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Abstract

An Unobservable MDP (UMDP) is a POMDP in which
there are no observations. An Only-Costly-Observable MDP
(OCOMDP) is a POMDP which extends an UMDP by allow-
ing a particular costly action which completely observes the
state. We introduce UR-MAX, a reinforcement learning algo-
rithm with polynomial interaction complexity for unknown
OCOMDPs.

Introduction
An Unobservable Markov Decision Process (UMDP) is a
model of an environment with which a decision-making
agent is interacting. At each time step, the agent performs
an action of its choice, which affects the state of the environ-
ment. After each action, the agent obtains a reward which
depends on the state reached.

The agent has no sensors, and receives no indication from
the environment on the value of its state (hence the name of
the model). However, when the model is known to the agent,
either partially or completely, it may know the stochastic
dependency of the state on its actions. This allows the agent
to form a policy which will guide its actions. The quality
of the agent’s policy is measured by the expected average
reward it obtains for a given number of steps (the horizon).

UMDPs are important special cases of Partially-
Observable MDPs (POMDPs). In POMDPs the agent may
possess some (possibly noisy) sensory power, and partially
observe the state at each step.

Planning in UMDPs is the problem of calculating an op-
timal policy for a given UMDP and a given finite horizon.
Planning is possible by using, for example, methods of value
iteration (Sondik 1971), but was proved to be NP-Complete
(Papadimitriou & Tsitsiklis 1987). Learning in UMDPs is
the problem of performing near-optimally in a given envi-
ronment, which implements an unknown UMDP. This Re-
inforcement Learning task is clearly impossible, because no
information of the model can be gathered by the interaction.

An Only-Costly-Observable MDP (OCOMDP) is an ex-
tension of an UMDP, in which a particular costly action is
added, which allows the agent to completely observe the
state. OCOMDPs are also special cases of POMDPs, in
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which every action provides either complete observability
or none at all. In some scenarios, OCOMDPs may be inter-
esting as extensions of UMDPs, which enable learning. For
example, a blind robot may be temporarily equipped with
an expensive powerful sensor, for the purpose of learning an
optimal plan for when it’s blind again. As another exam-
ple, expensive hospital equipment may be used in medical
research for learning optimal outpatient treatment. In other
scenarios, OCOMDPs may be interesting in their own right.

Planning in OCOMDPs is at least as computationally hard
as in UMDPs, since the full-observation action may be too
costly to be useful for the given horizon, in which case
the problem reduces to planning in the underlying UMDP.
Learning in OCOMDPs is obviously at least as computa-
tionally hard as planning.

In Reinforcement Learning, however, there’s an addi-
tional important complexity measure - the number of actions
taken by the algorithm, called its interaction complexity. To
our knowledge, no previously published RL algorithm for
partially observable decision processes has a polynomial in-
teraction complexity (for a survey see Hasinoff (2003)).

We introduce UR-MAX, a Reinforcement Learning algo-
rithm for OCOMDPs. It uses polynomial interaction com-
plexity to obtain an expected average reward which is nearly
that of the optimal policy for the underlying UMDP. A ver-
sion of the algorithm competes with the optimal policy for
the OCOMDP itself. We also discuss how UR-MAX forms a
near-optimal plan for the underlying UMDP, so that in some
cases the expensive sensor can eventually be removed with-
out decreased performance.

We note that although full observability is possible in
OCOMDPs, algorithms for learning in fully-observable
MDPs, such as E3 (Kearns & Singh 1998) can’t simply
be extended to OCOMDPs. The full-observation action in
OCOMDPs affects not only the agent’s payoff, but also the
environment, and must be taken prudently. This is not the
case, for example, in the formulation of COMDPs presented
by Hansen, Barto, & Zilberstein (1997), for which MDP
learning algorithms can be adapted.

