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Abstract

Markov decision processes are mathematical models of amt’ageteraction with its
environment, and its attempt to obtain some benefit fromitiésaction. In the more com-
plicated cases, the agent can only partially observe ttie sfathe environment, and the
process is callegartially observable

It may also be the case that the agent doesn't initially kneevrules that govern the
interaction, and what the results of its decisions may beenTthe agent has to learn the
model from the interaction, a type of learning caltethforcement learning

In this work we discuss several aspects of reinforcementilegiin Markov decision pro-
cesses in which observability is partial. We introduce thiecept ofinteraction complexity
which is a measure of the rate in which reinforcement learralgorithms extract from
the environment useful information. We then explore therguttion complexity of several
classes of partially observable decision processes.

Partially Observable Markov Decision Processes (POMDRs)aacentral and exten-
sively studied class of decision processes. In some POM&l#3grvability is too scarce,
and reinforcement learning is not possible. We show a ssb@ddPOMDPs which can be
learned by reinforcement, but requires exponential isteza complexity.

We discuss a subclass of POMDPs, called OPOMDPs, in whidhgddahning and learn-
ing have been previously studied. We show that reinforceérgamning in OPOMDPs is
always possible with polynomial interaction complexity.

We then introduce a closely related subclass of POMDPs wivieltall OCOMDPSs.
OCOMDPs capture more of the complexities of learning in PGMDhan OPOMDPs do,
and efficiently learning them is considerably more difficddtperform and analyze than
learning OPOMDPs.

The main result of this thesis is the URax algorithm for reinforcement learning in
OCOMDPs with polynomial interaction complexity. We inttame and discuss the algorithm
and some of the intuition behind it, and prove its correctreex efficiency.

1 Introduction

The widely applicable subject of decision making has attéattention in many fields of re-
search for many decades. Its normative aspect is the degimake "good" choices. We identify
an agent which is the deciding entity, and amvironmentwhich consists of everything else
relevant to the decision problem. We may think of the enviment as having somsate which

is a complete description of these relevant features. Thetdgas some perception of that state,
formed by arpobservatiorthe agent makes of the state.

In its decisions, omctions the agent may affect the state of the environment, as wéeas
nature of the observation. Some of these influences may be desirable to the agent than
others, and this serves as an incentive to the agent to pefee decisions to others. This
benefit, oreward which the agent obtains, together with the observatiams thoses a loop of
action and reaction between the agent and the environmigpir@-1).

If we wish to apply analytic tools to measure the quality otidmns and, hopefully, to
automate the process of making good decisions, we can de&rmhcepts above quantitatively,
and look for algorithms which interact with the environmembbtain provably high rewards.
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Figure 1. Scheme of interaction between agent and envirohme

Mathematical models of decision making are usually class$ifly the amount of information
which the observation holds of the state fully observablanodels the entire state is observed.
In unobservablenodels no useful information about the state is revealedchbyobservation.
Generalizing both areartially observablemodels, in which the amount of information about
the state provided by the observation can be anything betweee and all.

The problem of making good decisions has another importspec. Prior to the interac-
tion, the agent may or may not know the model which will gogeltme environment — the way
the actions affect the state, the way observations are madis@on. If the model is known
beforehand, the question of making good choices becomdsdatéon problem, and is named
planning If, however, the model is initially unknown, the agent hagrteract with the envi-
ronment, in order to learn enough of the model to eventualide well. Thisreinforcement
learningproblem sets the challenge of extracting information framinhteraction, in addition to
the calculation problem of planning. Our focus in this wagkaddressing this challenge when
observability is partial.

In chapter 2 below we provide formal definitions of the modesch were briefly described
here. In chapter 3 we define the problems of planning andilegand discuss some of their
features. We also define the conceptirdkraction complexityan important and useful mea-
sure for the efficiency of reinforcement learning algorithrwhich has been implicit in other
publications. In chapter 4 we briefly discuss previous neteahich relates to this work.

The last three chapters analyze the interaction complexitginforcement learning in par-
tially observable decision processes. Chapter 5 incluth@sdness result for POMDPs, the most
general class of models we discuss. In chapter 6 we show hewR-a previously published
algorithm for efficient reinforcement learning in fully alorsable models, can be extended effi-
ciently to some class of partially observable processdst@POMDPs.

In chapter 7 we introduce another class of partially obdsdevaecision processes called
OCOMDPs. Despite the similarity in definition to OPOMDPsarl@ing in this class is con-
siderably more complicated, and demonstrates some of thieutties of learning under partial
observability. Our main result in this work is URAX , an efficient algorithm for reinforcement
learning in OCOMDPs.



2 Models

We present some well studied mathematical models of ana@mwient with which a decision
making agent is interacting. Time in these models advanisesately, and in each time step
the agent performs an action of its choice. The state of theg@mment following this action
depends stochastically only on the action and the previtats,svhich is known as thidarkov
property.

In Markov Decision Processes (MDR#)e agent fully observes the state in each step before
taking an action. This greatly simplifies the model, its ability and learnability.

In Partially Observable MDPs (POMDPgs)he agent doesn’'t have direct access to the state.
Rather, in each step it makes an observation which may reveaination about the state. This
is a much more general and complex model.

Unobservable MDPs (UMDP4ake this handicap to the extreme, where no useful informa-
tion about the state is available to the agent.

Following are definitions of these models.

2.1 Markov Decision Processes
Definition 1 (MDP). A Markov Decision Process (MDP) is a tuplé = (S, A, t,r) where

e S is a finite non-empty set of possible environment states,

e Ais afinite non-empty set of possible agent actions,

o t: 5 x A— A(S)is adistribution-valued state transition function, and
e r: S — [0,1]is an agent’s reward function.

Theinteractionof an agent with an MDP is a stochastic processa;);~0, Where the random
variabless; anda; are distributed over the domaifsand A, respectively.

Three elements induce this process. First, the initiaéstais distributed according to some
initial state distributiorb, € A(.S). This distribution is known to the agent, and arbitrary ssle
otherwise defined.

Second, the process is affected by the agent’s choice admaati each step. We define
H = ;50 (S x A)" x S to be the set obbservable historiesEach time the agent is required
to choose an action, there’s a histdrye H which describes the sequence of past events the
agent has witnessed — the previous states and actions. Emésguplicy is then a function
m : H — A(A), which determines, for every > 0, the distribution ofa; ~ w(h;), where
hi = ((s;,a;)5_0. s:) is the observable history aftésteps.

Third, the state transitions are determined by the modé, wi, ~ t(s;, a;), fori > 0.

r is of no consequence for the process itself. It only becomg®itant when we use it to
score policies in the following section. Its definition asuadtion fromsS to [0, 1] may seem
overly restrictive, but is in fact equivalent to any othenguon definition, as explained in the
following section.



2.2 Scoring Policies

We are interested in making "good" decisions. The qualitg gblicy, for a given model and
a given initial distribution, is determined by some quantf the stochastic process, or more
specifically, of the sequence of rewar@ss;)).~o. Some commonly used expressions for this
measure are:

e For a given finitenorizonT"

1. The expected average of the fifstewardsE - ST r(s).
2. The expected discounted suBy.’_, ~'r(s;), for some discount e (0, 1).

e For infinite horizon:

1. The infimum limit of the expected averadien inf7_,, E % ZiTzl r(s;).
2. The expected discounted suBhy ,_, v'r(s;), for somey € (0, 1).

In the infinite horizon case, the second expression may make sense than the first, in
which the contribution of each reward tends(to In this work we are primarily concerned
with the finite horizon case, and therefore use the simpldisgounted expected average. This
measure we call thieturn of the policy, and define it to be

T

1
Uni(bo, 7, T) = ET r(s;)

i=1
for an initial state distribution,, a policyx and a finite horizof’, and
Ui (bo, ) = li%n inf Ups (b, 7, T)
—00

for infinite horizon.

We conveniently use a rather specific definition of the rewardtion,» : S — [0, 1].
However, other functions can be represented in this forimulain a way which preserves the
meaning of the return as a quality measure. To be exactlllet= (S, A,¢,r") be a model
where the reward functiorf that is not fromsS to [0, 1], andU’ a return which will be defined
appropriately below. We reduc®’ to a model} with rewardsr : S — [0, 1] such that the
returnU,; is monotonic inU’ .

e Suppose that' : S — R is a reward function which is not restricted|tp 1|, andU" is the
standard return formula.
SincesS is finite, 7’ is boundedy’ : S — [Rumin, Rmax), With R, < Riax. Then we use
7 = ("'~ Buin)/[(Rumax—Rmin), Which is restricted t@0, 1] while affecting’ monotonically.

e Suppose that rewards are stochastic, S — A(R), andU’ replaces each(s;) in the
standard formula with a random variable~ r'(s;).

Since the return only depends on the expected reward, we takB »', normalized as in
the previous item.



e Suppose that rewards depend on the actions$ x A — [0, 1]. U’ uses’'(s;, a;) instead
of r(s;), so that rewards are obtained for acting well, not for meresching good states.
Also, the summation i’ should start from = 0, instead ofl.

The trick in this reduction is to define a new set of statesctwvinemember not only the
current state, but also the previous state and action. Fiyrries M = <§, At f> with

S = 52 x A. The transition functio remembers one previous state and action,

t((scurra Sprew aprev)a acurr) = (t(scurra acurr)a Scurr) acurr)a

and the reward for the reached state is actually the rewattiéqrevious state and action

f((scurra Sprew aprev)) = T,(Spreva a'prev)-

If we let the initial distribution béy ((s0, 8, @) = bo(s,) for some fixeds € S anda € A,
and be the policy inM which corresponds to a polieyin M’, then

2.3 Partially Observable and Unobservable Markov DecisiorProcesses

Definition 2 (POMDP) A Partially Observable Markov Decision Process (POMDP)tisde
M = (S, A, O,t,r 0) where

e S, A, tandr are asinan MDP,
¢ O is a finite non-empty set of possible agent observations, and
e 0:5 x A— Oisanagent’s observation function.

In POMDPs the agent doesn’t observe the state at each steégharefore can’t base its
actions on it. Instead, the agent’s action includes somseaosgrpower, which provides the
agent with an observation of some features of the state. &hefsbservable histories here
is H = ;oo (A x O)", and the agent’s policy is : H — A(A), such that; ~ 7 (h;), where

hi = ((a3,0(s5,a5))5Zp)

is the sequence of past actions and observations. The fanctionU,, is defined here exactly
as in MDPs.



In most publications, the observation depends on the stat¢he action stochastically. This
has the interpretation that the value of the observed feaugenerated "on demand" rather than
being intrinsic to the state. But these classes of modelsguivalent, in the sense that each can
be reduced to the other. We can even restrict the model ndote e observation to depend on
the action, or otherwise extend it to allow the observatmdepend on (or have joint distribution
with) the following state, and equivalence is still presstyas discussed in Appendix A.

An Unobservable Markov Decision Process (UMDB)a POMDP in which there are no
observations, or more precisely, observations providesadullinformation. Formally, the eas-
iest way to define a UMDP is as a POMDP in which= {L}, so the constant observatidn
provides no information of the state. Note that in both POMRRd UMDPs, the rewards are
generally not considered to be observable, and the agetitusanthem in its decisions, unless
they are explicitly revealed by

2.4 POMDPs as MDPs over Belief-States

When observability is partial, the agent may not know the state of the environment. In each
step, the agent can calculate the probability distribubicthe state, given the observable history,
a distribution referred to as the agerislief of what the state may be.

