a

– Update(freqσ,ι,before, a, freqσ,ι,after)

– Do lines 2 and 3

• Otherwise

– Let recσ,ι,before � recσ,ι,after andrecσ,ι,after � H
– Increasestepsσ,ι by 1

4.3.4.3. Takeι arbitrary non-α actions and letι � 0

The explanation of line 4.3.4 is as follows. Ifa � α, we go to the next sub-phase. The
exception is whenstepsσ,ι � 0, which means we’re now sampling the beginning of a sub-phase.
We also make sure that the phase hasn’t ended,ι ¡ 0.

Only two modifications are required in the analysis.
First, there are more records to take into account in Corollary 4. This makes all the parameters

a little larger, but still polynomial.
Second, in Lemma 8 we need to observe that, among the policiesavailable to the planning

module, is a policy which starts withα, and then repeatedly usesT -step policies which are
optimal inM 1 for their respective initial beliefs. The rest of the proof remains the same.

42

8 Summary

In this thesis we have discussed the interaction complexityof several classes of decision pro-
cesses in which observability is partial: POMDPs, OPOMDPs and OCOMDPs. The relation-
ships between these and other important classes are illustrated in Figure 7.

One contribution of this thesis has been defining the conceptof interaction complexity as an
entity separate from the standard concept of computation complexity. Previously, publications
concerned with complexity sought computationally efficient reinforcement learning algorithms,
and viewed the efficiency of their interaction as a necessaryand insufficient condition. We have
argued that the interaction complexity is interesting in itself, and focused on reinforcement learn-
ing algorithms with polynomial interaction complexity.

Another attribute of most previous research is that it aims to solve the infinite horizon learning
problem, but actually switches to the finite horizon form in algorithms and proofs. This reduction
is often only implicit or discussed informally. Since the finite horizon form is more general and
easier to work with, we have provided and proved a general Turing reduction from the infinite
horizon form, which has allowed the rest of our work to apply equally well to both problems.

A major contribution of this thesis has been introducing classes of partially observable de-
cision processes with provably polynomial interaction complexity. Importantly, the proofs have
been constructive, i.e. we have provided algorithms for efficient reinforcement learning in these
classes. One reason that this is interesting is that it indeed separates the interaction complexity
from the computation complexity, by demonstrating learning problems which can be solved with
polynomial interaction complexity, but not with efficient computation (according to standard
complexity assumptions).

We have shown that learning in POMDPs, when possible, generally can’t be achieved with
polynomial interaction complexity. That is, we have shown alearnable subset of POMDPs which
requires a number of interaction steps exponential in the size of the model.

We have then introduced two subclasses, OPOMDPs and OCOMDPs, the latter being our
own contribution. Both these classes are too general to allow either efficient planning or com-
putationally efficient learning. Computationally, the former class is at least as hard as POMDPs,
and the latter at least as hard as UMDPs. However, we have shown that learning with polynomial
interaction complexity is possible in both these classes.

Our algorithm for learning in OPOMDPs is only slightly more complicated than R-MAX ,
which learns efficiently in MDPs. OCOMDPs, on the other hand,have turned out to pose a con-
siderable challenge, and the UR-MAX algorithm for efficiently learning them has been another
major contribution of this thesis.

The basic version of the UR-MAX algorithm interacts with an unknown OCOMDP to obtain
a return which is nearly the optimal return of the underlyingUMDP. We have then extended the
algorithm in two important ways: to produce a stand-alone policy for the underlying UMDP, and
to compete with the OCOMDP itself. We have also dealt with thecase where the number of
states is unknown.

The problem of efficient learnability in partial observability is far from solved, and should
be further investigated in future work. It is our hope that these first positive results of efficient
learning in general classes of partially observable decision processes will inspire further research.

43

POMDPs

UMDPs

OCOMDPs

OPOMDPs

MDPs

COMDPs

Figure 7: Classes of decision processes

44

A Appendix: Equivalence of Observation Models

In section 2.3 we argued that most common definitions of the observation model produce classes
which are equivalent for planning. We now show why this is so.

First, having stochastic observations doesn’t extend the class. As explained earlier, this just
means that observations are generated "on demand" instead of just revealing a feature of the
state. For example, compareθ : S Ñ ∆pOq to θ1 : S 1 Ñ O. Of course, a model of the second
type can easily be represented in the form of the first. For thereduction in the other direction,
let S 1 � S � O. Whenever a new states P S is drawn, the observationo � θpsq is immediately
drawn too, to produceps, oq P S 1. Then simplyθ1ps, oq � o reveals this observation.

Now we show that it doesn’t matter what part of the recent history the observation depends
on. The types we consider are

1. S Ñ O, the current observation depends on the current state,

2. S � A Ñ O, the observation is triggered by an action, and depends on the action and the
state before it, and

3. S � A � S Ñ O, the action-triggered observation also depends on the state reached
thereafter.

We show that these observation models are equivalent, in terms of planning in the classes they
produce. We start with equivalence of the first and third types, and follow with equivalence of
the second and third.

There are two differences between the first and third types ofmodels. They both make an
observation each time a state is reached, but only in the latter may the observation depend on
the previous state and action. Reducing one model to the other is simply a matter of ignoring
these variables, in one direction, or extending the state toinclude them and use them, in the other
direction.