This paper is organized as follows. In the next section we
define the models used and the learning problem. Following,
we present the UR-MAX algorithm. Then we analyze the
algorithm and prove its near-optimality. Finally, we discuss
some extensions and related issues.
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Models
Definition 1 (UMDP) An UMDP is a tuple
M = 〈S, A, r, t〉 where

• S is the finite set of possible environment states,
• A is the finite set of possible agent actions,
• r : S → [0, 1] is the reward function, and
• t : S×A → Δ(S) is the transition function, such that for

every s ∈ S and a ∈ A, t(s, a) is the distribution of the
state which follows s when a is taken.

The initial state distribution b0, such that s0 ∼ b0, is
known to the agent, and is arbitrary unless defined other-
wise.

In an UMDP, the agent only observes its own actions. We
allow randomized choices of actions, although they are un-
necessary for optimality. The set of observable histories is
H =

⋃
i≥0 Ai. The agent’s actions are governed by a policy

π : H → Δ(A), where ai ∼ π
(
(aj)

i−1
j=0

)
. In particular,

a0 ∼ π(Λ), where Λ is the empty initial history.
The stochastic process (si, ai)i≥0 is then induced by

• the model M (by having si+1 ∼ t(si, ai)),

• the initial state distribution b0, and

• the agent’s policy π.

After each step, the agent obtains a reward which is a
function of the state reached at the end of the step, but it
doesn’t observe it. The agent’s T -step return is the expected
average reward

UM (b0, π, T ) = E
1

T

T∑
i=1

r(si).

Definition 2 (OCOMDP) An OCOMDP which extends an
UMDP M = 〈S, A, r, t〉 is a tuple M ′ = 〈S, A′, r, t′, C〉
where

• A′ = A ∪ {α} contains a full-observation action α,
• t′ : S × A′ → Δ(S) extends t, and
• C ≥ 0 is the cost of taking α.

The full-observation action α has two distinct features:

• α allows the agent to observe the state s in which it’s taken
and its reward r(s). This requires us to redefine the con-
cept of observable histories.

• α costs C to take. This requires us to redefine the agent’s
return.

After taking α the agent observes the previous state, while
after taking some other action it observes nothing. For i ≥ 0
we define

oi =

{
si, if ai = α;
⊥, otherwise.

The set of observable histories is now redefined to be
H ′ =

⋃
i≥0 (A′ × (S ∪ {⊥}))i, and the agent’s policy is

now π : H ′ → Δ(A′), where ai ∼ π
(
(aj , oj)

i−1
j=0

)
.

The agent’s T -step return is now

UM ′(b0, π, T ) = E
1

T

T∑
i=1

(
r(si) − CI[ai−1=α]

)
,

where IP is the indicator of the predicate P , being 1 or 0
respectively whether P is true or false. The observation cost
is reduced from the reward for each step in which α is used.

In learning, some exploration must precede exploitation,
and the agent can’t be expected to do as well as in planning.
The agent may have to try every action, and go through many
state distributions. One implication is that it may take more
than T interaction steps to reach a near-optimal T -step re-
turn. Another implication is that, by the time the agent forms
a near-optimal plan, the state distribution may irrecoverably
become arbitrarily worse that the initial one. We must allow
our algorithm to compete with the optimal plan for the worst
initial state distribution, and we must allow it polynomially
many steps to do so.

When learning in an UMDP M with a horizon T
and margin ε, our goal is therefore to find a policy π̄
in the extending OCOMDP M ′ which, when used for
T̄ = poly

(
T, 1

ε
, |M |, C)

steps from any initial distribution
b0, yields a T̄ -step return of

UM ′

(
b0, π̄, T̄

) ≥ min
b

max
π

UM (b, π, T ) − ε.

We now turn to define the hypothetical model of a
Partially-Known OCOMDP (PK-OCOMDP) used in our al-
gorithm. Similarly to the R-MAX algorithm (Brafman &
Tennenholtz 2002), we follow the principle of optimism un-
der uncertainty. The model involves known parts, in which
it attempts to approximate the real OCOMDP, and unknown
parts, in which it switches to a learning state with an opti-
mistically maximal reward.