It's sometimes useful to view POMDPs as "MDPs" in which Wisliglay the role of states.
For a POMDPM = (S, A, O,t,r,0), consider the model!’ = (S’ A, t',r"). M’ is like an
MDP in every aspect, except that = A(S) is not finite. To define the transition function
t':S" x A— A(S"), consider the belief € S’ which is the distribution of the state given some
observable history.. Now suppose that is taken, and that the observatiorvisi.e. the next
history is(h, a, 0). Then the next belief is

2s:0(s,0)=0 V(S)E(s, @) .

v =
Zs:@(s,a):o b(S)

t'(b, a) is the distribution of/ (a distribution over distributions of states), and it reesithe value
above with probability

Pr(olh,a) = > b(s).

s:0(s,a)=o0

Note that when the observation is constant, as in UMDPSs, ¢liefkstate transition is determin-
istic. This fact will prove very useful in chapter 7.

Usingt’, and given the initial state distribution (which is the iaitbelief-state in}"), we
can translate observable histories into beliefs. Thercigdiin M translate into policies id/’.
Since the return of a policy only involves the expected relwarakingr’(b) = > _b(s)r(s) will
give identical returns for a translated policyif' as for the original policy in/.

6



3 Reinforcement Learning (RL)

3.1 Planning and Learning

Two objectives naturally arise when considering modelssgision making. The firsplanning
is the automated solution of the model.

Definition 3 (Finite Horizon Planning) The finite horizon POMDP planning problem is to find
an algorithmA which, given a modeM, an initial state distributioh,, and a horizo’, finds a
policy 74 = A(M, by, T') which, when used fof’ steps, maximizes thg-step return,

Uni(bo, ma, T) = max Uy (bo, w, T).

Definition 4 (Infinite Horizon Planning) The infinite horizon POMDP planning problemis to
find an algorithmA which, given a model, an initial state distributioh, and a margirz > 0,
finds a policyr4 = A(M, by, €) which, when used indefinitely, approaches the supremum
return,

Uni(bo, ma) = sup Upr(bo, ) — €.

The margin is required because generally a maximizing patay not exist. As an example
where no optimal policy exists, suppose tisat= {s°, s!, 5804 sbadt - 4 = {a° o' a’}, and
O = {0°, o'} (Figure 2). We start in eithes® or s' with equal probability. In these states, the
actionsa® anda' are an attempt to guess the state, and take us determiltystiocas*°? or s”29,
respectively if the guess is right (i.@’ is taken froms®) or wrong (i.e.a!~" is taken froms?).
The action:” stays in the same stat&or s', but provides an observation which helps determine
the state — in state the observation is’ with probability2/s ando! ¢ with probability/s. Once
we take a guess, though, and reagh? or s**!, we always stay in the same state. The rewards
arer(s%) = r(st) = 0, r(s*!) = 12 andr(s&°°?) = 1. Since the process continues indefinitely,
making the right guess makes the difference between apgpr@gpan average reward afor
1/2, so any finite effort to improve the chances is justified. Hesvethese chances improve
indefinitely whenever’ is taken. Since there’s no largest finite number of times ke té
before guessing, there’s no optimal policy. Some relatedlte can be found in [13].

It should also be noted that it's enough to focusdeterministigoolicies, i.e. ones in which
the action is determined by the history; H — A. Since the return in POMDPs is multilinear
in the agent’s policy, there always exists an optimal deieistic policy.

Matters become more complicated when the real model of thecgmment’s dynamics is
unknown, as is often the case in actual real-life problemise 3Jecond objectivdearning, is
the automated discovery of the model, to an extent which lesadpproaching the maximal
return. Here the model isn’t given as input to the algorithimstead, the agent must interact
with the environment which implements the model, and exfram this interaction information
which will allow it to devise a near-optimal policy. This tgmf learning is calledeinforcement
learning and will be defined formally later. Note that it's possilbe the model never to become
fully known to the agent, but enough of it must be revealeddeoto plan near-optimally.

7



Figure 2: A POMDP with no optimal infinite horizon policy

3.2 Tradeoffs in Planning and Learning

In planning, a balance must be struck between short-terntogagdterm considerations of return
maximization. This stems from the fact that the identitylod state affects simultaneously the
reward, the observation and the following state. In thetdleom, rewards count directly towards
the return. Obviously, a high return cannot be achievedawitihigh rewards. In the long term,
future rewards depend on future states, as some states athyoldetter rewards than others.
Therefore in choosing an action it's essential to consiaegramly the expected reward of the
immediately next state, but also the possibility and prdtiglof reaching future states with
high expected rewards.

When observability is partial, the agent may not know the state of the environment. We
are still considering planning, and the model is complekelgwn, but not the state at each step.
The agent can calculate its belief, the probability disttiin of the state given the observable
history. This distribution is the best one for the agent te umsits future planning, and gener-
ally speaking, the less uncertainty this belief containse-tetter expected reward the agent can
achieve, as the example of Figure 2 shows. Hence long tenmmipi@ also involves the obser-
vations and the certainty they give of the identity of stat€ke agent must therefore balance
all three aspects of the effects its actions have: the madmivf rewards obtained, the potential
created to reach better future states, and the amount afrtgrgained, in a three-way tradeoff.

In learning, these considerations are valid as well. liftiaowever, the model in unknown,
and a balancing policy cannot be calculated. As informategarding the model is collected,
another kind of balance must be reached, that betwgplorationandexploitation On the one
hand, in order to improve the return, the agent must choosenacwhich it has tried before
and found to effectively balance the short-term and the-@ng rewards. On the other hand,
poorly tested actions may turn out to be even more effectind, must be checked. The tradeoff
between exploiting known parts of the model and explorinignanvn parts is an important aspect
of reinforcement learning.



3.3 Learning and Complexity

In all but trivial cases, at least some exploration must @udecexploitation. The unavoidable de-
lay in implementing a near-optimal policy has significamisequences on the kind of solutions
to the learning problem we may expect to exist.

First, by the time knowledged planning can take place, tlemggbelief may irrecoverably
become arbitrarily worse than the initial distribution. drder to reveal the effects of actions,
the agent must try every action. In fact, it has to try them yniames, in order to estimate the
transition distribution in possibly many states. This exation process may put the environment
through a variety of states, and the agent through a varfdigleefs. Therefore, a learning agent
cannot be expected to maximize a return which depends onitied belief. Many publications
assume some conditions of connectedness under which tia¢ li@ilief may always be returned
to (for example, see [5]), but we shall not restrict our meded much. The agent’s objective in
learning will therefore be to maximize a version of the raetfunction which is independent of
the initial belief. The optimal-step return will be

U(T) = min max Uy (b, 7, T),

bo 0

i.e. the return of the best policy from the worse initial b&liwhen the policy is aware of the
belief. Similarly, the optimal infinite horizon return wible

U3, (00) = min sup Uy (b, 7).
bo &

Second, the unavoidable delay in producing a good plan mewept learning in the same
time frame as planning. The learning agent must be given mioeeto interact with the envi-
ronment.

Definition 5 (Finite Horizon Learning) The finite horizon POMDP learning problem is to find
an algorithmA which, given a horizofI” and a margin > 0, interacts with the environment for
someT 4 steps or more using a polieyy = A(T, €), to gain a return which approaches the
optimalT-step return, i.e.

VT' =Ty Un(bo,ma, T') = Usy(T) — €,
wherelM is the actual model of the environment ands the actual initial distribution.

Definition 6 (Interaction Complexity) For a reinforcement learning algorithr, the minimal
numberT 4 of interaction steps after which near-optimal return isieedd for anyM andb is
called thenteraction complexityf A.

T4 may be well ovefl’, and keeping it small is an important aspect of the learnmoglpm.
For example, it's interesting to ask whether obtaining ragaimal return is possible in

T4 = poly (T, 1, |M])

9



steps, i.e. polynomial interaction complexity. Hefé| is the size ofM/’s representation, which
is polynomial in| S|, | A| and|O|. This notion of complexity doesn't replace, but adds to tlas-c
sic notion of computation complexity, expressedAg running time and space requirements.
It's clear that for POMDPs such a reinforcement learningpatgm doesn’t always exist,
even if complexity is not bounded. For example, if the enwnent is a UMDP, the "learning”
algorithm is equivalent to a predetermined sequence obmstisince no useful information is
gained during interaction. Clearly, for each such sequénes exists a UMDP in which the
optimal return isl, but the return obtained by that particular sequence igrarby close to0.

3.4 Learning in Infinite Horizon

Definition 7 (Infinite Horizon Learning) The infinite horizon POMDP learning problem is to
find a policyr 4 which, when used indefinitely, yields a return which conesrgt least to the
optimal overall return, i.e. to have

UM(b()v WA) = U]T/[(OO),
wherel is the actual model of the environment aRdhe actual initial distribution.

The achieved return can be better than "optimal”, becaifs@o) refers to the worst initial
distribution.

The convergence rate af,’s return toU},(c0) is usually described in terms of a measure
calledreturn mixing time

Definition 8 (Return Mixing Time) Thee-return mixing timeof a policy, for an initial
distributiondy, denotedl i« (bo, 7, €), is the minimal horizon such that

VTI = Tmix(bo,ﬂ',é) UM(bQ,T{',TI) = UM(bQ,T{') — €,
i.e. the time it takes the policy to approach its asymptaiam.

It's possible for a near-optimal policy to have much lowetura mixing times than any
strictly optimal policy. When the convergence ratergfmatters, it may be beneficial to compare
it not to an optimal policy, but to the best policy with a givaxing time. So we define

Uxi™ (e, T) = min sup Uni (bo, 7)

b0 T (bo, 7€) <T

to be the optimal infinite horizon return, from the worstigitistribution, among policies whose
e-return mixing time for that distribution is at mdst
It's interesting to ask whether it's possible foy to approachU; (e, T), for everye > 0
andT’, within a number of steps which is polynomialTh Formally, we would like, for every
e, ¢ > 0andT, to have
Ty = poly (Tv 57 |M|)7

such that .
VTI = TA UM (b()v TA, T,) = Ult?llx(€7 T) —€— EI’ (*)

10



whereb, is the actual initial distribution. Then we can say that tpéroal policy T 4 converges
efficiently.

Almost all relevant publications aim to solve the infiniteizon learning problem, rather than
the finite one. This is mostly due to historical reasons, di&eesesearch was primarily concerned
with whether convergence to optimal return was at all pdssiMore recent works (see [11]
and [4]) define the return mixing time in order to analyze tbewvergence rate. However, these
papers actually reduce the problem to its finite horizon fand solve it in that form. As it turns
out, the finite horizon learning problem is both easier tokweith and at least as general as its
infinite counterpart.

Suppose thatl’ is an algorithm which efficiently solves the finite horizoareing problem.
Recall that4’ receives two arguments, a horizon and an error margin. We 8tad the policyr 4
which sequentially runst’(1, 1), A’(2, ¥2), A'(3,Y3), ..., A'(z, V=), ... indefinitely, efficiently
solves the infinite horizon learning problem.

Fix somee, ¢ > 0 andT. We need to find 4 such that the requirement)(is satisfied. Let
b, 1 be the actual belief whel'(x,1/z) starts, and letr, and7, > x be the policy and the
number of steps, respectively, used My z, 1/z). Takex, = max (T, [2/«]).

Now suppose that 4 is used forl” steps, which include exactly whole runs ofA4’, i.e.
S T, <T' <Y T, Then

y=1

1 X
Upi(bo, ma, T') = Ep, b, 4 K Z TyUni(by—1,my, Ty) =
y=1

(by A”’s near-optimality)
1 x
> — Z T, max (0, Uy, (y) — Yy) =

y=1

1 ~
> — Z T, max (0,1’I}i1’lm~aXUM(b07ﬁ-7y) - 1/y> =

bo 7T

1< )
> 75 2, Tymax (O’min max — Un(bo, T, y) — 1/y) >

Y=o bO ﬁ‘ﬂ—‘mix(ﬁ'yboﬁ)gT

(y = Zo = T = Tmix(ﬁ-7 b07 6))

Y=x0 bo ﬁ:Tmix(ﬁ-ngyﬁ)ST

1< -
> T Z T, max (O,min sup Uni (b, 7) — € — 1/y> >

(YVy < Yao < €)2)

= % Z T,y max (0, U™ (e, T) — € — ¢/2).