The other difference between these models is that in the firsttype an observation is made
before the first action. When a model of the third type is reduced to one of the first type, the
initial observation can simply be made constant. In the other direction, the reduction is not fixed.
Instead, we first make the first observation, and only then we can calculate the reduction. The
result will have different initial beliefs for different observations.

An observation model of the second form can easily be represented in the third form, simply
by not having the observation depend on the next state after all. The other direction is a little
more challenging. Suppose that we have a modelM with statesS and observation function
θ : S � A � S Ñ O. To reduce it to a modelM 1 with statesS 1 and observation function
θ1 : S �A Ñ O, we want a state inM 1 to represent now not only the current state inM , but also
the next state. However, the current state is decided beforethe action, so it needs to represent
a function from the action to the following state. SoS 1 � S � AS, whereps, uq P S 1 indicates
that the current state inM is s, and the next will beupaq if a is taken. But we have to avoid|S 1| � |S| � |A||S|, to keep the reduction polynomial.

45

0 1{6 1{3 1{2 2{3 5{6 1

a1 s1 s2 s3

a2 s1 s2 s3

a3 s1 s2 s3

Figure 8: Efficient representation of a function from actionto following state

A distribution over an ordered set can be naturally represented by a partition ofr0, 1q into
finitely many intervals. For example, the partitiontr0, 1{2q, r1{2, 2{3q, r2{3, 1qu may represent the
distribution in whichPr p1q � 1{2, Pr p2q � 1{6, andPr p3q � 1{3.

If we intersect the partitions which representtps, aq, for a fixed states and every actiona P A,
we get a new partition which refines each of them (Figure 8). Each interval in each original
partition corresponds to a state, so each interval in the newpartition corresponds to a function
that matches a state to each action. For example, in Figure 8,the intervalr2{3, 5{6q corresponds to
u such thatupa1q � upa3q � s3 andupa2q � s2.

The new partition represents a distribution over a subset ofthese functions, of size less than|S| � |A|. When the states is reached inM , we reachps, uq in M 1, whereu is drawn according to
this distribution. Then we haveupaq � tps, aq, andθ1pps, uq, aq � θps, a, upaqq, as required.

46

References

[1] Douglas Aberdeen. A (revised) survey of approximate methods for solving Partially
Observable Markov Decision Processes. Technical report, National ICT Australia,
December 2003.

[2] Nicholas Armstrong-Crews and Manuela Veloso. OracularPartially Observable
Markov Decision Processes: A very special case. InProc. IEEE International Conf.
on Robotics and Automation, pages 2477–2482. IEEE Press, April 2007.

[3] Richard Bellman.Dynamic Programming. Princeton University Press, June 1957.

[4] Ronen Brafman and Moshe Tennenholtz. R-MAX - a general polynomial time al-
gorithm for near-optimal reinforcement learning.Journal of Machine Learning Re-
search, 3:213–231, October 2002.

[5] Eyal Even-Dar, Sham Kakade, and Yishay Mansour. Reinforcement learning in
POMDPs without resets. InProc. International Joint Conf. on Artificial Intelligence,
pages 690–695. IJCAI Press, August 2005.

[6] Roy Fox and Moshe Tennenholtz. A reinforcement learningalgorithm with polyno-
mial interaction complexity for Only-Costly-Observable MDPs. InProc. 22nd AAAI
Conf. on Artificial Intelligence, pages 553–558. AAAI Press, 2007.

[7] Judy Goldsmith and Martin Mundhenk. Complexity issues in Markov Decision Pro-
cesses. InProc. 13th Annual IEEE Conf. on Computational Complexity, pages 272–
280. IEEE Press, June 1998.

[8] Eric Hansen, Andrew Barto, and Shlomo Zilberstein. Reinforcement learning for
mixed open-loop and closed-loop control. In Michael C. Mozer, Michael I. Jordan,
and Thomas Petsche, editors,Advances in Neural Information Processing Systems,
volume 9, pages 1026–1032. The MIT Press, 1997.

[9] Ronald Howard.Dynamic Programming and Markov Processes. Technology Press
Research Monographs. Technology Press of the Massachusetts Institute of Technol-
ogy and John Wiley & Sons, June 1960.

[10] Leslie Kaelbling, Michael Littman, and Andrew Moore. Reinforcement learning: A
survey.Journal of Artificial Intelligence Research, 4:237–285, January–June 1996.

[11] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in poly-
nomial time. In Jude W. Shavlik, editor,Proc. 15th International Conf. on Machine
Learning, pages 260–268. Morgan Kaufmann, July 1998.

[12] P. R. Kumar. A survey of some results in stochastic adaptive control. SIAM Journal
on Control and Optimization, 23(3):329–380, May 1985.

47

[13] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilis-
tic planning and infinite-horizon partially observable Markov decision problems. In
Proc. 16th National Conf. on Artificial Intelligence, pages 541–548. AAAI Press,
1999.

[14] Christos Papadimitriou and John Tsitsiklis. The complexity of Markov Decision
Processes.Mathematics of Operations Research, 12(3):441–450, August 1987.

[15] Richard Sutton and Andrew Barto.Reinforcement Learning: An Introduction. Adap-
tive Computation and Machine Learning, Bradford Books. TheMIT Press, 1998.

48