Definition 3 (PK-OCOMDP) For an OCOMDP
M ′ = 〈S, A′, r, t′, C〉, a PK-OCOMDP is a tuple
M = 〈S, A′, ρ, τ, C,W, ε′〉 where

• S = S ∪ {s∗} contains a special learning state s∗,
• ρ : S → [0, 1] extends r with ρ(s∗) = 1,
• τ : S × A′ → Δ(S) partially approximates t′ (the exact

meaning of τ , W and ε′ is defined later),
• W = {Wa}a∈A′ is a collection of sets of beliefs such that
Wa ⊆ Δ(S) for every a ∈ A′, which indicate the part of
the model considered known, and

• ε′ ≥ 0 is the tolerance of the known boundary.

The agent’s belief in a given model is the distribution of
the current state, given what the agent knows, which is the
observable history. For every action a, the elements of Wa

are beliefs for which the effect of a has been approximately
revealed by the algorithm. The linearity of transitions, de-
scribed below, allows the agent to deduce the effect of a on
beliefs which are linear combinations of elements of Wa.

For every a ∈ A′, we define Sp(Wa) to be the minimal
affine subspace of R

S which includes Wa

Sp(Wa) =

{ ∑
w∈Wa

cww

∣∣∣∣∣
∑

w∈Wa

cw = 1

}
.

In particular, Sp(∅) = ∅.
However, in order to bound our error we must also bound

the coefficients in these combinations. For every a ∈ A′ and
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c > 0, Sp(Wa, c) ⊆ Sp(Wa) is the set of linear combina-
tions of Wa with bounded coefficients

Sp(Wa, c) =

{∑
w

cww ∈ Sp(Wa) |∀w ∈ Wa : cw ≤ c

}
.

Now we allow some tolerance as, for every a ∈ A′, we
define BW,δ

a to be the set of beliefs which are δ-close to
Sp(Wa, e), in the L1 metric, where e is the base of the nat-
ural logarithm.

BW,δ
a = {b ∈ Δ(S)|∃b′ ∈ Sp(Wa, e) : ‖b′ − b‖1 ≤ δ},

where
‖b′ − b‖1 =

∑
s∈S

|b′(s) − b(s)|.

BW,ε′

a represents the set of beliefs, the effect of a on which
is considered known while planning. τ is supposed to ap-
proximate the real transition function t′ for beliefs in BW,ε′ .

To define the stochastic process (si, ai)i≥0 in M, we
must consider the transitions of beliefs. In the real model
M ′, the belief which follows b when a is taken is

t′b,a =

{ ∑
s b(s)t′(s, a), if a �= α;

t′(o, α), otherwise,

where o ∼ b if a = α. Note that, unless a = α, the transition
is deterministic.

In M, belief-state transitions are defined the same way,
except that an action which is unknown for the belief-state
from which it is taken always leads deterministically to the
special learning state s∗ ∈ S. For every s ∈ S, let bs be such
that bs(s) = 1. Then the belief which follows b̄ ∈ Δ(S)
when a ∈ A′ is taken is1

τ b̄,a =

⎧⎨
⎩

∑
s∈S b̄(s)τ(s, a), if a �= α and b̄ ∈ BW,ε′

a ;
τ(o, α), if a = α and bo ∈ BW,ε′

α ;
bs∗ , otherwise.

When M is used for planning, the process is defined by
having, for every i ≥ 0, si ∼ b̄i, and b̄i+1 = τ b̄i,ai

, where
the observation oi = si is used when ai = α.