Y=o

11



We assume thatl’ has polynomial interaction complexity, so without loss @ngrality
21 Ty = cix® for ¢; = poly |M| and constant, > 1. Forz > 2 (c2 + x0) we have

T

1 c c
. E azr?—cixp2? __
T/ Ty 2 C1(SE+1)C2 -

Y=o
— _ L)” _ (ﬂ)” >
- ( z+1 x4+1 =
c2 o /
>1-2-221-9,

and
UM(b()v TA, TI) =

= % Z T, max (0, U]’;Imix(@ T) —e— 5’/2) >
Y=o

> (1 _ e’/z) max (O’ U;\Z[mix(E, T) — € — e’/2) >

(Upmix(e, T) < 1)

> Upm™(e,T) —e — €,

as required. To have such valuexoit’s enough to have

Ty=0c [%(02 + xo)]c2 =

= [%(62 + max (T’ [%]))]Cz =
= poly (T, %, |M|)

To show thatr 4's return also converges eventually to an infinite horizannre of at least
U} (o0), it's sufficient to show that/ ;7" (e, T') tends toU; (o0) ase tends to) and7” to infinity,
since then

Ui (b, ) = lir% Uir*(e, T) — e — € = Ug;(0).

e —0
T—o0

Showing this is not straightforward, because although ¢fern mixing time is always finite, it
may not be uniformly bounded. This difficulty can be overcdmgaliscretizing the distribution

spaceA(S).
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4 Related Work

Markov Decision Processes and the problem of planning @bynmn them was introduced in
1957 by Bellman [3], and was further studied by Howard [9].e¥hvere able to formulate a
polynomial-time algorithm for planning in MDPs, using Bakn’s novel method oDynamic
Programming

Partially Observable Markov Decision Processes were ilaterduced as a natural extension
of MDPs, with more realistic and much stronger expressissneut one in which optimal plan-
ning is a much harder problem. It's of course at least as harthe problem of deciding if a
policy exists which surpasses a given return, which is Nifxflete for UMDPs and PSPACE-
Complete for general POMDPs ([14] and [7]). Focus has tleesshifted to finding algorithms,
mainly heuristic ones, which calculate near-optimal sohd. A survey of these methods can be
found in [1].

Reinforcement Learning was conceived as a tool for "imgfiggrogramming™ an agent to
perform a task, by specifying what the agent should desielieve, rather than how it should
achieve it. Although it dates back to the early days of Antdi¢ntelligence and the intimately
related Optimal Control Theory, it started receiving iragiag attention only in the 1980’s and
the 1990’s ([15] and [12]).

Several near-optimal reinforcement learning methods wexeloped in those years, but it
wasn't until 1998 that an efficient algorithm? Eor learning in MDPs was introduced [11]. In
2002 another algorithm, RAX , was introduced [4], which was both simpler and more general
extending to multi-agent decision processes (caiemthastic Gamés

Learning in POMDPs is not always possible. In UMDPs, for eghayeven if we assume that
the reward function is known, no information about the transition functiois obtained from
interaction, and there’s no way to improve, in the worst casea random walk which chooses
actions uniformly at random.

Even in a subclass of POMDPs in which learning is possiblanale Karp reduction shows
that it's computationally at least as hard as planning. Regspat, or perhaps because of that,
Reinforcement Learning in POMDPs has been the focus of mesdarch, and many algorithms
have been published which achieve it under different camt(for a survey see [10], and more
recently [5]).

The concept of interaction complexity gives the problemwa demension. These aforemen-
tioned algorithms for learning in POMDPs all have at leagtomential interaction complexity,
in addition to exponential computation complexity. Thddaling chapter will show that this is
unavoidable in general POMDPs.

However, later chapters will explore subclasses of the P@MIAss in which learning with
polynomial interaction complexity is possible, along watlgorithms which do so. To the best of
our knowledge, this is the first published result of this kiGdme of it we previously published
in [6].
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Figure 3: Password Guessing Problem

5 Hardness of RL in POMDPs

For a given reinforcement learning algorithm and a given eh@dnknown to the agent), for
the algorithm to work, there must be a finite number of stefer afhich a near-optimal return
is guaranteed. The interaction complexity of the algoriiera worst case measure, taking the
maximum of those guarantee-times over all models in a gilasscif the maximum exists. The
interaction complexity of a class of models can then be défasthe complexity of the best
algorithm for learning it.

As explained in the previous chapter, there are POMDPs winichlgorithm can learn, so
the interaction complexity of POMDPs is undefined. But we tzke a subclass of POMDPSs in
which learning is possible, such that its interaction campy is at least exponential in the size
of the model.

To see this, consider a Password Guessing Problem, whitle isldss of POMDPs of the
form illustrated in Figure 3. The password is a fixed string- . ..z, of n bits. The agent
repeatedly tries to guess the password. If it succeedsgéives a positive reward. All other
rewards aré, and the rewards are the only observations.

Planning in this model is easy, because knowing the modehskaowing the password.
The agent can then repeatedly guess the right passwordnihgas possible, by guessing all
passwords and observing which one yields a reward.

But this learning method takes more tha2i* interaction steps in the worst case, while the
number of states i%n + 1 and the number of actions and observations is constantcingay
learning algorithm will require exponential interactiomneplexity for this class, a result relied
upon by nearly every security system in existence today.

To see this, consider the steps before a reward is first auataiihe observation is fixed in
these steps, so the policy is equivalent to a predetermegpaesice of actions, which is executed
until the first reward. Clearly, for any such sequence thgigt®a model in which the password
is not among the firs?™ — 1 guesses.

14



6 Efficient RL in OPOMDPs

For our first positive result of reinforcement learning ungartial observability, we consider
a class of models in which full observability is availableit tomes with a cost. This class
is originally due to Hansen et al. [8]. It was studied receiml the context of approximate
planning [2] under the name Oracular Partially Observaldidg (OPOMDPSs), which we adopt.

First, some useful notation. We defihgto be the pure distribution with suppott i.e.
bs(s) = 1. We definelp to be the indicator of predicat®, i.e. Ip = 1if P is true and) if false.

In OPOMDPs there exists a special actionvhich allows the agent to observe the state of
the environment. Although, technically, the agent spenstea takingy, this action is regarded
as instantaneous, and the environment’s state doesn'gelvalile being observed.

Definition 9 (OPOMDP) An Oracular Partially Observable Markov Decision Process
(OPOMDP)is atuplél = (S, A, O,t,r 6,C) where

e (S, A Ot r 0)isaPOMDP,
e SCO,

e there exists some € A, such thati(s, ) = s andt(s, a) = b for everys € S, i.e.
« observes the state without changing it, and

e actiona incurs a special cost' > 0.

The agent’s return is now given by

1 T
U]\/j(bo,ﬂ',T) = ET ; (’I“(SZ') —C- I[az;l:a])’

so that a cost’ is deducted wheneveris taken.

This full-observability feature is invaluable for learginbut may be useless for planning,
as can be seen in the following reduction from the learnirabl@m of POMDPs to that of
OPOMDPs. We simply add to the model an actionvith the required properties but an in-
hibitive cost. If the original model is/ = (S, A, O,t,r,6) and the horizon ig’, we define
M = (S, A Ot r¢,2T)with A" = A u{a}, O' =0 u S, wheret’ andd’ extendt andé,
respectively, as required. Takiagin M’, even only once, reduces tliestep return by/r = 2,
to a negative value. Since the returnih is never negative, clearly an optimal policy i’
doesn't usex. This policy is then optimal i/ as well.

Learning in OPOMDPSs, on the other hand, is only slightly moseplicated than learning
in MDPs, if computation is not limited and interaction commty is the only concern. We wish
to focus on the differences, so instead of presenting amaR-like algorithm for learning in
OPOMDPs, we describe the important aspects o/, and explain how to manipulate it to
handle OPOMDPSs. The reader is referred to [4] for a more fbemd complete presentation of
R-MAX and a proof of its correctness and efficiency.

15



environment

\ observation +
} reward

action
\

planning module
P

~~

M, T) ( l(s,a,s’)

learning module
L

agent

Figure 4. Scheme of a model-based RL algorithm

We assume that the reward functiors known to the agent. See section 7.2 for a discussion
on how rewards can be learned.

R-MAX is amodel-basedeinforcement learning algorithm, which means we can ifiemt
it a planning module and a learning module (Figure 4). Thenieg moduleL keeps track of
a hypothetical modeM of the environmentM = (S, A, 7, p) is a standard MDP, except that
for some of the pairss, a), the transition (s, a) is not guaranteed to resemble the real transition
functiont. These pairs are markeshknownn M.

L sends to the planning moduleplanning commands of the forfo\, 7'), meaning thaP
should calculate an optimdl-step policy inM and execute it. Occasionally, however, this is
interrupted wherP wishes to take an actiomfrom a states, where the transition fofs, a) is
unknown inM. In that caseP will take a, and upon reaching the next statewill return to
L the triplet(s, a, s"). From time to time £ will use these triplets to improve the model, all the
while issuing more planning commands.

P’s responsibility is to make policies which either yield neptimal return or stumble upon
an unknown paifs, a). This is theimplicit explore or exploiproperty of policies. The optimal
policy in M has this property if\ meets the following requirement:

e M correctly estimates the return of policies which have rgiglée probability to go through
an unknown paits, ), and

e whenM fails to estimate the return of a policy, it can only ovenestie it.

This requirement is inspired by the principleagdtimism under uncertainty
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Now if we can only guarantee that polynomial interactionnewgh to ridM of all unknown
pairs, the algorithm will reach near-optimality efficigntIThis is whatZ does. For every un-
known pair(s, a) which P encounters, it reports t6 a samplgs, a, s') with 5" ~ t(s,a). Then
L is required to updatd in such a way that

¢ the optimism requirement mentioned above is kept, and

e there can never be more than polynomially many commands?’) and resultss, a, s')
such thaf(s, a) is unknown inM.

If all these requirements are satisfied, the agent will ledfiniently. A proof of this claim can
be found in [4], together with a proof that RAX meets these requirements.

How can we apply such a scheme when observability is paiie¢h if we think of a POMDP
as an MDP over belief-states, there’s still a basic diffeegbetween the two. In a POMDP, the
environment doesn't tell the agent what the belief-stateidy what the observation is. We
can't learn the model from samples of the fofbna, b'), because we can't calculdiebefore the
relevant part of the model is learned.

In our solution,£ won't learn belief transitions, but will learn state traimns just as it does
in R-mMAX . In fact, we’ll makeL completely oblivious to the fact that the model is no longer a
MDP. We'll modify P slightly, to interact withZ as if it's learning the state transition function
of an MDP.

It's interesting to observe that, if we "trickC in this manner, almost everything else remains
the same as it is in RtAX . Partial observability limits the variety of policies aladile toP, to
those whose information of the state is that included in theeovations, but the return of any
fixed policy has nothing to do with, and is only defined in terms efandr. This means that
an optimistic hypothetical model still entails the impliexplore or exploit property. Note that
partial observability does, however, maRecomputationally more complex.