When M is used to simulate the actual interaction with an
OCOMDP M ′, si is not really distributed according to the
belief in M, but rather the belief in M ′. This is a different
stochastic process, which may be unknown to the agent, but
is still well-defined.
Definition 4 (OCOMDP Approximation) Let
M ′ = 〈S, A′, r, t′, C〉 be an OCOMDP and
M = 〈S, A′, ρ, τ, C,W, ε′〉 a PK-OCOMDP, such that
S = S ∪ {s∗} and ρ extends r. M is called a μ-
approximation of M ′ if, for every 0 ≤ δ ≤ ε′, a ∈ A′ and
b ∈ BW,δ

a ⊆ BW,ε′

a∥∥∥∥∥
∑
s∈S

b(s)(τ(s, a) − t′(s, a))

∥∥∥∥∥
1

≤ μ + 2δ.

Note the involvement of the parameter δ, which demon-
strates the linear degradation of the transition functions’
proximity, as the belief becomes more distant from the span
of learned beliefs.

1We slightly abuse the notation for the sake of clarity. The be-
liefs b ∈ Δ(S) and b

′ ∈ Δ(S), where ∀s ∈ S : b(s) = b
′(s), are

interchangeable in our notation.

UR-MAX

The algorithm operates in T2 phases of a fixed length T1,
and keeps track of a hypothetical model M. α is only taken
in the first step of each phase and when observations are
needed for learning.

Actions other than α are taken simultaneously, both actu-
ally in the real environment and virtually in the hypothetical
one. α actions are first taken in the real environment, and
the resulting observation is then simulated in the hypothet-
ical environment. Note that the distribution of observations
may be different than the one anticipated by M.

The algorithm classifies phases by their observed initial
state. For each initial state σ, it tries to implement an optimal
deterministic T1-step policy πσ in M which uses α only in
the first step. Occasionally, the algorithm learns something
new about M, and updates πσ.

For every initial state σ and every step of the phase (except
for the last one), the algorithm keeps records which attempt
to estimate the state distribution after the step. Each record
will contain up to K entries. The lack of observations and
the determinism of πσ make these distributions constant.

Let’s describe what happens after M is initialized, and
after each time it’s subsequently updated. First, the optimal
policies πσ in M are recalculated. The records are emptied,
because the beliefs they represent have changed. Then, in
each phase which starts in σ, the algorithm will take some
i steps of πσ, use α to observe the state reached, and add
that observation to the record recσ,i. i starts at 1, and grows
gradually as each sample of size K is completed. This pro-
cess continues until any of these occur:

• A sample is completed which reveals the previously un-
known effects of an action. In this case, the records are
used to learn the effects of the action, and M is updated.

• i reaches T1, and πσ is implemented entirely without un-
known effects (except maybe in the last step).

• Phases with some other initial state cause M to be up-
dated, which changes πσ and empties the records.

As M ′ becomes more and more known, more phases are
completed without requiring an update. Eventually, enough
phases are exploiting for the algorithm to achieve near-
optimal return.

We are now ready to formally introduce our algorithm.
Let M = 〈S, A, r, t〉 be an UMDP, C a full-observation cost,
T a horizon and ε > 0 a margin. For convenience, S and r
are given as input to the algorithm, but this is unnecessary,
as discussed later.

For a record rec, we define rec(s) = #srec
|rec| to be the

relative frequency of s among its entries. In other words,
rec ∈ Δ(S) is the uniform distribution over rec’s entries.
Whether we refer to the distribution or to the record itself is
clear from the context.

The procedures Update and Plan are defined after the
main one.
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UR-MAX(S, A, r, C, T, ε):

1. Initialize:

• Set S = S ∪ {s∗}, A′ = A ∪ {α}, n = |S|, k = |A|.
• Set ρ(s) = r(s) for every s ∈ S, ρ(s∗) = 1, and

– T1 =
⌈

8(C+2)
εT

⌉
T + 1, phases’ length,

– ε′ = ε
48T1

, planning tolerance,

– δ = ε′

4
√

nT1

, learning tolerance,

– μ′ = ε′

18enT1

, approximation error,

– K =
⌈

n2

2μ′2 ln
(
(4n)3kT1

1
ε
ln 1

δ

)⌉
, sample size, and

– T2 =
⌈

(4n)2k

ε
T1K ln 1

δ

⌉
, number of phases.

• Set M = 〈S, A′, ρ, τ, C,W, ε′〉 to be a PK-OCOMDP
with Wa = ∅ for every a ∈ A′ and arbitrary τ .

• For every s ∈ S, set πs to Plan(M, s, T1).
• For every s ∈ S and 1 ≤ i < T1, set recs,i to be an

empty record with entries in S, and set recs,0 = bs.

2. Repeat for each phase j from 0 to T2 − 1:

2.1. Take α, observe the initial state σ, and set h = (α, σ).
2.2. Repeat for each step i from 1 to T1 − 1:

2.2.1. If |recσ,i| = K, take a ∼ πσ(h), and append (a,⊥)
to h.

2.2.2. Otherwise:
• Let a be the last action taken.
• Take α and add the observed state to recσ,i.

• If now |recσ,i| = K and recσ,i−1 �∈BW,
√

nδ
a , execute

Update(σ, i, a).
• Complete phase j by taking T1−1−i arbitrary non-α

actions, and continue to phase j + 1 in line 2.

Update(σ, i, a):

1. Let frecσ,i−1,a = recσ,i be the sample gathered. For every
w ∈ Wa, fw,a is kept even after the records are emptied.

2. If Wa �= ∅, let b′ =
∑

w∈Wa
cww be recσ,i−1’s projec-

tion on Sp(Wa).

• If Wa = ∅, or if ‖b′ − recσ,i−1‖2 > δ, then let
W ′

a = Wa ∪ {recσ,i−1}.
• Otherwise, there exists some w′ ∈ Wa such that

cw′ > e (we prove this in lemma 7), and let
W ′

a = Wa\{w′} ∪ {recσ,i−1}.

3. Find functions τ ′
s,a : S → R, for every s ∈ S, which

satisfy all of the following linear constraints:

• For every s ∈ S, τ ′
s,a ∈ Δ(S).

• For every w ∈ W ′
a,

∥∥∑
s w(s)τ ′

s,a − fw,a

∥∥
1
≤ 2μ′.

4. If a solution exists:

• Set Wa to W ′
a.

• For every s ∈ S, set τ(s, a) to τ ′
s,a.

• For every s ∈ S, set πs to Plan(M, s, T1).

5. For every s ∈ S and 1 ≤ i < T1, empty recs,i.

Plan(M, s, T1):
Using value iteration (Sondik 1971), calculate and output a
policy π which maximizes UM(bs, π, T1) among determin-
istic policies in which

• the first action is α, and

• other then initially, α is never used.

Analysis
Theorem 5 (UR-MAX Correctness) Let
M ′ = 〈S, A′, r, t′, C〉 be an OCOMDP which extends
an UMDP M = 〈S, A, r, t〉. Let b0 be some initial state
distribution, T a horizon, and ε > 0 a margin. Let π̄ and T̄
be the policy and the number of steps, respectively, used by
UR-MAX(S, A, r, C, T, ε). Then

T̄ = poly

(
T,

1

ε
, |M |, C

)
,

and

UM ′

(
b0, π̄, T̄

) ≥ min
b

max
π

UM (b, π, T ) − ε.

That T̄ = T1T2 is polynomial is evident from the choice
of parameters in line 1 of the main procedure.

Denote by U∗ = minb maxπ UM (b, π, T ) the optimal T -
step return in M from the worst initial distribution.

In order to prove our main Theorem, we argue that, with
high probability, in almost every phase the algorithm imple-
ments a near-optimal policy. Namely, we show that, with
probability of at least 1 − ε

4 , at least a 1 − ε
4 fraction of the

phases yield a return of at least U∗ − ε
4 .