One difference in learning that does exist, is that imRx P can easily identify wheis, a)
is unknown for the current state With POMDPs, we say thdb, a) is known if the probability
is negligible thats, a) is unknown, whers is distributed according to the beliefP keeps track
of an approximation of the current belief, and when it wisteetake an actiom from a belief
b such that(b, a) is unknown, it does the following. It takesto reveal the current state~ b,
then if (s,a) is unknown it takes: and thena again, to reveal the next state ~ t(s,a). It
passes taC the triplet(s, a, s’). Such a triplet is generated with non-negligible probabiior
every encounter of an unknown péit a), so there will be at most a polynomial number of such
encounters.

‘P’s approximation of the current belief can degrade for twasons. One is that the transition
from the previous belief may be unknown. When it is knownréfethe inaccuracy of the learned
transition function, causing accumulated error in the agjpnation. In both case$; will take
« to reveal the state and make the belief pure and known agaim fifst type occurs at most a
polynomial number of times, and the second is far enoughdmtvio have the cost of these
actions marginal.
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7 Efficient RL in OCOMDPs

We now consider the case wherdas not considered an oracle invocation, but an action inside
the environment. Whereas in OPOMD#&ss guaranteed not to affect the state, now we won't
expect the environment to stand still while being fully alveel. Insteadq is allowed to affect
the state, just like any action is. We call this class Costg&vable MDPs (COMDPS).

Definition 10 (COMDP). A Costly Observable Markov Decision Process (COMDP) is &etup
M = (S, A, 0,tr0, C)where

e (S, A Ot r 0)isaPOMDP,
e SCO,

e there exists some € A, such that/(s,a) = s for everys € S, i.e. a observes the state,
and

e actiona incurs a special cost' > 0.
The return is defined as in OPOMDPs.

In this work we only discuss a subclass of COMDPs called Orgtly Observable MDPs
(OCOMDPs). In OCOMDPsy is the only observing action, and other actions provide refuls
observability. That is, OCOMDPs extend UMDPs by addinig the set of actions.

Definition 11 (OCOMDP) An Only Costly Observable Markov Decision Process (OCOMDP)
extendinga UMDRV/ = (S, A, {L},t,r,60)isatupleM’ = (S, A", O,t',r, ¢ C)where

o A'=Au{a},

e O=Su{l}

o t': S x A — A(S) extends,

o 0: S x A — O extendd with ¢'(s, ) = s, for everys € S, and
e actiona incurs a special cost' > 0.

The return is defined as in OPOMDPs.

COMDPs generalize OPOMDPs by removing the restrictiondhddesn’t change the state.
OCOMDPs then specialize OCOMDPs by restricting the ob$lityaof other actions. It may
be surprising that the apparently small generalizatiom@igh to make learning in OCOMDPs
considerably more complicated than in OPOMDPs. The additidifficulties will be discussed
as we introduce UR4AX , an efficient reinforcement learning algorithm for OCOMDPs

It should be noted that, strictly speaking, the rewards iIO&OMDP are not bounded by
[0, 1], becausex inflicts a negative reward @f. Rewards could be translated and scaled to follow
our standard notation, but the analysis is cleaner if we Keis@nomaly. Scaling would shrirk
by a factor ofC' + 1 too, so it's reasonable to allow the interaction completatpe polynomial
in C as well.
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7.1 Learning with respect to the Underlying UMDP
7.1.1 Outline

For ease of exposition, we first learn with respect to the dyidg UMDP. That is, the return
actually achieved in an OCOMDRP!’ extending a UMDPV, given a horizori” and a margin
e > 0, is required to be at least;, (7') — e. For the moment we also assume that4, r andC'
are given as input, and that onlys initially missing.

In R-MAX [4] the transitiont for unknown pairs(s, a) is learned when there are enough
times in whichs is reached and taken from it. When we extended Rax to OPOMDPSs in the
previous chapter, we were able to do the same by takibgforea, reaching some pure belief
bs, and learning the effects af on thiss. However in OCOMDPSs, since changes the state,
taking it beforea may result in a belief irrelevant to anything we wish to learn

But pure beliefs are not required for learning. If some miketef is reached enough times,
we could learn the effects of some action on that belief. 8apphat the belidfis reached again
and again indefinitely. Suppose that in enough of these easeégcide to take the action# «.

If we take« aftera, we observe the following state, which is distributed adowg to

b =t(b,a) £ ) b(s)t(s, a).

The point here is that, since there are no observations,dlef b’ which followsb whena is
taken is determined only blyanda. Having repeated this strategy a large number of times, we
have enough independent samples' b estimate it well.

But how can a belieb be reached many times? We have already established inrs@ctio
that when the observation is constant the belief transiialeterministic. If we manage to reach
some belief many times, and then take a fixed sequence ohaakiith constant observations,
the belief at the end of that sequence is also the same exsy lin addition, note that the belief
aftera is alwayst (b, ) for some observed e S, where in our notatioh,(s) = 1. So takingo
enough times results in some (possibly unknown) belief appg many times. We now combine
these two facts into a systematic way to repeatedly reackaime beliefs.

UR-MAX, the algorithm we present here, operateghaseswhich for convenience are of a
fixed lengthT;. Consider al-step deterministic policy, in which « is used as the first action
but never again later. The initial stateof a phase may be unknown when the phase begins, but
sincea is always the first action taken,is then observed. Given this initial statethe whole
phase then advances deterministically:

¢ All the observations are determined dysince all arel. except the first, which is.
¢ It follows that all the actions are determineddysincer is deterministic.
¢ It then follows that all the beliefs in the phase are deteadibyo.

Using the estimation scheme described above, each of tleéisésltan eventually be estimated
well if o is the initial state of enough phases.
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The policyw employed is decided on usinghgpothetical modelM, which represents the
part of the real model currently known. Since learning nowlwes beliefs instead of states,
merely representing this model is considerably more caratgd than in MDPs or in OPOMDPSs,
and an exact definition is kept for later. For now, we only givgeneral description.

The hypothetical modeM is not a standard POMDP, but it is an MDP over belief-states.
keeps track of set§, = A(.S), for everya € A'. B, is the set of beliefs for which the transition
7(b, a) is considered known, whereis the transition function oM. As part of the correctness
of the algorithm, we’ll show that, wheM considers a transition known, it indeed approximates
well the real transition'.

As in R-mMAX , M follows the principle ofoptimism under uncertaintyn that whenever the
transition is unknown, it's assumed to result in an optimifttitious states* € S, whereS is
M'’s set of states (pure belief-states). When an acti@taken from a belieb¢5,, M predicts
that the state will become*. Reachings* in M actually means thatt doesn’t know the real
belief reached in the real mod#!’. Onces* is reached M predicts a maximal reward for all
future steps. This induces a bias towards exploring unknuavts of the model.

Some more explanation and definitions are in order beforsepteng the algorithm formally,
but we are now ready to present a sketch, using the pararigtén® number of steps in a phase,
and K, the number of samples of a distribution sufficient to estemiawell.

UR-MAX (sketch)
1. Initialize a completely unknown modgH, i.e. B, = & for everya € A

2. Letn be a deterministi@?-step policy, which is optimal icM among those which
usec« in the first step and only then

3. Repeat for each;-step phase:

3.1. "Forget" the history, set it to the initial histofy
3.2. ForT; steps, but only while the current belief is known, use
3.3. If an unknown belieb is reached, i.es* is reached inV

e Take«, and observe a state distributed according to
3.4. If there are nows samples o

e UpdateM (more on this below)
¢ Find an optimal policyr in the new modeMm

Note that the planning problem in line 3.4 may require expdiaétime to solve, but here we
focus on the interaction complexity.

This sketch is missing some important details, such as howrds are kept, when exactly a
beliefb is unknown, and howM is updated. Before we discuss these issues more formally and
prove that URMAX works, here’s some more intuition for why it works.
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We can think of the initiak action of each phase as a reset action, which retroactiegty s
the initial belief to be the pure distributidi,, whereo is the initial state of the phase. As
explained earlier, beliefs in the phase only depend @md on the actions taken, which means
there’s a finite (although possibly exponential) numbereifdis the agent can reach1i-step
phases which start with. Reaching a belief enough times allows the algorithm to sarapd
approximate it. Eventually, there will be phases in whidlhed beliefs are approximately known.

In this exposition, we assume thats known. In phases where the beliefs calculateduy
approximate the real beliefs i’ the returns promised b¥1 also approximate the real returns.
So if ever the return of some policy i fails to approximate the real return of that policy, it's
because some belief is not approximated well, i.e. somsitran is not approximated well. As
mentioned above, this only happens when an unknown re@fhglieached, which is to say
is reached inM. But thenM promises maximal rewards, which are surely at least as tigh a
the real rewards. This means thiet can either estimate a return correctly or overestimateitt, b
never underestimate a policy’s return by more than someimarg

Compare the policyr used by the algorithm with the optimal poliay. The returnt* pro-
vides in M can't be significantly lower than its real return, the optimeturn. = maximizes
the return inM, so its return inM is also approximately at least as high as the optimal return.
Finally, recall that, since we're discussing phases withmknown beliefs, the real return ob-
tained from usingr in the real model is approximated byt, and can’t be significantly lower
than optimal.

real return of m ~ return of 7 in M > return of 7* in M = optimal return.

This means the algorithm eventually achieves near-optietain.

But UR-MAX promises more than that. It promises a near-optimal retitien polynomially
many steps. Naively, near-optimal phases will only be reddhiter sampling exponentially
many beliefs. This is where we start filling in the blanks ie siketch above, and show how to use
and update a hypothetical model in a way that requires orlynpmnial interaction complexity.
We start with a formal definition of the hypothetical mode.

7.1.2 Hypothetical Model

Definition 12 (PK-OCOMDP) For an OCOMDPM' = (S, A", O, t',r,0', C), a Partially
Known OCOMDP (PK-OCOMDP) is atupldt = (S, A", O, 1, p,0',C, W, €) where

e S =S U {s*} contains a special learning statetS,

p:S —[0,1] extends with p(s*) = 1,

T: 8 x A" - A(S) partially approximates (7, W and¢’ are explained later),

W = {W,}.ea is a collection of sets of belief$y, = A(S) for everya € A4’,
which serve a base to calculdsg, the part of the model considered known, and

€ > 0is the tolerance of what is considered known.
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We need a few more definitions in order to explain hdvis used. This will also explain
whatr, W ande’ mean in PK-OCOMDPSs.

For every actioru € A’, the elements ofV, are beliefs) for which the effects ofi, namely
t'(b, a), have been sampled by the algorithm. Recall that the belétwdeterministically fol-
lowsb whena # « is taken is defined a8(b, a) = >, b(s)t'(s, a), and similarly fora = «if bis
pure. This linearity of transition allows the agent to degltiee effects ofi on beliefs which are
linear combinations of elements f,.

For everya € A’, we defineSp(W,) to be the minimal affine subspace®f which includes

Wa
> cwzl}.

In particular,Sp(J) = &. So fora e A"andb =,  c,w e Sp(W,), wherea # o or bis pure,
we have

SpW,) = { Z CoW

WEWq

t'(b,a) = Z b(s)t'(s,a) = Z cow(s)t'(s,a) = cht'(w, a).

If ¢ (w, a) are estimated by sampling them, an estimate'téra) can be extrapolated from them.
However,t'(w, a) can’t be exactly revealed by the algorithm, except in degerecases. In
order to bound the error iti(b, ), we must also bound the coefficients in these combinations.
For everya € A" andc > 0, Sp(W,, c¢) < Sp(W,) is the set of linear combinations &Y, with

bounded coefficients

SpW,, ¢) = {Z oW € SpW,)|Yw e W, ¢, < c} )

Now we allow some tolerance as, for every A’, we defineB!V? to be the set of beliefs
which ared-close toSp(W,, e), in the L; metric, where: is the base of the natural logarithm.

B = {b e A(S)‘Hb' € Sp(Waye) U/ = b, < 5},

where

b= bl = D1 (s) = b(s)].
seS
e is not special here, and any constant larger thawuld do, bute will be convenient later when
the logarithm of this number will be used. We always use alsihgpothetical model, so we will
sometimes omitV from this notation.

In M, belief-state transitions are defined similar to the bedtate transitions in OCOMDPs,
except that an action which is unknown for the belief-stedenfwhich it is taken always leads
deterministically to the special learning statee S. We can finally define exactly what we
mean by aunknown transitiopand that’s taking an actianfrom a beliefb¢ BS . Then the belief
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which followsb € A(S) whena € A’ is taken and is observed is

s b(s)7(s,a), if a # aandbe B,
7(b,a) =< 7(0,q), if @ = o andb, € B;
by, otherwise.

Note thatr(b, a) = b« wheneveb(s*) > 0, i.e. onces* is reached it's never left.

Defining the stochastic process, a;);>o in M is a bit tricky, because it's just a hypothetical
model, and it doesn’t actually govern the real distribusia@i events. When\ is used for
planning, the process is defined by having, for every0, s; ~ b;, andb;,1 = 7(b;, a;), where
the observation is; = ¢'(s;, a;).

However whenM is used to simulate the actual interaction with an OCOMBDR s; is not
really distributed according to the belief i, but rather the belief in/’. This is a different
stochastic process, which may be unknown to the agent, Btitliwell-defined.

If there’s going to be any correlation between usigyfor planning and for simulating, we
must define a way in whiclM must resemble the real model. The following definition asser
when a PK-OCOMDP is usable as an approximation of an OCOMDP.

Definition 13 (OCOMDP Approximation) Let M’ = (S, A", O,t',r,0',C) be an OCOMDP
andM = (S, A", 0,1,p,0',C, W, €) a PK-OCOMDP, such tha&8 = S U {s*} andp extends-.
M is called au-approximation of\/’ if, for every0 < ¢’ < ¢, a e A’ andb e BV < BV«

2, b(8)(r(s,a) = '(s,a))

seS

< p+ 20

1

Note the involvement of the paramet®&r which demonstrates the linear degradation of the
transition functions’ proximity, as the belief becomes madalistant from the span of learned
beliefs.

7.1.3 Updating the Model

As new knowledge of the real model is gained, it is incorpeatanto the hypothetical model.
Updating the model basically means adding a bélieito some)V,. It's convenient for many
parts of the algorithm and its analysis to hadg linearly independent, i.e. not to have any
of its members expressible, or even nearly expressible, lnyear combination of the other
members. Therefore, when the newly added /-close to a member a$p(WV,), for some
learning tolerancé > 0, some member ofV, is dropped from it, to maintain this strong form
of independence. In any case, updating the model chafigesndr is also updated so thau
remains an approximation of the real model.

Before presenting the Update procedure, we must addreisearimportant technical issue.
Maintaining M as an approximation of the real model relies on havifg, ) approximate

lwe slightly abuse the notation for the sake of clarity. Théieieb € A(S) andb’ € A(S), where
Vse S b(s) =V(s), are interchangeable in our notation.
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t'(w,a). There are two sources for error in this approximation. Qrtéé error in sampling the
distribution after taking:, which can be made small by taking large enough samples. fhee o
source is error in the estimation of which may be caused by the actual belief being different
than the one calculated . This error is the accumulation of approximation errorsremmous
steps of the phase. When the next belief is calculated, arparates both the error inand the
error in the previous belief, so the latter may actually bented twice. For this reason, if error
is allowed to propagate, it could increase exponentialtyevent approximation. The solution
is to have the beliefv sampled again before using it W¥,. In this way, its error is not affected
by previous steps, and doesn’t increase from step to step.

An invocation of the Update procedure with parameteisple, .., sample .. € A(S)
anda € A’ is supposed to mean th&tmple, ., andsample,;.. approximate some beliets
andb’, respectively (presumably because they are large samilesse distributions), such that
b =t'(b,a). Inthe following procedurej is a parameter of learning tolerance arié parameter
of allowed approximation error. Update is only invoked $ample, .. .£BY™, wheren = |S].

In addition, we use the notatiofy, ., for everyw € W,, to refer to previously used samples, and
so in each run we sét.mpie, ...« = sample

after*

Update(sampley o¢,.0; @, Sample ...
1. Setfsample, p.,a = Sample,g..

2. fW, # &, letd =3 . cow besampley,.'s projection onSp(W,).

3. fW, = &, orif |t/ —sampleyorells > 0, then letW! =W, U {sampley o0 }-

4. Otherwise, there exists somé e W, such that,, > e (we prove this in Lemma 1), and
letW! = W,\{w'} u {sample, ...}

5. Find functionsr! : S — R, for everys € S, which satisfy all of the following linear
constraints:

e Foreverys € S, 7, € A(S) is a probability distribution function.

o Foreveryw e W,, >, w(s)7. — fu.all, <24
6. If a solution exists:

o SetWW,toW..

e Foreverys € S, setr(s,a) to ..
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7.1.4 Analysis of the Update Procedure

In this section we prove the correctness and efficiency ofutpdate procedure, under some
conditions. This analysis has 3 parts:

e Lemma 1 relates the number of invocations of the Update pikgeeto a measure of how
muchM knows of the real model.

e Corollary 2 bounds this measure, and therefore also shats$tte Update procedure can
only be invoked polynomially many times.

e Lemma 3 then proves that these updates produce good apatmms of the real model.

We need to make several assumptions at this point, one ishithaamples are good repre-
sentations of the beliefs they sample.

Definition 14 (Sample Compatibility) A triplet (sample, .., @, sample,g., ) iS Said to be
compatibleif

Sampleaftor o Z Samplebcforc(s)t,(87 a’) < 2:ul

s

1
If a = «, it's also required thatample, ... iS @ pure distribution.

Compatibility means thatimple, ., andsample,;, .. could reasonably be samples of some
beliefsb andd’, respectively, before and after taking actienWWhen we assumeompatibility,
we mean that all invocations of the Update procedure havepatibie arguments.

In addition, since we didn’t yet provide the precise conteixthe Update procedure, we
assume for now thaM is initialized empty (i.e.W, = J for everya € A’), that M is only
changed by the Update procedure, and that, as mentioneceptfe Update procedure is only
invoked whersample, ;...£B7V", wheren = |S).

For an actiomn € A’ such thatV, # &, letd(W,) = dim Sp(W,) be the dimension of
Sp(W,). LetH(W,) < Sp(W,) be the convex hull o?V,, that is, the set of linear combinations
of W, with non-negative coefficients which add upltoLet v(WV,) be thed(W,)-dimensional
volume of H(W,), that is, the measure &f (W,) in Sp(W,). Fors > 0, we define

d(Wa) v (W)

siom T L

Fs(W,) =dW,) +In
For convenience, we defing ) = —1 and F5() = 0.

F5(W,) is a measure of how much is known farwhich combines the dimension ¥, and
the volume of its convex hull. Following the two cases in §ireand 4 of the Update procedure,
if sampley,.,.. IS NOt withing of being spanned by,, then including it inW}, will increase the
dimension of its convex hull. Otherwise, replacing somidor sample, .. Will increase the
volume significantly, which is wher&becomes important. In either cagg()V,) will increase
by at leastl, as shown in the following lemma.
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Lemma 1 (Update Effectiveness)Assuming compatibility, afted invocations of the Update
procedured(W,) = |W,| — 1 (i.e. W, is linearly independent) for everye A’, and
S Fs(Wa) = D.

Proof. The proof is by induction o®. ForD = 0, d(&) = || — 1, and}, F5() = 0.

Now we assume that the lemma holds for safhe- 1, and prove it forD. Let the Dth in-
vocation be with parametegsmple, ..., @ andsample,,... During the invocationyV,, remains
the same for every’ # a. We shall show that, assuming compatibiliy, is well-defined and
satisfiesi(W,) = [W.| — 1 andF5(W,) > F5(W,) + 1. We shall further show that, assuming
compatibility, the linear constraint satisfaction prohlef the Update procedure has a solution,
so that the update actually takes place.

b’ is the projection okample, ¢, On Sp(W,), if one exists. Suppose first thef, = ¢F, or
otherwise thatl’ — sample, ;.. [l, > ¢ > 0 (Figure 5). Thesample, ... £5Sp(W,), and so

d(W,) = d(Wa © {samplepegye}) = d(Wa) + 1= [Wa| = Vo[ - 1.
If W, = &, thenWW! = {sample, ;.. }, and
FsOW) =0+Inl+1=Fs;(W,) + 1.

If W, # &, thenH(W!) is ad(W,)-dimensional hyper-pyramid, whose headdsple, .,
whose base i&l (W, ), and whose height i$’ — sample, .¢,..[, > 6. The formula for the volume
of the pyramid is

0" — sampley,egorelly V(W)

,
o) = oo ,

and

Fs(W.) =d(W!) +1n 5d(Wg) +1>
/ d(W:z)' ) 5U(Wa)
>dW,) +1 54V - d(W!) +1=
dW,)! o
=dW,) +1+ln% +1=F(W,) + 1.

The remaining case (Figure 6) is whigw, # ¢f and
\/ﬁé = \/ﬁ Hb, - Sampleboforo”2 = Hb, - Samplebcforc”l :

Recall that we assume thatmple, ;. .#8!"'vV"™, so that

v = chw e SpW)\SpWa, €),

and there must be somé € W, such that,, > e. Inthis caseW! = W,\{w'}u{sample, ...}
Under the assumptionB)! is well-defined in the Update procedure.
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52

So S1

Figure 5: First case of the Update procedure (line 3).

The topmost belief is not spanned by the other two,
and adding it tdV, increases/(W,).

S0 51
Figure 6: Second case of the Update procedure (line 4).
The rightmost belief is spanned by the other three,
but one coefficient is too large (for illustration, we usd .5 instead of> ¢);
adding the rightmost belief t/, instead of the one with large coefficient
multipliesv(W,) by the ratio of heights.
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Let b” andw” be the projections df andw’, respectively, orbp(W,\{w'}). v andw” exist,
since), ¢, = 1 andc,, > e imply |W,| > 1. Observe that

WY = cw/(w" . w/))

and that” is also the projection ofample, .. on Sp(W,\{w'}). Then

2 2
I — somployegl, = A/ — VI3 + 11/ — samupley e >

Z " =V, = cur 0" = w'ly > e |w” =], > 0.

By the induction assumptioi), is linearly independent, and therefore

dWg) = dWo\{w'}) + 1 = dWa) = Wo| =1 = W] - 1,

and [ — sampley el v OV ()
AN — SaAMPlChefore o U a\W
U(Wa) - d(W(ll)
ew” —w'[, v(Wa\{w'})
a0M,) =ev(W,),
which gives

d(Wa)'v(Wa)

§aOV)
d(Wa)' ) 6U(Wa)

5aWVa)

We now turn to handle the constraint satisfaction probleonstier the "correct” solution in
which, for everys € S, 7/ = t/(s, a). Then of course’ is indeed a probability distribution over
S. As for the second group of constraints, for everg VW, there had to be some invocation of
the Update procedure in whigshmple, .. was thatv andsample,, ., wasf,, ,. The constraints
are then exactly equivalent to the compatibility condifishich we assume to hold. 0

FsOW.) =dW.) +1n +1>

>dW,) +In

+1= Fg(Wa) + 1.

In the following,|S| = n and|A’| = k.

Corollary 2 (Update Invocations)Assuming compatibility, less thank In % invocations of
the Update procedure are ever made.

Proof. SinceW, < A(S) for everya € A’, we haved(W,) < n. The convex hullH (W,)
is bounded by the belief space. The largest convex hulVf| linearly independent points
bounded by a simplex is&W, )-face of the simplex.