When π satisfies the restrictions in the Plan procedure, we
define b

σ,π
i to be the belief in M ′ which deterministically

results when π is used from bσ for i steps, and a
σ,π
i to be the

action which is deterministically taken in the following step.
A sample is completed when a record recσ,i, for some

σ ∈ S and 1 ≤ i < T1, reaches size K. Consider the value
of π = πσ at that time. The sample recσ,i is said to have
failed if ∥∥recσ,i−1 − b

σ,π
i−1

∥∥
1

> μ′,
or if ∥∥∥∥∥recσ,i −

∑
s

recσ,i−1(s)t
′(s, aσ,π

i−1)

∥∥∥∥∥
1

> 2μ′.

The failure of a sample depends not only on the respective
record, but also on the previous one. The algorithm is said
to have failed if any sample has failed. Note that, since b

σ,π
i−1

and t′ are unknown to the agent, a failure may pass unde-
tected during the run of the algorithm.

Lemma 6 (Sample Failure) A sample fails with probabil-
ity at most ε

(4n)2kT1 ln 1

δ

.

The proof of this lemma is lengthy, and is omitted due
to the lack of space. Basically, it is proved by noticing that
the entries in recσ,i−1 are identically and independently dis-
tributed according to b

σ,πσ

i−1 , and those in recσ,i are i.i.d. ac-
cording to b

σ,πσ

i , and applying Hoeffding’s inequality.
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For an action a ∈ A′ such that Wa �= ∅, let
d(Wa) = dimSp(Wa) be the dimension of Sp(Wa),
let H(Wa) ⊆ Sp(Wa) be the convex hull of Wa, and let
v(Wa) be the d(Wa)-dimensional volume of H(Wa). For
δ > 0, we define

Fδ(Wa) = d(Wa) + ln
d(Wa)!v(Wa)

δd(Wa)
+ 1.

Fδ(Wa) is a measure of how much is known for a, which
combines the dimension of Wa and the volume of its convex
hull. For convenience, we define d(∅) = −1 and Fδ(∅) = 0.

Lemma 7 (Update Correctness) After D invocations of
the Update procedure, given no failures, d(Wa) = |Wa| − 1
(Wa is affinely independent) for every a ∈ A′,∑

a∈A′ Fδ(Wa) ≥ D, and M is a μ-approximation of
M ′, where μ = 8enμ′.

Proof (sketch) The proof is by induction on D. For D = 0,
observe that M is initialized in line 1 of the main pro-
cedure to be a μ-approximation of any real model, that
d(∅) = |∅| − 1, and that

∑
a Fδ(∅) = 0.

Now we assume that the lemma holds for some D−1, and
prove it for D. Let the Dth invocation be with parameters
σ, i and a. During the invocation, Wa′ remains the same for
every a′ �= a. Consider recσ,i−1, b′ and W ′

a of line 2 of the
Update procedure.

When Wa �= ∅, b′ is the projection of recσ,i−1 on
Sp(Wa). If ‖b′ − recσ,i−1‖2 > δ > 0, i.e. recσ,i−1

lies more than δ outside Sp(Wa), then the dimension of
W ′

a = Wa ∪ {recσ,i−1} is higher than that of Wa, and the
volume of its convex hull is at least δ

d(W′

a) times that of Wa.
If, on the other hand,√

nδ ≥ √
n ‖b′ − recσ,i−1‖2 ≥ ‖b′ − recσ,i−1‖1 ,

then since recσ,i−1 �∈BW,
√

nδ
a , b′ =

∑
w cww �∈Sp(Wa, e),

and there indeed must be some w′ ∈ Wa such that cw′ > e.
Then W ′

a = Wa\{w′}∪{recσ,i−1} has the same dimension
as Wa, and the volume of its convex hull is at least e times
larger.

In either of these cases, and also when Wa = ∅, W ′
a re-

mains affinely independent, and Fδ(W ′
a) ≥ Fδ(Wa) + 1.

This update actually takes place in line 4 of the Update
procedure, since τ ′

s = t′(s, a), for every s ∈ S, is a solution
to the constraint satisfaction problem of line 3, assuming no
failures.