In order to see that consider, among the 3&tswith maximalv(W,), one which contains
the most pure beliefs, i.e. vertices of the belief spaceuissin contradiction that some belief
is not pure. If we fix the others, then the volume, as a funatiotine position of that last point,
is the absolute value of a linear function, and is therefaagimal in a vertex of the simplex, i.e.
in a pure belief, in contradiction.
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A d(W,)-face of the belief space is itself a simplex wi2-length edges. So
dW,) +1
dW,)! ’

which is the volume of that polytope. Therefore, fox § < 72,

n
FsW,) <n+In 5"—\/—1’

and assuming compatibility, by Lemma 1 the number of inviooatis at most

D (W) < k(n+1n5\fl> _

v(W,) <

=k(n+ilnn+(n-1)nj) <
<nk (111%4—2) <2nkln%.

O

Lemma 3 (Update Correctnesspssuming compatibilityM is always au-approximation of

M’, wherey = 8eny.

Proof. The empty initialization ofM is au-approximation of any real model.

Consider the values of andW, # (¥ after they are updated. Lét< ¢’ < ¢/, b e BVY
andt/ = >, c,w € Sp(W,,e) such thaty] ¢, = 1 and |t/ —b|, < ¢'. Sincec, < e for
everyw € W,, Y. |c,| is maximal when one of the,s is1 — e(|W,| — 1) and the others are
IW,| =dW,) +1 < n,s0), |c <max(2e(|W,| —1) —1,1) < 2en. Compatibility and the

second group of constraints in the Update procedure then giv

D b(s)(7(s,a) = t'(s,a))| <
< Z (b(s) = b'(s))7(s,a)| + Zb'(s)(T(s, a) —t'(s,a))| + Z (b'(s) — b(s))t'(s,a)
< D lew] D w(s)(r(s,a) = t(s,0)) | +2[8' = b], <

2, w($)7(5,0) = fua

s

_.l_

fwa— Z w(s)t'(s,a)

s

<Z|cw|<

w

1

>+26’<
1

<
1

(constraints and compatibility)

<D ewldp + 28" <

w

< 8enp' + 26" = p+ 20"
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7.1.5 The Main Procedure

Bearing in mind that the Update procedure requires indepr@rahmples of the beliebseforeas
well asafter the action, we revise the main procedure to produce botle theamples. Recall that
for a fixed initial state and a fixed deterministic policy whiakesx only initially, the belief in
every step is also fixed. The algorithm will sample thesediglistarting with the first step and
iterating for later and later steps. The variaffleps, is the number of steps, in phases starting
in stateo, for which the beliefs were already sampled. If at any stepJjpdate is required, that
is, sample, ;... ¢BY™, then the Update procedure is invoked, a new policy is cated| and the
samples, which are no longer meaningful, are discardetihgeteps, to 0.

A recordrec, is a collection, possibly with repetitions, of elementsSofLet freq, € A(S5)
be the relative frequencies of elementsén,, i.e. freq,(s) = %, where#(rec,) is the
number of occurrences 6fin rec,,.

UR-MAX (S, A,r,C,T,¢€)
1. Initialize a completely unknown modgH, i.e. letW, = ¢ for eacha € A’

2. Letn be a deterministi@’-step policy, which is optimal icM among those which
use« in the first step and only then

3. Letrecs petore = {K copies of s}, letrec, aser = &, @andsteps, = 0, for eachs € S
4. Repeat for each-step phase:

4.1. Empty the history used for planning, set it to the ihhigtory A
4.2. Takex and observe the initial state
4.3. Takesteps, more steps according to
4.4. Ifsteps, <17 —1

4.4.1. Leta be the last action taken

4.4.2. Takex and add the observed staterto, e,

4.4.3. If|rec, after| = K

o If fred, pefore ¢Bé/ﬁ ’

— Updatefreqmbefore, a, fl"eqa,after)
— Dolines 2 and 3
e Otherwise
— Letrec, pefore = T€Co after ANATEC, after = I
— Increassasteps, by 1

4.4.4. Takel — steps, — 2 arbitrary none: actions
(fixed-length phases for easier analysis)
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First note that the assumptions made in the last subsedtiout ghe context of the Update
procedure are indeed correct is initialized empty, only updated by the Update procedure,
and only whersample, ;. .#8Y™. That doesn't include compatibility, which only occurs it
high probability, as discussed below. Also note again that@imal policy inM may require
exponential time to calculate, but the interaction comipyexill be polynomial nonetheless.

Bounding the interaction complexity means bounding thelmemofT; -step phases the algo-
rithm requires to reach near-optimality. L&tbe that minimal number of phases. The interaction
complexity of the algorithm will then b&; 75, and both these parameters will have to be polyno-
mial. The parameters use by the algorithm&reand K of the main procedure, andy’ of the
Update procedure; of the hypothetical model, and the minimal humlérof phases needed
for near-optimality. Sufficient values for these parameteill be determined as we analyze the
algorithm.

7.1.6 Analysis of URMAX

We shall now prove the correctness and efficiency of the M- algorithm. We argue that,
with high probability, in almost every phase, the algorithmplements a near-optimal policy.
This involves three propositions:

o With probability at least — § the records are accurate enough representations of tie¢sbeli
according to which their entries are distributed. Thisudels compatibility of the samples,
and also another requirement which we describe below. Tiwipgsition is proved in
Corollary 6.

¢ Giventhese adequate records, at ledst-g fraction of the phases aexploiting i.e. have
steps, = 11 — 1. This proposition follows directly from Corollary 4.

e These exploiting phases yield a return of at Ida$t(T") — . This proposition is proved
in Lemma 8.

We then combine these in Theorem 9 to show that runningMAR-for 7" > 1775 steps yields
areturn of at leadt/;,; (7') — ¢, while T} andT5;, are polynomial ifll’, ¢, | M| andC.
Here, again|S| = n and|A'| = k.

Corollary 4 (Number of Entries) Assuming compatibility, at mogt?k KT} In % entries are
ever added to the records.

Proof. Each timesteps, is increased by, a complete record is thrown away. We can think of
steps, as representing the number of such records "in sight".

When the Update procedure is invoked, we lose sight of trexswds, as well as the current
ones. There are at mast7; — 1) records represented by thevariablessteps, < 77 — 1, and2n
records of the formsec; pefore @aNArec, e, From this number we should deduct theecords
which were initialized to sizé( in line 3 without their entries actually being added. Thiskes
a total of at most7; records. Records are bounded in sizeibyso at most. KT entries are
added between consecutive Update invocations.
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After D invocations of the Update procedure, before the entry whichld cause another
invocation, at most K7 (D + 1) entries could have ever been added. Since by Corollary 2,
assuming compatibilityD + 1 < 2nklIn % at most2n?k KT ln entries are ever added to the
records. O

The compatibility of samples doesn'’t tie them to any patticueal belief. It merely states
that the beliekample ;. approximates the one which follows the bekefnple, ;.. Whena is
taken. This is good enough for the Update procedure, but guieineemore when discussing the
source of these samples in the main procedure. In partjcuaneed to assert the relevance of
checking whether a sample isBy™.

The recordrec, oo, Which is the one receiving new entries in phases startirtg wi is
emptied whenever is recalculated osteps,, is changed. This means that in any single record,
the initial state and the policy are the same for all enta@sl so is the number of steps taken in
the phase before generating the entry. As explained gdHisrmakes all the entries in a record
independently and identically distributed (i.i.d.) aatiog to the belief in that step of the phase,
and the next action fixed. Note the special case in which th@rdeec, verore, When initialized,
containsK occurrences of, which are of course i.i.d. according &g.

Definition 15 (Successful Record Completiorfjor a sampléreq, 1,.¢.,., 1€t b be the belief
according to which the entries oc, .t are i.i.d., and: the action that follows. The
completion ofrec, aser 10 Size K is successfulf at that time(freq,, y,cores @ freq, o) IS
compatible, and also

Hfreqo',before _bH1 < ,U,.

Althoughrec, .t IS the one being completed, it's convenient to fii€q,, ;... to the real
beliefb. freq, .., is then tied too, since the samples are compatible.

Lemma 5 (Completion SuccessA record completion is unsuccessful with probability at thos

4n6_2K“I2/”2 .

Proof. Consider the completion to siZ€ of rec, .z, fOr someo € S, and letb be the belief
according to which entries ifec, pefore are i.i.d., and: the following action. Them # o orbis
pure, because only occurs initially, wherb is chosen by the algorithm to be pure. So entries
IN T€Cy after Are i.i.d. accordlng t0' = >, b(s)t'(s,a). Since|recy pefore| = [re€Co atter| = K, WE
expect thab = fred, pefore andd/ = freq, .g., Should approximate andb’, respectively.

So we have
< Z b s a

<Pr(~'

v it - ) <
(¥ = 2, b(s)t'(s, )

v ot =) <

1

+
1

3 (b(s) . é(s)) #(s,a)

v

<Pr(

Flo=b] 2w oo > w) <
1 1
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gPr(zS'—b'

<Pr<\/(

s

<Zsl(Pr(

> u' v ‘I;—bH >,u'> <
1 1

B(s) — b’(s)‘ > Wfn v ‘6(5) - b(s)‘ > u'/n)> <

B(s) — b’(s)‘ > u'/n) +Pr (‘6(3) . b(s)‘ > u'/n)) <

(Hoeffding's inequality)

,2K/,L’2 2
< 4ne m

Combining Corollary 4 and Lemma 5, we have

Corollary 6 (Total Success)With probability at least. — 8n3kTye 2"/ In 2, all record
completions are successful.

Proof. A union bound guarantees that of at mdstkT; ln% completions of a record to siz€,

each unsuccessful with probability at mase—>“*"/"* the probability for any completion to be
. 12

unsuccessful is at mo8t3kT e > /»* In 3. O

If we set
K = |35 m (320°k T 1 ) |
we get that the probability of total success is at léast<, as promised.
In UR-MAX , exploringphases are those in whisteps, < 77 — 1, and therefore an entry is

added to the records. By Corollary 4, if we set
Ty = [8n’kKTi 1 Ing|,

at most aj fraction of the phases are exploring, and the othersgpéoitingphases, in which
steps, = 17 — 1.

Before our main theorem, it remains to be seen that theseiéirglphases yield near-optimal
return. For that we need a lemma which bounds the divergéitbe deliefs inA/" and in M.

Lemma 7 (Belief Approximation) Let M = (S, A", O, 1, p,8',C, W, €') be au-approximation
of an OCOMDPM' = (S, A", O,t',r,0',C),0 < §' < €, a an action anch andb the beliefs
reached in}/’ and in M, respectively. Assume thiat B!V<, and that eitheb or b (or both)
are in BV < BV If a = «, assume further thdtandb are pure. Then, the belietand ¥’
reached after taking in M’ and in M, respectively, satisfy

HB/ _ bl

|, <[o—b], +pn+20.
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Proof. If b e BV?,

[0 =], = > (b(s)7(s,a) = b(s)t'(s,a))| <
s 1
<X (0(5) = b)) 75, )]+ [0(6) (r(s,0) —1(5,0)]| <
s 1 S 1
< |b—0b|, +p+26.
If be BYY?', the proof is symmetrical. O

In Lemma 8 we need to assert

.T Tl—l,

€ C+2 /
° 1 = T—1+4€T1,and

o ¢ = (9eny’ + 2¢/nd)1.

So we set
T [S(f;”] T+1,
;€
32Ty
5o —<
4/nTy’
and
! 6,
H = 18enty

Lemma 8 (Exploiting Phases)Assuming successful record completions, every explgitiage

has a return of at least/, (T') — {.

Proof. This is a version of the Implicit Explore or Exploit Lemma of¥ax [4].

Consider the values oM, o and~ in a phase in whickteps, = 7} — 1, so that no entries
are added to the records, ands implemented fofl; steps. Leb; andb;, for 0 < i < T} be the
beliefs which deterministically result in the real modé! and in M, respectively, after using
for i steps, starting from the beliéf.

Consider thé/; — 1 times in whichsteps_ had to be increased to rea¢h— 1. The fact that
these increases occurred indicates thats been sampled times whensteps, was: — 1, for
1 < i < Ty. The sample fob, = b, is explicitly initialized. Letsample,, for 0 < i < T3, be
these samples.

In addition, the algorithm verifies thatmple, € Bg{m, whereaq; is the action in step,
for 0 < ¢ < T; — 1. Note that this excludes the last step, becaysds not sampled and
samplep, _; € B(;{F’_l“i . Is not verified and may be false.
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We now prove by induction onthat |b; — b;|, < ;—f for0 < i < T). As a base for the
induction, |b |, =0

Now assume the proposition holds for sofmes i < 77 — 1, and prove it fori + 1. Let
b € Sp(W,,, e) be such thatt’ — sample,||, < y/nd. By the assumption of completion success

I = b, < |1 — sample], + [sample; — b, < v/d + .
and by the induction assumption
=B, < = bl + o= i, <
<Vnd+p + 5 <€
Thereforep; € By™**#', andb; € B¢ . By takingd’ = /nd + i/ < ¢ in Lemma 7, we have
\@H—@HM<H@—@h+u+2wﬁ+2w<

+ enu' + 24/nd = ZH),

which completes the inductlon.
Note thatb; € Bg'i, for every0 < ¢ < 17 — 1, means that* is not reached inM, except
maybe in the last step. Now sinads used exactly once

C

Ui (by, 7, T1) = = ZZb
i=1 seS 1

1 S
Upm(bg,m,T1) Zzbi(s)f)(s) — T
L1 ses 1

and
|Um (b, 7o, Th) — Upgr by, o, Th) | <

1 &

<7

iz

> (Bi(s)p(s) = bi(s)r(s))

seS

<

(s* is not reached foi < T7)

1 S - 1
bi(s) = bi(s)) r(s)| + 7= <
T Z ;( )+ g
T1—1
Z & = i, +
1 . 16’2 1 e’ 1



In order to compare to the optimalstep policy, we consider the following structure. We
start the phase with, and continue with a sequence of determinigtistep policies. Each policy
is optimal for the belief it starts with, among policies winidon't usex.

Letb; = b, andbf = b,. We define the policies and the beliefs recursively,/firom 0 to
L=l .
T

e 7} is a deterministic policy i/ which maximizes/y;(bj. ,, 7}, T),

. (a;‘)glg})ﬂ e A" is the sequence of actions takenjy and

e b¥andb}, foriT +1 <i < (I+1)T +1, are the bellefs which deterministically result in
M and in M, respectively, after taking the aCtIO(‘!S")J 41 from the beliefsh;,, , and

bir.1, respectively.

Let * be the concatenation of thesgs, i.e. the deterministic; -step policy inA’ which takes
the actlons(a )T1 1 with ay = a. Whereb = b5 = b,, leti, be the least < i < T3 such that

b*¢B€*,orT1 if no suchlndex exists. By Lemma% — bF||, < (u+2¢)i, for every0 < i < .
Then'
Up(by, 7, T}) = ZZb* _ o
) 1 Tl
i=1seS
T C
* * - 2
T (leb PN )> T
i=1seS i=ig+1

0 * T . C 1 10
= Sz zpwﬁ—i—ﬁH

=1 s i=ig+1

0

> Y6 - - & S -], >

=2 s

Z ZZbTTHH(S)T(S) - ﬁ — i(,u + 26')T >

i=1 s

1 T % % C (Tl + 1)2
= T lzz(:) TUM(bip i, 77, T) — T (8enu' + 2€ )T ~
(11 = 2)
T -1y
1 % C
- TU(T) — — T
~ Tl ;) M( ) Tl (2T1 ) 1>
h—-1__, C
Tl UM(T) Tl - 3€IT1



Observe that* satisfies the constraints under whiels optimal for M. Summing it all up,
we have
Unir (b, 7, T1) =
e 1
= U baa 7T 5 T~
wmlboym T1) =5 =7

\%

Uyn(T)<1)
B C+2

1

> UL (T) —4€Ty = Us,/(T) —

IR

O

Finally we are ready for our main theorem, for which we sunimeaour choice of parameters.

T = [%;2)] T+1 po= 18;;T1
P K = [ n (320K L In b) |
0 = 4\}—7;711 T2 = [8”2]{5KT1%1H %]

Theorem 9(UR-mAX Correctness)Let M’ = (S, A’, O, t',r,0',C') be an OCOMDP which
extends a UMDRVI = (S, A, {L},r,t,0). Letby be some initial state distributiofl; a horizon,
ande > 0 a margin. Letr 4, andT4 be the policy and the number of steps, respectively, used by
UR-MAX (S, A, r,C, T, ¢). Then

T.A = p01y (Tv %7 |M|7C)>

and for everyl” > T4
UM/ (bo, WA,T,) = U]T/I(T) — €.

Proof. According to our choice of parametet$, = 1175 = poly (T, 2, |M|, C).
Suppose that the interaction lagts> T 4 steps. For convenience of the proof, append@’to
one dummy step, and then some more to complete th&lestep phase. For these dummy steps

there’s of course no reward. Then the algorithm goes thrtﬁgﬁ] > T, + 1 phases.

By Corollary 6, there’s a probability of at leaist- § that all record completions are successful.
Assuming that, by Corollary 4 the fraction of non-explogiphases (including the dummy phase)
is at most

2712]{?KT1 1

n i €
[8n2kKTiilng|+1 4
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So the probability that a phase chosen uniformly at randoex(igoiting is at least1 — £). If
itis exploiting, Lemma 8 guarantees a return of at 1égst7’) — 7. Otherwise, it may utilizex

twice, and yield as worse a return a\%. We assume < Uj;(T") < 1 because otherwise the

learning problem is trivial. It follows that'y, (T') — § > 0 > —%.

So we have

(T1 > %€ > 40)

7.2 Learning States and Rewards

Obviously the agent must be given the detf possible actions, for otherwise it can’t even begin
to interact. As forS, » andC, those can sometimes be learned from the interaction adsié
being given as input.

C can simply be learned if we assume that it can be observed firsepayed.

For learningr, we assume that whem observes a state, its reward is visible as well. It
can be verified that the rewards of states which are nevergdiséy« play absolutely no role
in UR-MAX . These states are missing from the records when learnimytremefore aren’t
reachable when planning ii. It's enough then to take note of the valuer¢$) whens is first
observed.

The names of the states are similarly learned when obseHaaever,n = |S| is required
for the calculation of parameters. Agrows, so doe$ 4, the number of steps required to ensure
learning. One could imagine a model in which larger and lasgésets of states can be reached
with lower and lower probability. Intuitively speaking, aigorithm guessing a bound on the
number of states in such a model will have to use a number p$ sthich will take it through
much more thanV states, with high probability. If the algorithm iteratiyalpdates the bound,
it may have to do so a large number of times. Compensatingferaction spent with the bound
too low may then be a problem.

There are two approaches for dealing with this problem.

The first approach makes additional assumptions whichceesie class of models we try to
learn. For example, suppose that non-zero transition pitioes can’t be arbitrarily small, but
rather are bounded from below by a known constant 0. Then if transition probabilities are
estimated, in all samples, with error less tharthe states which aren’t yet reached simply can’t
be reached. The following algorithm enables learning irhsaiscenario, using as a building
block UR-MAX , altered to estimate probabilities to within an erroradr lower.
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Suppose that up to some point only < n states ofM are observed (initiallyn’ = 0).
Imagine a model// with »’ + 1 states, in which the set® of all unobserved states off is
replaced with a single state. This state has maximal rewadldesds deterministically to itself,
for any action. The probability id/ of reaching this fictitious state from an observed stats"
is the probability inM of reaching any’ € S* from s. Other transitions remain the same.

The algorithm runs URMAX with M’s states as input. If new states are revealed, the process
is repeated, again and again, with increasing values.oEventually URMAX is run without
revealing new states. At that point the algorithm is unableetl if the real model is\ or M.
Since URMAX competes with the optimal return i/, which is at least as high as the optimal
return of M, it is indeed near-optimal. The algorithm can then contiftmesome more steps to
compensate for the interaction spent with too few statesoAting to our assumptions, during
this period no new states can be reached.

The other approach sacrifices complexity for generalityerbéwe don’t make any assump-
tions on the model, we can learn with interaction complemtyich is not much worse than
polynomial. For example, suppose that we use the same thlgoas above, but this time we
start withn' = 2, and square’ every time we reach a previously undiscovered state. Tharis
i=0,1,2,...we run URMAX with 2% states and margitk.

When this number of states eventually exceeds the real nuohiséates:, the return of the
last iteration is at mosy2 less than optimal. The overall return may Jaelower than that, due
to the interaction spent with too few states. To guarantisewre don’t simply run URMAX for
the number of steps it suggests, but rather for a larger nuofteeps. If7; is the number of
steps required by URtAX in iteration:, we actually use it foff ! steps, where

so we have - -
1— / 1— /
Zj:OTj < Zj:OTj _ €
4 =~ i—1 2
YT YT (1+2-1)

)

and

i—1 i o
T<T+(-1)2T<)(G-)7T
j=0 j=0

The algorithm terminates in an iteration where no new se@tegncountered, which happens
after at mostlog, log, n| + 1 iterations (forn > 1). In addition, never more tham’ states are
assumed by the algorithm, §¢is still polynomial. It follows that the interaction compiéy of
this algorithm is
(2= 1) " poly (T, 1,|M],C).

€
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7.3 Learning a UMDP Policy

OCOMDPs extend UMDPs by adding a fully-observing actiorin a sense, this enables learn-
ing in UMDPs. As an example, consider the medical treatmeatitpatients. In some medical
fields, the patients’ own feelings are not considered sicanifi enough for diagnosis, and when
they are not under medical observation, a UMDP can be sugjgsidescribe the process they
are going through. The states of the UMDP are possible psEg@nd the actions are possible
medical interventions. The reward can be a measure of thenpatwell-being, and can also
incorporate the cost of treatment. Transition probab#itiepresent the distribution in the popu-
lation of unpredictable factors, such as whether a giveiepgwill react positively to some drug.
The initial state (or distribution) is the patient’s stateem the condition is first diagnosed.

Observability in many cases of medical treatment is not issfime, but costly. It may re-
quire, for example, expensive hospital equipment. The itbeéa becomes an OCOMDP, prob-
ably one in which an optimal policy still lacks observatiortsowever, the approach taken by
UR-MAX makes little sense in this case. In the setting of section WR-MAX treats one
particular patient repeatedly, applying various treatthegain and again, while occasionally
monitoring the state, until it concludes that the patieotadition can’t be further helped.

What a medical researcher would do, simplistically, is takarge number of patients, di-
vide them into groups, and subject each group to a differeattihent. By monitoring each
patient’s reaction to treatment, the researcher would beeable to determine the evolution of
the condition under different interventions, and recomdnargood policy for cases where such
monitoring is too costly.

To express this methodology in our notation, we make twosddjants. First, the UMDP will
include aresetaction, which always leads back to the initial state distidtn. In the medical
domain example, this action means switching to the nexépatSecond, it's not enough for the
algorithm to compete with the optimal policy of the undemtyiUMDP, just as it's not enough to
cure patients during research. It must provide a near-@bfiirstep policy that doesn’t use so
that after the learning periad can eventually be dropped.