Finally, we hint how to show that M remains a μ-
approximation of M ′ when it’s updated. For w ∈ Wa,∑

s w(s)τ(s, a) approximates
∑

s w(s)t′(s, a) because, by
the constraints of line 3 of the Update procedure and the as-
sumption of no failures, fw,a approximates both of them.

For any b′ ∈ Sp(Wa, e), the distance between∑
s b′(s)τ(s, a) and

∑
s b′(s)t′(s, a) is a combination

of the approximation errors for every w ∈ Wa. This
combination has bounded coefficients, so it can be
bounded as well. For any b ∈ Δ(S), the approximation
degrades linearly with its minimal L1 distance from any
b′ ∈ Sp(Wa, e), since ‖∑s (b′(s) − b(s))t′(s, a)‖1 is
bounded by that distance, and similarly for τ .

Corollary 8 (Update Invocations) If the algorithm doesn’t
fail, at most 4nk ln 1

δ
invocations of the Update procedure

are ever made.

This stems from the fact that for every a ∈ A′, both
the dimension of Wa and the volume of its convex hull are
bounded, so lemma 7 bounds the number of invocations.

Corollary 9 (Exploring Phases) If the algorithm doesn’t
fail, at most ε

4T2 entries are ever added to the records.

Records are bounded in size by K, and by corollary 8 are
emptied a bounded number of times.

Corollary 10 (Algorithm Failure) The algorithm fails
with probability at most ε

4 .

This is a combination of lemma 6 and corollary 9.

Lemma 11 (Exploiting Phases) If the algorithm doesn’t
fail, every phase in which no entries are added to the records
is exploiting, i.e. has a return of at least U∗ − ε

4 .

Proof (sketch) This is a version of the Implicit Explore or
Exploit Lemma of R-MAX.

In a phase which starts in σ, in which no entries are added
to the records (a non-exploring phase), the records for σ are
all of size K. Their distributions are all in BW,

√
nδ

a , where
a takes the values of their respective actions. Otherwise, an
Update would have occurred.

Assuming no failures, the real beliefs in M ′ are all in

BW,μ′+
√

nδ
a . Since M is a μ-approximation of M ′, the dis-

tance between the beliefs in M ′ and in M increases by at
most μ + 2μ′ + 2

√
nδ < ε′

T1

at each step, and so the beliefs

in M are indeed all in BW,ε′

a , except maybe in the last step.
That means that s∗ is not reached during the phase.

Assume a non-exploring phase starts in σ and has
policy π. The difference between UM ′(bσ, π, T1) and
UM(bσ, π, T1) comes from the difference in beliefs, as well
as from the last step of the phase, which in our algorithm
may remain unknown indefinitely.

The phase, initial step excluded, can be broken down into
T1−1

T
parts of length T . Suppose that an optimal determinis-

tic T -step policy in M is used in each of these parts, and to-
gether they form a policy π′ in M of the type required in the
Plan procedure (so that UM(bσ, π, T1) ≥ UM(bσ, π′, T1)).
The difference between U∗ and UM(bσ, π′, T1) comes from
the difference in beliefs, as well as from the first step of the
phase and its cost. Combining these differences, we get

UM ′(bσ, π, T1) ≥ UM(bσ, π, T1) − ε′

2
− 1

T1
≥

≥ U∗ − 6ε′T1 − C + 2

T1
≥ U∗ − ε

4
.

Now we can complete the proof of our main Theorem.
Proof (Theorem 5: UR-MAX Correctness) Exploring
phases utilize α twice, and may yield as worse a return as
− 2C

T1

. Let p be the expected fraction of phases which are
non-exploring. Corollary 9 gives p ≥ 1 − ε

4 , given that the
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algorithm doesn’t fail. Corollary 10 then gives p ≥ (1− ε
4 )2.