This can be easily achieved. Note that in WRX , o is used in exploiting phases only as a
reset action, to provide a known belief which the agent hased repeatedly and learned to act
in. We simply change the way an optimal poligyis calculated in the hypothetical mod#é.
Instead of a deterministi€;-step policy which is optimal among those which us@ the first
step and only then, we calculate a determinigtistep policyx’ which is optimal among those
which start with the reset action and never uselhen we expand it to a determinisfi¢-step
policy which is optimal among those which start withand never use.

The proof that the algorithm is still near-optimal, comphvéth the optimall’-step policy
in the underlying UMDP, is essentially identical to the gfrob Theorem 9. A similar analysis
shows that in exploiting phases (which eventually ocediiy a near-optimdl’-step policy in the
UMDP.

When the UMDP is lacking a reset action, but satisfies somdition of connectedness, an
approximate reset strated$] can be used to simulate such reset, and still learn a ogtanal
UMDP policy. The interaction complexity, however, is geadrnot polynomial.
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7.4 Learning with respect to the OCOMDP

The title of this chapter promises learning in OCOMDPs. Aygimhing the optimal return of the
underlying UMDP, as interesting in itself as it is, was justiatroduction. We still have to com-
pete with the optimal return of the OCOMDW’, which is the actual model of the environment.
If the costC' of taking a is small enough, there may be a policy which use® improve its
return, beyond the optimal return of the UMDP.

The reason we had to compare the policy of WRx to the optimal policy of the UMDP is
that its planning module wasn't allowed to us@nywhere inside the policy. We did that in order
to have deterministic phases, given the initial state.d.ste what is changed when we remove
this restriction.

First, the computation complexity of planning may be langaw, but is not our concern here.

Note that nothing is changed in the Update procedure or ian#ysis, as long as the as-
sumptions it makes on its input are kept by the main procedure

Phases now don't follow deterministically from the initsthte, because of the observations
of the in-phaser actions. But determinism is still preserved betweegictions, in the following
manner.

A sequence of steps starting with anaction and ending before the next will be called a
sub-phaseEvery phase can be broken into a sequence of consecutivehsisies. Suppose that
in two different sub-phases tlheaction gives the same observation, and then the same sequenc
of actions is taken. The beliefs will deterministically beetsame in both sub-phases, and they
can therefore contribute entries to the same records.

Formerly, the observable history after a given number qistd a phase could take at most
|S| different values, one for each initial state. Now that takinis allowed, and observation can
be made in any step, the number of observable histories camiseexponential. Since actions
depend on histories, this may result in exponentially maiffgrént sub-phases, and require
exponentially many records.

To address this difficulty, we restrict our attentiondiationarypolicies, without loss of
generality. Consider a policy which maximizesU,, (by, 7, T1). After taking 7} — i steps,
and reaching some beliéf the restriction ofr to the remaining stepsg,;, has to maximize
Unr (b, mi, ). There may be more than one maximizing sub-potigy, and it's possible forr
to choose different ones in different histories (if diffietéistories lead to the same beltgf But
it wouldn’t harm optimality to choose the same sub-poliayanelless of the history. A stationary
policy uses actions based only on the current belief andaimaining horizon. Note that there
always exists an optimal stationary policy.

Now, consider what happens when a stationary determimgsticy is used in an OCOMDP.
Suppose that at some pointis taken. The next belief is determined by the observatioand
the next action is determined layand the remaining horizon Suppose that that action is not
«, then the belief and action following it are also determibgdr and.. This continues for the
entire sub-phase, up until the nextaction. The records we keep will reflect this new version of
determinism.

The revised algorithm may seem a little more complicatetjttaperates in essentially the
same way.
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UR-MAX (S, A, r, C, T, ¢€) (revised)
1. Initialize a completely unknown modgH, i.e. letW, = ¢ for eacha € A’

2. Letn be a stationary deterministi€; -step policy, which is optimal in’\i among those
which usex in the first step

3. Letrec, i peore = {K copies of s}, letrec,; ier = &, @andsteps, ; = 0,
foreachs e Sand0 <i < T

4. Repeat for each-step phase:

4.1. Takex and observe the initial state
4.2. Let. = T} — 1 be the remaining horizon in the phase
4.3. While: > 0, do another sub-phase:

4.3.1. Takesteps,, steps according to
4.3.2. Decreaseby steps, ,
4.3.3. Leta be the last action taken
4.3.4. If (@ # a orsteps,, = 0) andc > 0
4.3.4.1. Taker and add the observed staterto,, afier
4.3.4.2. Ifjrecy, after| = K
e If fred,, pefore ¢B¢}/ﬁ ’
— Update(red,, peforer @ 1€y, aster)
— Dolines2and 3
e Otherwise
— Letrec,, before = T€Coy atter ANATECH, after =
— Increasesteps,, by 1
4.3.4.3. Take arbitrary none actions and let = 0

The explanation of line 4.3.4 is as follows. df = «, we go to the next sub-phase. The
exception is whenteps,, = 0, which means we're now sampling the beginning of a sub-phase
We also make sure that the phase hasn’t ended).

Only two modifications are required in the analysis.

First, there are more records to take into account in CagoflaThis makes all the parameters
a little larger, but still polynomial.

Second, in Lemma 8 we need to observe that, among the pddicgeable to the planning
module, is a policy which starts with, and then repeatedly usésstep policies which are
optimal in M’ for their respective initial beliefs. The rest of the proefirains the same.
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8 Summary

In this thesis we have discussed the interaction compl@figeveral classes of decision pro-
cesses in which observability is partial: POMDPs, OPOMDiR$ @COMDPs. The relation-
ships between these and other important classes arealiedtin Figure 7.

One contribution of this thesis has been defining the conmiepteraction complexity as an
entity separate from the standard concept of computatiomptaxity. Previously, publications
concerned with complexity sought computationally effitiexinforcement learning algorithms,
and viewed the efficiency of their interaction as a necesaadyinsufficient condition. We have
argued that the interaction complexity is interestingselit, and focused on reinforcement learn-
ing algorithms with polynomial interaction complexity.

Another attribute of most previous research is that it amsotve the infinite horizon learning
problem, but actually switches to the finite horizon formlgaithms and proofs. This reduction
is often only implicit or discussed informally. Since theiti@horizon form is more general and
easier to work with, we have provided and proved a generahgueduction from the infinite
horizon form, which has allowed the rest of our work to apmyaly well to both problems.

A major contribution of this thesis has been introducingsks of partially observable de-
cision processes with provably polynomial interaction ptexity. Importantly, the proofs have
been constructive, i.e. we have provided algorithms focieffit reinforcement learning in these
classes. One reason that this is interesting is that it thdeparates the interaction complexity
from the computation complexity, by demonstrating leagmpnoblems which can be solved with
polynomial interaction complexity, but not with efficienbroputation (according to standard
complexity assumptions).

We have shown that learning in POMDPSs, when possible, giyeen’t be achieved with
polynomial interaction complexity. That is, we have showeaanable subset of POMDPs which
requires a number of interaction steps exponential in treeci the model.

We have then introduced two subclasses, OPOMDPs and OCOMbB®fatter being our
own contribution. Both these classes are too general twvalther efficient planning or com-
putationally efficient learning. Computationally, therfzer class is at least as hard as POMDPs,
and the latter at least as hard as UMDPs. However, we havendhaiearning with polynomial
interaction complexity is possible in both these classes.

Our algorithm for learning in OPOMDPs is only slightly morengplicated than R4AX,
which learns efficiently in MDPs. OCOMDPSs, on the other hdraVe turned out to pose a con-
siderable challenge, and the WNRxx algorithm for efficiently learning them has been another
major contribution of this thesis.

The basic version of the URiAX algorithm interacts with an unknown OCOMDP to obtain
a return which is nearly the optimal return of the underhyingDP. We have then extended the
algorithm in two important ways: to produce a stand-alonepdor the underlying UMDP, and
to compete with the OCOMDP itself. We have also dealt withdhse where the number of
states is unknown.

The problem of efficient learnability in partial observatyilis far from solved, and should
be further investigated in future work. It is our hope thadé first positive results of efficient
learning in general classes of partially observable decigrocesses will inspire further research.
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POMDPs

OPOMDPs

OCOMDPs

Figure 7: Classes of decision processes
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A Appendix: Equivalence of Observation Models

In section 2.3 we argued that most common definitions of tisenfation model produce classes
which are equivalent for planning. We now show why this is so.

First, having stochastic observations doesn’t extend ldmsc As explained earlier, this just
means that observations are generated "on demand" instgast oevealing a feature of the
state. For example, compafe S — A(O)to#¢ : S — O. Of course, a model of the second
type can easily be represented in the form of the first. Foredaction in the other direction,
let S = S x O. Whenever a new statee S is drawn, the observation~ 6(s) is immediately
drawn too, to produces, o) € S’. Then simply¥'(s, o) = o reveals this observation.

Now we show that it doesn’t matter what part of the recenblnysthe observation depends
on. The types we consider are

1. S — O, the current observation depends on the current state,

2. S x A — O, the observation is triggered by an action, and dependseoadtion and the
state before it, and

3. 9 x Ax S — O, the action-triggered observation also depends on the staiched
thereafter.

We show that these observation models are equivalent,nmstef planning in the classes they
produce. We start with equivalence of the first and third $y@ad follow with equivalence of
the second and third.

There are two differences between the first and third typesadels. They both make an
observation each time a state is reached, but only in ther latay the observation depend on
the previous state and action. Reducing one model to the mlsmply a matter of ignoring
these variables, in one direction, or extending the statectade them and use them, in the other
direction.

The other difference between these models is that in thetfipst an observation is made
before the first action. When a model of the third type is redum one of the first type, the
initial observation can simply be made constant. In theradirection, the reduction is not fixed.
Instead, we first make the first observation, and only thenavecalculate the reduction. The
result will have different initial beliefs for different slervations.

An observation model of the second form can easily be repteden the third form, simply
by not having the observation depend on the next state dfteflae other direction is a little
more challenging. Suppose that we have a mddeWith statesS and observation function
0 :5%xAxS — O. Toreduce it to a moded’ with statesS” and observation function
0': S x A— O,we want a state i/’ to represent now not only the current statédin but also
the next state. However, the current state is decided béferaction, so it needs to represent
a function from the action to the following state. Sb< S x A%, where(s,u) € S’ indicates
that the current state in/ is s, and the next will be:(a) if a is taken. But we have to avoid
157 = |S| - |A|”®), to keep the reduction polynomial.
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0—1/6—1/3—1{2—2/3—5/56—1

al sl ‘g2 5;3
a? +s! s? — 53—+
ad st s? s>

Figure 8: Efficient representation of a function from actioriollowing state

A distribution over an ordered set can be naturally represehy a partition of0, 1) into
finitely many intervals. For example, the partiti¢fi), 1/2), [1/2, 2/3), [%/3,1)} may represent the
distribution in whichPr (1) = /2, Pr (2) = Vs, andPr (3) = 5.

If we intersect the partitions which represefit ), for a fixed state and every action € A,
we get a new partition which refines each of them (Figure 8)chBaterval in each original
partition corresponds to a state, so each interval in thepeetition corresponds to a function
that matches a state to each action. For example, in Figtine &terval[2/3, 5/6) corresponds to
u such thatu(a') = u(a®) = s* andu(a?) = s°.

The new partition represents a distribution over a substtesfe functions, of size less than
|S]-]A|. When the state is reached inV/, we reach(s, u) in M’, whereu is drawn according to
this distribution. Then we have(a) ~ t(s,a), andd’((s,u),a) = 0(s, a,u(a)), as required.
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