Assume that ε < U∗ ≤ 1, since otherwise the learning prob-
lem is trivial. Then

UM ′(b0, π̄, T̄ ) ≥ p
(
U∗ − ε

4

)
+ (1 − p)

(
−2C

T1

)
≥

≥
(
1 − ε

4

)2 (
U∗ − ε

4

)
−

(
1 −

(
1 − ε

4

)2
)

2C

T1
>

> U∗ − ε

2
U∗ − ε

4
− εC

T1
> U∗ − ε.

Discussion
Learning States and Rewards
It’s reasonable to demand that the algorithm doesn’t receive
r as input, but is required to infer it from the environment.
For that purpose, we assume that the rewards of states ob-
served by α are visible as well. It can be verified that the
rewards of states which were never observed by α play abso-
lutely no role in UR-MAX. These states are missing from the
records when learning, and therefore aren’t reachable when
planning.

The names of the states are of no consequence. n = |S| is,
however, required for the calculation of parameters. If n is
not given as input, the following algorithm enables learning
nonetheless.

Suppose that at some point only n′ < n states of M were
observed by the algorithm (initially, n′ = 0). Imagine a
model M̄ with n′ + 1 states, in which all the unobserved
states of M are replaced with a single state. This state has a
reward of 1 and leads deterministically to itself. The proba-
bility of reaching the invented state from each observed state
is the sum of those probabilities for the unobserved states.

The algorithm runs UR-MAX with M̄ ’s states as input. If
new states are revealed, the process is repeated, again and
again, with increasing values of n′. Eventually UR-MAX
is run without revealing new states. At that point the algo-
rithm is unable to tell if the real model is M or M̄ . Since
UR-MAX competes with the optimal policy of M̄ , which is
at least as rewarding as that of M , it is indeed near-optimal.
It should then be continued for some more phases to com-
pensate for the interaction spent with too few states (newly
observed states at this point may be ignored).

Competing with OCOMDPs
Since the optimal return of an OCOMDP may after all be
larger then that of the UMDP it extends, it’s interesting
to ask whether a variant of UR-MAX exists which obtains
nearly the optimal return of the OCOMDP.

This is possible with two changes of the algorithm. First,
the Plan procedure must allow α to be taken anywhere in
the phase. Second, the bookkeeping and the analysis must
be amended. The beliefs are no longer determined by the
initial state of a phase and the number of steps taken in it.
Rather, they depend on the last observation, on the number
of steps in the phase until it was made, and on the number of
steps taken since then.

A Near-Optimal Policy for the UMDP
UR-MAX obtains a near-optimal return, but doesn’t actually
find a near-optimal policy for the UMDP. It may be de-
sirable to add α to the UMDP only for a bounded learning
period, and then to remove it while keeping its insights.

The main issue in finding a near-optimal T -step policy, is
identifying the initial state distribution from which the pol-
icy will be implemented. UR-MAX may not learn to plan
from any initial belief. In fact, in exploiting phases it uses α
merely as a reset action, to reach a belief for which a near-
optimal policy is known.

If the UMDP had a reset action, it would be possible to
start each phase by taking it, instead of α. Then UR-MAX
could output a near-optimal policy which begins with the re-
set action. Moreover, let a connected UMDP be an UMDP
in which for every s, s′ ∈ S there exists a sequence of ac-
tions which can reach s′ from s with positive probability.
Then it’s possible to use the approximate reset strategy de-
fined by Even-Dar, Kakade, & Mansour (2005), and have
UR-MAX produce a near-optimal policy for a connected un-
known UMDP which starts with the approximate reset strat-
egy.

Infinite Horizon
Let the infinite-horizon return of a policy be the infimum
limit of the returns of its prefixes. In infinite-horizon learn-
ing, the agent is required to converge to a return which is
nearly the supremum over all policies.

If UR-MAX is run indefinitely, each time with double the
horizon and half the margin of the time before, then for every
ε > 0 it converges to a return within ε of the supremum, at a
rate which is only polynomially worse than the optimal rate.
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